
K-means++ vs. Behavioral Biometrics: One Loop to
Rule Them All

Parimarjan Negi ∗, Prafull Sharma †, Vivek Sanjay Jain ‡ and Bahman Bahmani §
Stanford University

Email: ∗pnegi@stanford.edu, †prafull@cs.stanford.edu, ‡vsjain@alumni.stanford.edu, §bahman@cs.stanford.edu

Abstract—Behavioral biometrics, a field that studies patterns
in an individual’s unique behavior, has been researched actively
as a means of authentication for decades. Recently, it has even
been adopted in many real world scenarios. In this paper, we
study keystroke dynamics, the most researched of such behavioral
biometrics, from the perspective of an adversary. We designed two
adversarial agents with a standard accuracy convenience trade-
off: Targeted K-means++, which is an expensive, but extremely
effective adversarial agent, and Indiscriminate K-means++, which
is slightly less powerful, but adds no overhead cost to the
attacker. With Targeted K-means++ we could compromise the
security of 40-70% of users within ten tries. In contrast, with
Indiscriminate K-means++, the security of 30-50% of users
was compromised. Therefore, we conclude that while keystroke
dynamics has potential, it is not ready for security critical
applications yet. Future keystroke dynamics research should use
such adversaries to benchmark the performance of the detection
algorithms, and design better algorithms to foil these. Finally, we
show that the K-means++ adversarial agent generalizes well to
even other types of behavioral biometrics data by applying it on
a dataset of touchscreen swipes.

I. INTRODUCTION

Behavioral biometrics is the study of an individual’s unique
behavioral patterns, such as hand-writing, typing, or mouse
movements. It has been researched as a source of recognition,
and authentication, for a long time. For instance, handwriting
recognition began to be scientifically studied in the early twen-
tieth century [31], and keying patterns of telegraph operators
during World War II were used to identify them [36]. In its
modern incarnation, researchers have studied such techniques
in the context of keystrokes, mouse movements, smartphone
swipes, gait analysis and so on. Combined with an increased
access to behavioral information using sensors on mobile
phones and other electronic devices, behavioral biometrics has
also seen a surge in real-world adoption.

Many banks already use typing information as an additional
layer of security [30], startups provide APIs for password
hardening [9], or even password-less logins [23], and Google
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is developing methods to authenticate users on mobile devices
without passwords [20]. These behavioral biometrics such as
keystroke dynamics and touchscreen swipes are used as a
secondary authentication method along with primary authenti-
cation methods, such as password correctness.

The need for such secondary authentication methods have
become apparent with increasing awareness that human chosen
passwords are far from safe, [8], [10], [13], [16], [22]. It is
common practice to use additional layers of security, using
methods such as two factor authentication [17], but such
explicit methods are usually disruptive to the user. Behavioral
biometrics has the promise of being a second layer of au-
thentication that can be seamlessly integrated into the current
authentication systems - for instance, in keystroke dynamics,
the additional security layer would be based on the key-press
timings as the user enters his password. The authentication
system can then do an additional check in the background
without affecting the user experience.

Since keystroke dynamics is the most studied of the
behavioral biometric approaches, we focus on designing our
adversarial algorithms in that context. Moreover, we show that
such an adversarial agent can also be applied to a different
dataset involving touchscreen swipes.

We focus on a scenario where the attacker has access
to the user’s password, but needs to overcome a keystroke
dynamics based authentication layer. This can happen when
the authentication information of a website is leaked, and the
attacker gains access to the passwords for that website [8],
[10], [13], [22]. Then, the attacker would want to test whether
the same username and password is used on a sensitive (e.g.,
banking) website, but the bank may be utilizing keystroke
dynamics in its authentication system. Since, the information
for the keystroke dynamics models will probably be stored by
a different company, whose API the bank uses, such a data
breach is unlikely to compromise this information. The naive
approach for the adversary would be to manually type in the
password, or use an automated tool to send the key-presses.
Keystroke dynamics systems have been shown to be extremely
robust to such adversarial attempts.

Such a system can be bypassed if the attacker can access
the user’s typing data. This is possible using social engineering
techniques like luring the victim to a web-page, but it is another
attack model with different trade-offs, e.g., it reduces the attack
coverage considerably, as many users would avoid falling for
it.

In our attack model, the attacker has no other information
about the user besides the username and password. Thus, the
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objective of the attacker is to bypass the authentication system
in as few tries as possible. In practice, the attacker could spread
his attempts over several weeks in order to bypass the website’s
restrictions, e.g., a limited number of login tries.

In this domain, past research has focused on a mode of
attack in which the attacker collects a large number of samples
of other users typing the same password, and utilize this data
to generate adversarial samples. In this scenario, we improved
upon the best known methods to generate samples by designing
an adversary, Targeted K-means++, which searches through
the space of potential samples much more efficiently. This
represents a serious vulnerability if such systems are used
to protect sensitive accounts. But it does justify the use of
behavioral biometrics as it requires the adversary to spend
additional resources in collecting samples from other people.
Therefore, next we designed a novel adversary, Indiscriminate
K-means++, that generates the adversarial samples from pre-
computed data from the general population. This diminishes
the value of behavioral biometrics as it does not impose any
additional costs on the attacker.

Along the way, we also collected a large dataset using
Amazon Mechanical Turk to test various hypotheses 1. We
found that our adversarial agents could bypass state of the art
classifiers within a few tries for a majority of the users.

The paper is structured as follows. In section two, we
provide an overview of the past behavioral biometrics research
and adversarial models that inspired ours. In section three,
we describe the datasets, and our adversaries along with the
intuition behind the attacks and analysis of their algorithms. In
section four, we present our experimental setup, which includes
a description of the protocols used, and the experimental
results. We conclude the paper in section five with a discussion
about our contributions and the future work that could benefit
the field of behavioral biometrics.

