
LAPACK Working Note 95

ScaLAPACK: A Portable Linear Algebra Library for Distributed

Memory Computers - Design Issues and Performance �

J. Choiy, J. Demmelz, I. Dhillonz, J. Dongarrax,

S. Ostrouchovy, A. Petitety, K. Stanleyz, D. Walker{, and R. C. Whaleyy

Abstract

This paper outlines the content and performance of ScaLAPACK, a collection of mathemat-
ical software for linear algebra computations on distributed memory computers. The impor-
tance of developing standards for computational and message passing interfaces is discussed.
We present the di�erent components and building blocks of ScaLAPACK. This paper outlines
the di�culties inherent in producing correct codes for networks of heterogeneous processors. We
de�ne a theoretical model of parallel computers dedicated to linear algebra applications: the
Distributed Linear Algebra Machine (DLAM). This model provides a convenient framework for
developing parallel algorithms and investigating their scalability, performance and programma-
bility. Extensive performance results on various platforms are presented and analyzed with the
help of the DLAM. Finally, this paper briey describes future directions for the ScaLAPACK
library and concludes by suggesting alternative approaches to mathematical libraries, explaining
how ScaLAPACK could be integrated into e�cient and user-friendly distributed systems.

�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense

Advanced Research Projects Agency under contract DAAL03-91-C-0047, administered by the Army Research O�ce;

by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; and by the

National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.
yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301
zComputer Science Division, University of California, Berkeley, Berkeley, CA 94720
xDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, and Mathematical Sciences

Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831
{Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

1

Contents

1 Overview and Motivation 1

2 Design of ScaLAPACK 1

2.1 Portability, Scalability and Standards : 1
2.2 ScaLAPACK Software Components : 2
2.3 Processes versus Processors : 2
2.4 Local Components : 3
2.5 Block Cyclic Data Distribution : 3
2.6 PBLAS : 4
2.7 ScaLAPACK { LU Decomposition : 5
2.8 ScaLAPACK - Symmetric Eigenproblem : 6
2.9 Heterogeneous Networks : 6

3 The Distributed Linear Algebra Machine (DLAM) 7

3.1 The BLAS Process : 7
3.2 The BLACS Network : 8
3.3 Accuracy and Re�nement of the DLAM : 8
3.4 The LU factorization on the DLAM : 9

4 Performance 10

4.1 Choice of Block Size : 10
4.2 Choice of Grid Size : 12

5 Future Directions 14

5.1 Future addition to ScaLAPACK : 14
5.2 Alternative Approaches to Libraries : 14

2

1 Overview and Motivation

ScaLAPACK is a library of high performance linear algebra routines for distributed memory
MIMD computers. It is a continuation of the LAPACK project, which designed and produced
analogous software for workstations, vector supercomputers, and shared memory parallel com-
puters. Both libraries contain routines for solving systems of linear equations, least squares
problems, and eigenvalue problems. The goals of both projects are e�ciency (to run as fast
as possible), scalability (as the problem size and number of processors grow), reliability (in-
cluding error bounds), portability (across all important parallel machines), exibility (so users
can construct new routines from well-designed parts), and ease-of-use (by making LAPACK
and ScaLAPACK look as similar as possible). Many of these goals, particularly portability,
are aided by developing and promoting standards, especially for low-level communication and
computation routines. We have been successful in attaining these goals, limiting most machine
dependencies to two standard libraries called the BLAS, or Basic Linear Algebra Subroutines
[6, 7, 14, 16], and BLACS, or Basic Linear Algebra Communication Subroutines [8, 10]. LA-
PACK and ScaLAPACK will run on any machine where the BLAS and the BLACS are available.

The �rst part of this paper presents the design of ScaLAPACK. After a brief discussion of
the BLAS and LAPACK, the block cyclic data layout, the BLACS, the PBLAS (Parallel BLAS),
and the algorithms used are discussed. We also outline the di�culties encountered in producing
correct code for networks of heterogeneous processors; di�culties we believe are little recognized
by other practitioners.

The second part of this paper presents a theoretical model of parallel computers dedicated
to dense linear algebra: the Distributed Linear Algebra Machine (DLAM). This ideal model
provides a convenient framework for developing parallel algorithms. Moreover, it can be applied
to obtain theoretical performance bounds and to analyze the scalability and programmability
of parallel algorithms.

Finally, the paper discusses the performance of ScaLAPACK. Extensive results on various
platforms are presented. One of our goals is to model and predict the performance of each
routine as a function of a few problem and machine parameters. We show how the DLAM can
be used to express this function, identify performance bottlenecks during development, and help
users to choose various implementation parameters (like the number of processors) to optimize
performance. One interesting result is that for some algorithms, speed is not a monotonic
increasing function of the number of processors. In other words, speed can be increased by
letting some processors remain idle.