II. RELATED WORK

A. Behavioral Biometrics

Behavioral biometrics rely on patterns in user interactions
with input devices. Traditionally, these included keyboards,
[11], [15], [19], and mouse [2], [18], [38]. Now, modern
smartphones also provide an array of sensor information,
which can be used similarly to construct user profiles based on
touchscreen swipes [4], [14], gait analysis [12], [27], and other
metrics. These signals are collected from the legitimate user
and then analyzed at authentication time to verify the identity
of the user attempting to log in.

One of the landmark papers comparing many of the state
of the art algorithms in keystroke dynamics is [19]. In this
paper, the author published the results of different classification
algorithms, along with the benchmark DSN dataset. Since
many subsequent papers in the field have experimented based
on these results, we train many of the same classifiers, and
present our results on the benchmark DSN dataset as well.

The current state of the art for the classifiers is represented
by the Keystrokes Biometrices Ongoing Competition (KBOC)
[26]. Many new techniques to improve the performance of

1https://github.com/parimarjan/adversarial keystrokes/tree/master/datasets

keystroke dynamics classifiers were developed there. In par-
ticular, we utilized the classifiers developed by the winner of
the competition, Vinnie Monaco [24], [25], along with some
of his key algorithmic techniques.

In comparison to keystroke dynamics, touchscreen swipes
have not been studied much as a source of authentication.
Antal et al. [4] recently published a comprehensive analysis of
many classifiers, along with a standard dataset that had features
extracted from swipes on an Android platform. In this paper,
we closely follow the experimental setup and classifiers used
in [4] in order to train the classifiers based on touchscreen
swipes.

B. Adversarial Machine Learning

The field of adversarial machine learning studies attacks
against machine learning algorithms. Machine learning meth-
ods have been designed by assuming various properties about
the underlying data (e.g., linear separability), but an adversarial
player may not necessarily abide by such assumptions, and
can actively attempt to foil the model. Adversarial algorithms
against machine learning based systems can be categorized
into a taxonomy based on three aspects:

1) Influence: Causative vs. Exploratory: This deter-
mines if the attack is performed at training time
(Causative) or test time (Exploratory).

2) Security violation: Integrity vs. Availability: This
determines whether the attack is aimed to allow
an attacker to bypass the system (Integrity) or to
block a legitimate user from accessing the system
(Availability).

3) Specificity: Targeted vs. Indiscriminate: This deter-
mines whether the attack is aimed at a particular data
point such as a particular user (Targeted), or is aimed
broadly at a population (Indiscriminate).

For further details on this taxonomy, please refer to the
overview paper by Barreno et al. [6]. The adversarial agents
we designed were inspired by the broader context of this
framework.

C. Adversarial biometrics

Even though there has been significant amount of research
on behavioral biometrics, in particular keystroke dynamics,
very little research has focused on generating adversarial
samples to bypass such systems. A few papers [33], [37] have
studied adversarial attacks on keystroke dynamics assuming
they had access to varying amounts of the target user’s typing
data. As mentioned in the introduction, this is a different
attack scenario than the one studied in this paper. Also, in
the most common attack scenarios, such as when passwords
are leaked, it is unreasonable to expect the attacker to have
any information about the target user besides the username
and password.

Stefan et al. [35] and Serwadda et al. [1], [34] both studied
similar attack scenarios to this paper. Both these papers gener-
ated their adversarial samples using impostor data from other
users typing the same password as the target user. This is the
same scenario as the Targeted K-means++ adversary designed
in this paper. Stefan et al. used an adversary which attempted
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to model the key-press timings as a Gaussian distribution. They
concluded that the classifiers were robust to such adversarial
samples. But it is difficult to draw any conclusions from this
because they used very little data (around 20 users, and 35
samples per user for each password). They also provided a
systems level interface to record keystroke times of typing
patterns, and a way to inject adversarial timings into this
system. In contrast, we assume an attack scenario based on an
online model. This leads to differences in the data collection
phase. We also don’t focus on the process of injecting the
attacks into the web browser as this is a straightforward task
using automation tools.

Serwadda et al. [1] used a large dataset, which is not pub-
licly available, to study the same scenario. They designed an
adversarial agent called MasterKey. It generated the adversarial
samples by starting from the mean of impostor samples, and
perturbing values to explore the rest of the sample space of
possible key-press timing values. They found that just with a
single guess, an attacker is able to compromise the security of
approximately 5−30% of users. However, even after hundreds
of guesses, their solution could not break into a majority of
the users. In order to compare our algorithm to MasterKey,
we implemented a version of this attack as well. In the DSN
dataset, it actually performed even better than in the original
study. In Serwadda et al. [34], they further expanded on
their work in [1]. In particular, they did extensive statistical
analysis of individual keystroke features. There conclusion
that the features follow independent probability distributions is
utilized by us when designing the Indiscriminate K-means++
adversary.

III. DATASETS AND METHODOLOGY

In this section, we present our adversarial attacks, and
provide the intuition behind their effectiveness. These details
require an understanding of the datasets, and features, involved,
so we start by presenting those in detail. Our extensive
experiments, presented later in this paper, empirically verify
the effectiveness of our attacks.

1) Datasets: We performed experiments with two existing
datasets, one on keystroke dynamics and one on touchscreen
swipes. We also collected a larger dataset of keystroke dy-
namics using Amazon Mechanical Turk. These datasets are
described below.

DSN Dataset: For the first set of experiments we used the
dataset by Killourhy and Maxion [19], which consists of 51
users, each typing the same imposed password, “.tieRoanl”,
400 times each. DSN is a widely established dataset and
numerous papers have explored algorithms on it, thus making
it easy to compare different approaches and verify our own
results.

MTurk Dataset: We collected data of nearly 600 users typing
five common passwords (presented in Table I) 100 times
each. These passwords were chosen from a list of most
common passwords. Thus they are representative of the typical
passwords in the wild. A few of the motivating reasons behind
collecting this dataset were:

• The DSN dataset used an uncommon and difficult to
type password, “.tie5Roanl”. It is possible that the

users never quite got used to it, hence their typing
patterns weren’t sufficiently unique. In the MTurk
dataset the passwords are common English words, so
the users should be used to them from the start.

• We wanted to ensure that our results, particularly
for the adversarial attacks, translate to real world
scenarios where the data would typically be collected
on the Internet.

• We wanted to replicate the results across a much larger
sample pool, and across different passwords.

Touchscreen swipes dataset: This touchscreen swipes dataset
was collected by Antal et al. [4] using a psychological per-
sonality based questionnaire on an Android smartphone. The
published paper has their analysis with various classifiers for
40 users, but since then, they have published a bigger dataset
with 98 users [3], which is what we used in our experiments.

2) Features: For both the keystroke datasets mentioned
above, we used the following three features, proposed by
Killourhy-Maxion [19]:

• Press-Release: Duration a key was held down for.

• Release-Press: Delay between releasing a key, and
pressing the next one.

• Press-Press: Delay between pressing the first key and
the next key. This is just the sum of the previous two.
It is not particularly necessary to use this feature - but
since it was used in the paper by Maxion et al. [19],
we decided to stick with the convention.

For designing the Indiscriminate K-means++ adversary we
just used the first two features, and derived the third feature
by taking their sum.

The touchscreen swipes dataset provided the following set
of 11 features:

• duration: time between touch down and touch release

• length of trajectory: the length of the segment defined
by the two endpoints

• average velocity: a fraction of the length of trajectory
and duration

• acceleration start: the average acceleration at the first
4 touch points

• mid-stroke pressure: the pressure at the middle point
of the swipe

• mid-stroke finger area: the finger area at the middle
point of the swipe

• mean pressure: average of pressures in touch points

• mean finger area: average of finger areas in touch
points

• gravity (x-axis): average of x gravities in touch points

• gravity (y-axis): average of y gravities in touch points

• gravity (z-axis): average of z gravities in touch points

More information about the experimental setup for this
dataset can be obtained in [4].

3



A. Evaluating Classifiers

Equal Error Rate: An ideal authentication system would
always accept a genuine sample, and reject an impostor sam-
ple. In practice this is rarely the case. Thus, there are two
kinds of possible errors: rejecting a correct input, or the False
Reject Rate, (FRR), and accepting a wrong input, or the False
Accept Rate (FAR). To measure the performance of a system,
the keystroke dynamics literature focuses on Equal Error Rate
(EER) which is the error when the acceptance threshold of
a classifier is set to the value at which the FAR is equal to
the FRR. EER is a value in the range [0, 1] and a lower EER
implies a lower error, and a better classifier.

In practice, setting the acceptance threshold of a classifier
leads to an important trade-off between security (avoiding false
acceptances) and usability (avoiding false rejections). Various
keystroke dynamics startups provide the client the flexibility of
choosing higher levels of security in their API calls. Therefore,
to evaluate the effectiveness of our adversaries in this setting,
we also used thresholds of differing “strictness” which models
such a scenario.

B. Attack Intuition

At its extreme, the idea behind behavioral biometric au-
thentication is that every person has unique patterns of be-
havior. On the other extreme, we could consider the claim that
everyone’s behavioral patterns are the same. Clearly, the reality
must lie somewhere in between these two extreme viewpoints.
In the domain of keystroke dynamics, various classifiers have
been shown to be robust in distinguishing among genuine and
impostor samples. But our intuition suggests that there must be
significant overlap between the typing samples of many users.

It is reasonable to imagine that each person’s “unique”
typing style is really part of a bigger family of similar user
styles. Thus, we hypothesize that the set of keystroke timing
patterns of all users are clustered into a limited, and relatively
small number of clusters, where users with similar typing
behaviors belong to the same cluster. Our idea is to mimic
the target user’s typing patterns by generating all such clusters
using data collected from the general population.

We support this hypothesis by analyzing the keystrokes
data from the DSN dataset. We analyze the data by running
K-means with different values of K and analyzing the average
distance of a sample to their closest cluster center. Figure 1
presents two plots, plot (a) represents the average distance of
a sample to the centroid of its cluster and plot (b) shows the
first derivative of the function represented by plot (a). In the
presented figure, we can see that average distance remains
relatively similar with the increase in the number of clusters.
This is supported by Plot (b) as the derivative also flattens out
at k = 10. This supports the hypothesis that most users don’t
belong to their own individual clusters.

C. Attack Model

Now, we anchor our attack model in the broader framework
of the taxonomy of adversarial algorithms described in section
IIB.

Evaluating Adversaries: In terms of influence, our attack
model belongs to the “exploratory” category as it targets the

classifier at test time. The security violation falls naturally
under the “integrity” category, as the adversary attempts to
bypass the security provided by the classification system. In
terms of “specificity” - both targeted and indiscriminate model
attack scenarios that an adversary would be interested in. We
designed our two adversaries based on the distinctions between
these two scenarios. More specifically, we focused on a type
of probing attack, called the “Adversarial Classifier Reverse
Engineering (ACRE)”, which was introduced by Lowd et al.
[21]. In this framework, given an attacker’s cost function,
the goal is to find a lowest attacker-cost instance that the
classifier labels as negative (i.e., it passes through). Various
other papers in the literature have used such a model [7], [28],
[29]. Specifically, we consider how many tries does it take an
adversary to compromise the security of a classifier.

D. Adversary I: Targeted K-means++

Here we assume that the attacker has access to a large pool
of sample data (i.e., timings of many other users typing the
target user’s password), but does not have data from the user
they wish to impersonate. This is a reasonable scenario: The
attacker could get many user’s keystroke timing information
about a given password by simply asking people to type
the desired password on a paid crowdsourcing platform like
Amazon Mechanical Turk. This may be an expensive process -
but if the authentication system protects sensitive information,
this would not be a major obstacle for the attacker.

The aim of the adversary is to efficiently explore the
samples from different users in order to find candidates from
the “cluster” of the target user. The simple approach here
would be to run K-means for a particular value of k and try all
the centroids. This performs reasonably, but it does not give us
any good way to choose a value of k. Also, since K-means is
a local search algorithm, its clusters can change considerably
for different values of k.

K-means++ is traditionally used as an initialization step
for the centroids of K-means. It uses an iterative algorithm
where the first center is selected at random from the data,
and then each subsequent center is selected with a probability
proportional to its contribution to the overall error given the
previous selections. Intuitively, K-means++ exploits the fact
that a good clustering is relatively spread out, thus when
selecting a new cluster center, preference should be given to
those further away from the previously selected centers. This
fact is crucial for designing our adversary: if we fail to break
the classifier’s defenses with the try i, then the try i+1, would
find a sample that is far away from the previous try - thus
increasing the likelihood that it lands closer to the space of
the target user’s samples.

Theoretically, it has a nice property that when running it
for k+1 iterations, the first k centers it generates are the same
ones as it would have generated had it been run for k iterations
in the first place. These initial set of centers is also provably
close to the optimum solution [5]. As a result, using K-means
to generate queries would require O(K2) queries to explore
cluster counts 1 through k, but using K-means++ only requires
k queries for the same goal.

Based on the properties above, we repurposed the K-
means++ algorithm, (see Algorithm 1), for this task. For the

4



(a) We ran K-means on the DSN dataset for different values of k. Here we
present average distances of a sample to their closest cluster center

(b) First derivative of Plot (a). This shows that the derivative flattens around
k = 10. Thus, higher values of k do not improve the clustering by much.

(c) probability distribution of timing of digraph “an” while typing password
“.tieRoanl” in the DSN dataset.

(d) probability distribution of hold time of “n” while typing password
“letmein” in the MTurk dataset.

Fig. 1: Preliminary statistical analysis of keystrokes data

Algorithm 1 Adversarial Targeted K-means++

INITIALIZE Try1 ← the mean of the collected adversarial
data set X
INITIALIZE Auth← False
INITIALIZE i← 2
while !Auth do
D(x)← distance from nearest Try chosen so far to point
x (∀x ∈X )
Tryi ← x ∈X with probability D(x)2∑

x′∈X D(x′)2

Auth← True if Tryi passes the authentication
i++

end while

first try, rather than choosing it randomly from the data, we
select the mean of the given samples. Each new centroid
selected by the algorithm comprises a new probe to the

detection algorithm.

E. Adversary II: Indiscriminate K-means++

The main shortcoming of the targeted scenario is that
collecting many samples for a single password is an expensive
task. For instance, if the attacker is just trying out many pass-
words recovered from a leaked database, collecting samples
for each one of them is highly impractical. So we design an
adversary who may be willing to sacrifice some accuracy for
convenience. In particular, the adversary may not be able to,
or may not want to, collect a large sample of keystroke data
for the target password. Instead, he may have access to a large
pre-computed database of user’s typing data. This scenario has
never been studied before in the keystroke dynamics literature.

The key insight for designing this adversary is that given
a target user’s password, we can generate reasonable timing
vectors if we have general population timing data for duration
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of each key, and the time spent between successive key-presses.
Every digraph, e.g., “as”, and “at”, would follow a different
distribution. This could be due to several reasons, such as the
distance between the keys. But there are only a limited number
of such key-presses, and digraphs, possible - and it is not hard
to imagine that data could be collected, and made publicly
available, for all such cases. For instance, this could be done
using botnets and keyloggers to get data from unsuspecting
users.

The next challenge is generating the probability distribution
for each key-press and digraph. One possibility is to directly
sample from the empirical distribution (i.e., the collected data),
hoping that if it is sufficiently large, it may represent the
true population distribution. Instead, we chose to model it
with a roughly correct distribution. Based on eyeballing the
distributions (see Figure 1), we chose a Gaussian mixture
model with two components. One major advantage of this
approach is that it is the most practical - a database with
thousands or millions of samples for all possible digraph pairs
will become too large. But, in this scenario, the adversary
would only need to know the parameters of the distribu-
tion. More crucially, we did not wish to get the best fitting
distribution - instead we wanted a convenient way that can
let us easily generate a lot of reasonable samples. Then, we
use this distribution to generate the desired sample size of
timing samples of the key-presses for the target password.
This situation is identical to the scenario for the Targeted K-
means++ adversary described above. Thus, for the final step,
we use the K-means++ algorithm to find the most efficient
probes for the classifier. The intuition here is that even if
our distribution is only a rough approximation of the real
distribution - we can still expect it to find good probes by
just sampling efficiently from the whole space. This algorithm
is summarized in Algorithm 2.

We tested this adversary on each of the passwords in the
MTurk dataset. For every digraph in the target password, we
collected data with further experiments in which new users
typed different words that included those digraphs I. For each
digraph in the target password, we had the user type in two
words, ten times each, that included the same digraph. For
instance, when targeting “mustang”, we had two words that
include “mu”, two words that included “us”, etc. These words
were chosen randomly with the criterion that they should
not have more than a two character subsequence in common
with the target password (e.g.,“must” has four characters in
common with mustang, so it was not used). In reality, if the
adversary has access to a large database of typing data, it is
likely that he may find timing data on words that have a more
significant overlap with the target password - especially since
so many passwords use dictionary words. This would clearly
only benefit the adversary.

We tested this adversary only on the MTurk dataset as we
could control the method of timing extraction - the impostor
samples were collected using the same JavaScript code as the
target users data in the MTurk dataset, while the DSN dataset
was collected on a single computer, and we do not have access
to the software used to collect it, which would likely lead to
slightly different timing latencies.

Algorithm 2 Adversarial Indiscriminate K-means++

LET SAMPLE-SIZE be the desired sample size.
LET HOLD-TIME(c) ← A function that returns a sample
from the distribution of Press-Release timings for key c
LET DIGRAPH-TIME(c, c′) ← A function that returns
a sample from the distribution of Release-Press timings
between keys c and c′
INITIALIZE samples ← an empty array of length
SAMPLE-SIZE
INITIALIZE P ← the target password
INITIALIZE i← 0
while i < SAMPLE-SIZE do

INITIALIZE timings ← an empty array of the same
length as P
INITIALIZE j ← 0
while j < 2× length of P do

timings[j]← HOLD-TIME(P[j])
timings[j + 1]← DIGRAPH-TIME(P[j], P[j+1])
j = j + 2

end while
samples[i]← timings
i = i+ 1

end while
CALL Adversarial k-means++ using samples

IV. EXPERIMENTS

In this section, we present the experiments we performed
to evaluate our adversarial attacks. We experimented with two
modalities of behavioral biometrics (keystroke dynamics and
touchscreen swipes), various datasets, and multiple state of
the art classification algorithms. Our experiments demonstrated
that our attack algorithm was effective across all these different
settings.

A. Experimental Setup

1) Protocols: Here we present the protocol we followed
for collecting new data, and selecting samples for training and
testing. This should shed light on the important decisions we
made, but is not meant to be a comprehensive list. Instead it
can be used along with the code for the data collection stage,
and experiments 2 for replicating our work.

Collecting MTurk dataset: The dataset was collected on
the Internet using JavaScript features. During the study we
disabled typing features such as copy, paste and backspace.
Users were presented the passwords in a random order and
could go to the next word only after typing a given word
without any errors.

We dropped any malformed samples in a pre-processing
step. These could happen due to a combination of reasons that
include: different behavior of browsers, differences in internet
speed, or other noise as the subjects took the study simul-
taneously. For instance, one common scenario was when we
did not receive the key-up events for every pressed character.
Rather than going over every minor decision in the way we
had set up the website, and the subsequent data pre-processing

2https://github.com/parimarjan/adversarial keystrokes
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MTurk dataset passwords Words used by the indiscriminate adversary
mustang mutter mumble bus fuss tryst list data iota than crane bang rang
password pat part taste fast boss cross swat answer woman wolf bored more shard gird
letmein lest lead beta met paytm tmux me same veil height win sin
abc123 abs fab bobcat bc 412 128 235 423 mac1 tic1

123456789 124 412 236 623 348 834 4510 1045 5612 1256 6714 1467 7816 1678 890 089

TABLE I: On the left side are the passwords from the MTurk dataset. On the right side are words that contain the digraphs from
the given password. These were used to collect keystroke samples for the indiscriminate k-means++ adversary. For instance,
“mutter”, and “mumble” provide keystroke samples for “mu”, as in the password “mustang”.

step, we provide our code for these steps, so interested readers
can directly refer to them for details.

Next, we describe the protocol we used for selecting sam-
ples for training and testing, and creating adversarial samples
across all datasets. The training stage was used to fit the
classifier models with each of the user’s samples, and the
testing stage was used to compute EER scores, and set the
individual thresholds for each user. Then in the final adversarial
stage we tested the robustness of the classifier to artificially
generated samples.

There are two broad categories of classifiers used in the
context of behavioral biometrics authentication: one class
classifiers and two class classifiers. One class classification
algorithms only use samples from the genuine user to train
the model, while two class classification algorithms are also
given access to some of the impostor samples. Traditionally,
keystroke dynamics based authentication systems have focused
more on one class classifiers because it is very impractical
to expect negative samples for an arbitrary password. For
instance, in the 2016 KBOC competition, only one class
classifiers were used [26]. Another reason is that generally
both the two class classifiers, and one class classifiers appear
to give similar EER scores, so there has been no good reason
to prefer two class classifiers. In our analysis in the rest of the
paper, we assume an idealized two class classifier scenario in
which the classifier has access to readily available impostor
samples. Using our datasets, this is easy to simulate as all
the users were typing the same passwords. At the same time,
two class classifiers seem to work well with the touchscreen
swipes features. This is because most of them are global values
(like mean speed, mean gravity and mean pressure) collected
for the swipe as a whole. In comparison, keystrokes features
were broken down into chunks based on which letters were
being typed. One of the consequences is that it is possible to
get population data on these global features for an arbitrary
swipe.

Genuine User Samples: In all the datasets, we follow the DSN
approach of using the first half of the samples for training, and
the second half for testing [19]. This makes sense because it
models the realistic situation where an online classifier will
use the first samples from a user to classify future samples.
We also experimented with randomly dividing the samples into
two equal halves - it usually produces slightly better EERs, but
does not change the adversarial results that we present here.

Impostor Training Samples: This was only required for the

two class classifiers. We randomly chose the same number
of impostor training samples as the genuine user’s training
samples for each of the classifiers.

Impostor Testing Samples: For Killourhy-Maxion’s DSN
dataset, we followed their strategy: first four samples of every
user besides the genuine user. To keep the number of positive
and negative samples balanced, for the MTurk and touchscreen
swipes dataset, we randomly sampled the same number of
impostor samples as the genuine user’s test samples.

Adversary: The Targeted K-means++ adversary used all the
samples from the data set excluding the ones from the target
user and the ones used for training and testing the user’s
classifier. For the Indiscriminate K-means++ adversary, we
conducted a new MTurk study, as described before, a few
months after the original study. We used all the samples
from this new study. In Algorithm 2, we set the parameter
“SAMPLE-SIZE” to 20000.

2) Detection Algorithms: We used the following behavioral
biometrics algorithms. In particular, these include most of the
classifiers used in KBOC [26], which represents the state of
the art in keystroke dynamics. We also chose the classifiers to
represent diverse methods - from statistical classifiers, to deep
learning based networks.

One Class Classifiers:

• Manhattan distance: A test sample is accepted if its
average feature-wise Manhattan (city-block) distance
to the mean of the training set is below a threshold.
If x is a test sample (of m dimensions) and µ is the
mean of the training set, the distance is defined as∑m

i=1 |xi−µi|/m. Killourhy-Maxion [19] had actually
shown a variant of Manhattan distance, the scaled
Manhattan distance, performs slightly better. This was
because the scaled Manhattan distance deals better
with outliers. But this is precisely the advantage of
using the feature normalization techniques described
below, so we found that the scaled version added
nothing to the Manhattan distance classifier.

• Gaussian: The training samples are modeled as a
Gaussian distribution based on their mean and stan-
dard deviation. If the probability of a particular test
sample being in the distribution is above a particular
threshold, then it will be accepted.

• Gaussian mixture: Here, the training samples are
fitted to a Gaussian Mixture model with two com-
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ponents using the EM algorithm. Then newer samples
are scored based on their probability of belonging to
the distribution of the training samples. We used the
implementation in the python library sklearn [32].

• One Class SVM: We used the Support Vector Ma-
chine (SVM) implementation in sklearn [32], with ra-
dial basis function (RBF) kernel, and kernel parameter
0.9, as used in [24], [25].

• Autoencoder and Contractive Autoencoder: With
the advent of deep learning, researchers have started
using variants of neural networks in the domain of
cybersecurity. One of the key structures used in the
past are autoencoders and contractive autoencoders.
[24], [25].

Two Class Classifiers:

• Random Forests: We used a model similar to the
one described by Antal et al [4]. Random Forests
with 100 trees was their best-performing classifier on
the touchscreen swipes dataset. We used the Random
Forest implementation in sklearn [32].

• Nearest Neighbor: Here we classify a test sample
based on the majority label among a fixed number of
its nearest neighbors in the training set. The neigh-
bours are determined using Euclidean distance. We
used the implementation in [32].

• Fully Connected Neural Net: We experimented with
multiple variants of multi layer perceptron by using
different hyper parameters. The network that per-
formed the best had two hidden layers with 15 neu-
rons each computing scores for genuine and impostor
classes. There was no significant improvement in the
performance of the network by increasing the number
of layers or neurons per layer in the architecture of
the neural network.

Monaco’s Normalization Technique: Many new techniques
to improve the performance of the classifiers were developed
in the KBOC competition [26]. Most interesting of these were
the normalization techniques developed by Monaco. The key
insight of this technique was that a user’s classifier could
normalize future input samples based only on the genuine
user’s data given to it at the start. Essentially, this acts like
a filtering step - and features that are too far from the mean
of the genuine user’s fitting data get filtered out [24], [25].

This was one of the novel techniques that helped Monaco’s
classifiers win the KBOC challenge. No previous results with
this technique were reported for the DSN dataset - but we
found that it improved performance of all the algorithms
significantly. In fact, the results we report in Table II are the
best reported EER scores for these classifiers. It also made the
algorithms perform better against our adversarial attempts - for
instance, in cases where we used a much more conservative
threshold, shown in Figure 3, the classifier’s performance
is considerably improved with this normalization technique.
Therefore, we do not even mention our results without this
normalization. In a similar way, the scores output by each
classifier were normalized for each user, as used by Monaco
[24].

Name of Classifier DSN EER MTurk EER
Manhattan 0.091 0.097

SVM 0.087 0.097
Gaussian 0.121 0.109

Gaussian Mixture 0.137 0.135
Autoencoder 0.099 0.099

Contractual Autoencoder 0.086 0.099
Random Forest 0.08 0.067

k-NN 0.09 0.090
FC Neural Net 0.08 0.091

TABLE II: EER scores on the DSN and MTurk datasets

B. Results

We surveyed the algorithms proposed in the literature
and implemented several of the best ones, with the aim of
replicating the best existing results. Then, we devised and
experimented with the adversarial agents described before to
study the robustness of the proposed models against such
attacks. We demonstrate that our adversarial attacks can ef-
fectively defeat all the proposed models.

1) Equal Error Rate: The EER results from our classifiers
on the DSN dataset and MTurk datasets have been summarized
in Table II. For the DSN dataset, these are some of the
best reported scores. For instance, without the normalization
technique described above, Manhattan and SVM EER scores
were both around 0.15 - so it nearly doubled their accuracy.
Similarly, we saw improvements in the other classifiers as
well. The classifiers performed similarly also on the much
bigger MTurk dataset suggesting that these are state of the
art classifiers for this problem.

2) Keystroke Results: In this section we discuss the results
of testing our adversaries on the DSN and MTurk datasets,
which are summarized in Tables III, IV. We conducted the
tests independently on each of the five passwords in the MTurk
dataset, but for a more compact presentation, we average the
results of all passwords. A few interesting highlights based on
these results are given below.

MasterKey vs K-means++: Recall that the first try for
all the adversaries was the mean of the available samples - so
MasterKey and targeted k-means++ start at the same level of
success as they utilize the same adversarial samples. But as it
can be seen from the highlighted segments of the Tables III, IV
and the Figure 2, the performance of our adversaries is lower
bounded by the performance of the MasterKey algorithm. The
tables and figures also show that Indiscriminate K-means++
also performs consistently better than MasterKey.

A significant difference between the adversaries is that
MasterKey’s performance improves much more slowly as com-
pared to our adversaries. This is because it does not explore
the sample space of possible typing patterns well. Its tries are
derived from exploring outwards from the mean of adversarial
samples by perturbing values of this initial estimate - so it does
not improve much even after hundreds of tries. Meanwhile,
both the k-means++ algorithms continue to compromise more
users at regular intervals as can be seen in Figure 2. In
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Classifier MasterKey Targeted K-means++
1: 0.55 1: 0.57

Manhattan 10: 0.61 10: 0.67
50: 0.61 50: 0.86
1: 0.65 1: 0.65

SVM 10: 0.75 10: 0.8
50: 0.78 50: 0.92
1: 0.53 1: 0.53

Gaussian 10: 0.57 10: 0.69
50: 0.57 50: 0.96
1: 0.67 1: 0.65

Gaussian Mixture 10: 0.71 10: 0.76
50: 0.82 50: 0.96
1: 0.67 1: 0.63

Autoencoder 10: 0.73 10: 0.8
50: 0.8 50: 0.94
1: 0.65 1: 0.65

Contractive Autoencoder 10: 0.69 10: 0.84
50: 0.78 50: 0.94
1: 0.06 1: 0.06

RandomForests 10: 0.18 10: 0.31
50: 0.33 50: 0.69
1: 0.0 1: 0.0

FC Neural Net 10: 0.1 10: 0.33
50: 0.14 50: 0.73
1: 0.06 1: 0.04

k-NN 10: 0.31 10: 0.37
50: 0.57 50: 0.82

TABLE III: Fraction of users in the DSN dataset whose classifiers were compromised after 1, 10 and 50 tries of MasterKey
and Targeted K-means++ algorithms for each of the classifiers we used. The bold values highlight that K-means++ outperforms
MasterKey.

(a) Performance of adversaries against SVM classifier on the MTurk dataset (b) Performance of adversaries against Random Forests classifier on the MTurk
dataset

Fig. 2: Comparison of Targeted K-means++, MasterKey, and Indiscriminate K-means++ adversaries over first 100 attempts. (a)
shows one of the best one class classifiers, and (b) shows one of the best two class classifiers.

particular, Targeted K-means++ seems to essentially be able
to compromise the security of all the users in the limit.

MasterKey also performs worse with a larger number of
users as in the MTurk dataset (Table IV, Figure 2). This also

seems to be a direct consequence of not exploring the sample
space of key-press timings beyond the mean very efficiently.
Especially since the MTurk data was collected over the Internet
rather than on a single machine, it was less uniform. Therefore,
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Classifier MasterKey Targeted K-means++ Indiscriminate K-means++
1: 0.272 1: 0.272 1: 0.258

Manhattan 10: 0.352 10: 0.516 10: 0.374
50: 0.444 50: 0.836 50: 0.568
1: 0.32 1: 0.32 1: 0.288

SVM 10: 0.394 10: 0.552 10: 0.402
50: 0.502 50: 0.854 50: 0.588
1: 0.306 1: 0.306 1: 0.302

Gaussian 10: 0.318 10: 0.554 10: 0.424
50: 0.344 50: 0.88 50: 0.632
1: 0.322 1: 0.322 1: 0.314

Gaussian Mixture 10: 0.45 10: 0.634 10: 0.528
50: 0.61 50: 0.904 50: 0.742
1: 0.322 1: 0.322 1: 0.286

Autoencoder 10: 0.444 10: 0.604 10: 0.424
50: 0.596 50: 0.878 50: 0.642
1: 0.304 1: 0.302 1: 0.292

Contractive Autoencoder 10: 0.37 10: 0.52 10: 0.39
50: 0.472 50: 0.82 50: 0.566
1: 0.022 1: 0.022 1: 0.024

Random Forests 10: 0.118 10: 0.414 10: 0.306
50: 0.274 50: 0.782 50: 0.556
1: 0.01 1: 0.01 1: 0.01

FC Neural Net 10: 0.202 10: 0.492 10: 0.544
50: 0.454 50: 0.868 50: 0.818
1: 0.09 1: 0.092 1: 0.102

k-NN 10: 0.34 10: 0.55 10: 0.536
50: 0.58 50: 0.936 50: 0.806

TABLE IV: Fraction of users in the MTurk dataset whose classifiers were compromised after 1, 10 and 50 tries of MasterKey,
Targeted K-means++, and Indiscriminate K-means++ for each of the classifiers. The bold values highlight that K-means++
adversaries outperformn Masterkey.

exploring around the mean of the sample space is not rewarded
as much as it is in the smaller DSN dataset.

One class vs two class classifiers: For the one class
classifiers, it is particularly surprising to see a majority of the
user’s classifiers compromised after just a single try (Tables
III, IV). In comparison, the first tries are not effective at all
against the two class classifiers. This was clearly because the
two class classifiers had access to some samples from the
impostors. It is worth noting that the classifiers only saw a
small proportion of the total samples from the impostors -
for instance, in the MTurk dataset, each classifier only had
access to 50 impostor training samples, out of a total of over
50000 samples. This highlights the point that global EER
scores are not the ideal measure for the security guarantees
provided by such classifiers. Even then, the performance of
the adversaries against the two class classifiers in the limit
appears to be converging to the performance of the one class
classifiers (Figure 2). This suggests that even these idealized
two class classifiers are far from a great solution for keystrokes
authentication.

Targeted K-means++ vs Indiscriminate K-means++: De-
spite having access to almost 20 times less data, the In-

discriminate K-means++ adversary still performed reasonably
well. Even though both the adversaries start close to each
other, unsurprisingly, the indiscriminate adversary was worse
than the more powerful, Targeted K-means++ in the long run
(Figure 2). But notice that the indiscriminate adversary never
plateaus, and continues to improve steadily up to a 100 tries,
reaching 55 − 75% range of compromised users. This steady
improvement highlights the fact that it has potential to improve
further if the indiscriminate adversary had more power - for
instance access to more data, or data with a longer subsequence
of the password.

DSN vs MTurk datasets: In general, the results of the
EER scores, and adversarial attempts, appears to be consistent
across both the datasets. Therefore, we present the figures from
the MTurk dataset as it is bigger and more representative.

Conservative Thresholds: In the Figure 3, we vary the
acceptance threshold score for authentication to model stricter
security settings. We follow the same protocol for selecting
samples, training, and testing - but instead of setting the
threshold at the EER point, we set it based on the scores
the classifier assigned the user’s test samples. We vary the
threshold from the 0th to 100th percentile of these test scores
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(a) Targeted K-means++ against the Manhattan classifier on the MTurk dataset(b) Indiscriminate K-means++ against the Random Forests classifier on the
MTurk dataset

Fig. 3: Performance of the K-means++ adversaries against increasingly more conservative thresholds. The x-axis represents the
acceptance threshold of the given classifier as a percentile of the user’s test scores. For instance, x = 50, represents a threshold
at which half the genuine user’s samples were rejected

- so for instance, at the 0th percentile, all the genuine user’s
test samples will be accepted, and at the 100th percentile, none
of these samples would be accepted. A threshold around the
median level is certainly not a very usable scenario in general.
But in certain high risk situations, for instance if the connection
to the account was from an unknown IP address, such measures
may make sense. As in the previous figure, we present the
plots on the MTurk dataset, but these trends are even more
pronounced on the smaller DSN dataset. In plot(a), we present
the plot of the Targeted K-means++ adversary against Man-
hattan, one of the best one class classifiers. This shows that
even with much more conservative thresholds the classifiers
are still not too effective - with the acceptance threshold set at
the median level, the adversary is still able to bypass nearly
half the users in 10 tries. In plot(b), we consider Indiscriminate
K-means++ against Random Forests, the best of the two class
classifiers. This shows a similar trend to the previous figure -
the indiscriminate adversary performs a little worse than the
targeted adversary, but still breaks a non trivial number of
users even against extremely conservative thresholds. Finally,
we would like to point out that the trend shown in these two
plots is also seen with different combinations of classifiers
and adversaries. This shows that these classifiers should not
be able to make the authentication systems arbitrarily secure
on demand by changing the acceptance thresholds.

3) Touchscreen swipes dataset results: We also ran our
whole suite of classifiers on the touchscreen swipes dataset,
however, most classifiers performed poorly on it. This is to
be expected as most of these classifiers were not used in
the original paper by Antal et al. [4]. So we analyzed the
performance of our adversary against the best performing one
class, and two class classifiers from their original study.

There were a couple of differences as compared to the
original study [4]. We had access to a bigger size of partici-

Classifier Name EER MasterKey Targeted K-means++
1: 0.04 1: 0.03

Random Forests 0.069 10: 0.11 10: 0.42
50: 0.32 50: 0.79
1: 0.03 1: 0.03

Gaussian Mixture 0.12 10: 0.03 10: 0.33
50: 0.05 50: 0.72

TABLE V: Summarizing the experimental results on touch-
screen swipes dataset. For the adversaries, Masterkey and
Targeted K-means++, the values represent the fraction of users
compromised after given number of tries.

pants from their online source [3], and we also used a different
protocol for selecting training and test samples for the reasons
explained in section IV A. But the EER results in Table V are
in the same range as the ones reported in the original study
[4].

We tested the Targeted K-means++ adversary and Mas-
terKey on this authentication system. The adversaries could be
applied without any change as they operate on the vectors of
feature values. Since the Indiscriminate K-means++ adversary
was clearly based on specific properties of keystroke dynamics,
it could not be applied to this dataset.

As can be seen by Table V, and Figure 4, the results on
this dataset show the same trends as seen in the keystroke
dynamics datasets before. The first try which hits the mean
of the impostor samples is not very successful here. This is
particularly bad for an adversary like MasterKey which stays
around the mean of the distribution, and is reflected in the
results in Table V. But the K-means++ adversary is quickly
able to explore the sample space to find more challenging
queries - and in 10 tries itself, breaks into a sizeable proportion
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(a) Performance of adversaries against Random Forests classifier on the
touchscreen swipes dataset.

(b) Targeted K-means++ against different acceptance thresholds of the Random
Forests classifier on the touchscreen swipes dataset.

Fig. 4: Touchscreen swipes dataset versions of figures 2 and 3. We essentially see similar patterns to the results seen on the
keystroke dynamics datasets.

of the classifiers as in the keystrokes dataset. And in the limit,
essentially all the user’s classifiers are compromised.

V. CONCLUSION AND FUTURE WORK

Behavioral biometrics is a promising field of research, but it
is not a reliable solution for authentication in its current state.
We proposed two adversarial agents that require a different
amount of effort from the adversary. Both attack methods
performed clearly better than the previously studied attack
methods in the literature and show that current state of the art
classifiers add little protection against such adversaries. In the
case of Indiscriminate K-means++, more than its success rate,
it is worrying for the keystroke dynamics systems that such an
adversary could conduct its attack without any additional cost
incurred to collect samples. Past research has focused much
more on improving the classifiers against naive adversaries, but
this work shows that a lot more research from the adversarial
perspective is required before such authentication systems can
be adopted in sensitive contexts.

The design of our K-means++ adversaries utilizes a com-
mon intuition about human behavior, which is that a person’s
behavioral data belongs to a “cluster”, rather than being
absolutely unique. Thus it is natural to expect such techniques
to generalize to other types of behavioral data. The results on
the touchscreen touchscreen swipes dataset also supports this
claim.

Of course, from a practical perspective, it is much harder to
simulate an attack on a touchscreen based system, as opposed
to a keystroke dynamics system, because of the diversity of
the touchscreen features like pressure, finger size and so on.
Unlike keystrokes - we can’t just write an easily automated
script to carry out such an attack. This implies that a swipes
based classifier is more secure for now. But given enough
motivation, it is possible that methods could be devised to
bypass such limitations. For instance, such attacks could be

carried out by feeding false information to the android sensors,
or in an extreme example, by building a robotic arm.

Previous research has relied exclusively on the average
Equal Error Rate scores across all subjects to measure the
robustness of classifiers. To develop more robust behavioral
biometric classifiers, it would be useful to benchmark against
the adversarial agents proposed in this paper instead. For
instance, one class classifiers have been the dominant method
researched in the keystroke dynamics literature as they perform
as well as the two class classifiers in terms of EER, while
the two class classifiers are not practical because one can
not expect impostor samples for arbitrary passwords. Yet,
against both the adversarial algorithms, the two class classifiers
performed clearly better than the one class classifiers. This
suggests that a future direction of research would be to bridge
the gap between the idealized and practical versions of such
two class classifiers as explained in section IV A.

From the adversarial perspective, one possibility for future
work would be to extend these methods to free text based
classifiers. Free text classifiers utilize a continuous stream of
input text, as opposed to fixed text passwords, in order to
classify keystroke patterns. This leads to differences in the
features and algorithms that are utilized for these classifiers.
But conceptually, the Indiscriminate K-means++ adversary
should be well suited to generate adversarial samples against
free text classifiers as well.
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