2 Design of ScaLAPACK

2.1 Portability, Scalability and Standards

In order to be truly portable, the building blocks underlying parallel software libraries must be
standardized. The de�nition of computational and message-passing standards [12, 14] provides
vendors with a clearly de�ned base set of routines that they can optimize. From the user's
point of view, standards ensure portability. As new machines are developed, they may simply
be added to the network, supplying cycles as appropriate.

From the mathematical software developer's point of view, portability may require signi�-
cant e�ort. Standards permit the e�ort of developing and maintaining bodies of mathematical
software to be leveraged over as many di�erent computer systems as possible. Given the di-
versity of parallel architectures, portability is attainable to only a limited degree, but machine
dependences can at least be isolated.

Scalability demands that a program be reasonably e�ective over a wide range of numbers of
processors. The scalability of parallel algorithms over a range of architectures and numbers of

1

processors requires that the granularity of computation be adjustable. To accomplish this, we
use block algorithms with adjustable block sizes. Eventually, however, polyalgorithms (where
the actual algorithm is selected at runtime depending on input data and machine parameters)
may be required.

Scalable parallel architectures of the future are likely to use physically distributed memory.
In the longer term, progress in hardware development, operating systems, languages, compilers,
and communication systems may make it possible for users to view such distributed architec-
tures (without signi�cant loss of e�ciency) as having a shared memory with a global address
space. For the near term, however, the distributed nature of the underlying hardware will
continue to be visible at the programming level; therefore, e�cient procedures for explicit com-
munication will continue to be necessary. Given this fact, standards for basic message passing
(send/receive), as well as higher-level communication constructs (global summation, broadcast,
etc.), are essential to the development of portable scalable libraries. In addition to standardiz-
ing general communication primitives, it may also be advantageous to establish standards for
problem-speci�c constructs in commonly occurring areas such as linear algebra.

2.2 ScaLAPACK Software Components

The following �gure describes the ScaLAPACK software hierarchy. The components below the
line, labeled Local, are called on a single processor, with arguments stored on single processors
only. The components above the line, labeled Global, are synchronous parallel routines, whose
arguments include matrices and vectors distributed in a 2D block cyclic layout across multiple
processors. We describe each component in turn.

PBLAS

ScaLAPACK

Message Passing Primitives

LAPACK

BLAS

BLACS

ScaLAPACK Software Hierarchy

Global

Local

(MPI, PVM, MPL, GAM, etc.)

2.3 Processes versus Processors

In ScaLAPACK, algorithms are presented in terms of processes, rather than physical processors.
In general there may be several processes on a processor, in which case we assume that the
runtime system handles the scheduling of processes. In the absence of such a runtime system,
ScaLAPACK assumes one process per processor.

2

2.4 Local Components

TheBLAS (Basic Linear Algebra Subprograms) [6, 7, 16] include subroutines for common linear
algebra computations such as dot-products, matrix-vector multiplication, and matrix-matrix
multiplication. As is well known, using matrix-matrix multiplication tuned for a particular
architecture can e�ectively mask the e�ects of the memory hierarchy (cache misses, TLB misses,
etc.), and permit oating point operations to be performed at the top speed of the machine.

As mentioned before, LAPACK, or Linear Algebra PACKage [1], is a collection of routines
for linear system solving, least squares, and eigenproblems. High performance is attained by
using algorithms that do most of their work in calls to the BLAS, with an emphasis on matrix-
matrix multiplication. Each routine has one or more performance tuning parameters, such as
the sizes of the blocks operated on by the BLAS. These parameters are machine dependent, and
are obtained from a table at run-time.

The LAPACK routines are designed for single processors. LAPACK can also accommodate
shared memory machines, provided parallel BLAS are available (in other words, the only par-
allelism is implicit in calls to BLAS). Extensive performance results for LAPACK can be found
in the second edition of the manual [2].

The BLACS (Basic Linear Algebra Communication Subprograms) [8, 10] are a message
passing library designed for linear algebra. The computational model consists of a one or two
dimensional grid of processes, where each process stores matrices and vectors. The BLACS
include synchronous send/receive routines to send a matrix or submatrix from one process to
another, to broadcast submatrices to many processes, or to compute global reductions (sums,
maxima and minima). There are also routines to set up, change, or query the process grid.
Since several ScaLAPACK algorithms require broadcasts or reductions among di�erent subsets
of processes, the BLACS permit a processor to be a member of several overlapping or disjoint
process grids, each one labeled by a context. Some message passing systems, such as MPI [12],
also include this context concept. The BLACS provide facilities for safe interoperation of system
contexts and BLACS contexts.

2.5 Block Cyclic Data Distribution

The way in which a matrix is distributed over the processes has a major impact on the load
balance and communication characteristics of the concurrent algorithm, and hence largely de-
termines its performance and scalability. The block cyclic distribution provides a simple, yet
general-purpose way of distributing a block-partitioned matrix on distributed memory concur-
rent computers. It has been incorporated in the High Performance Fortran standard [11].

The block cyclic data distribution is parameterized by the four numbers Pr, Pc, r, and c,
where Pr � Pc is the process template and r � c is the block size.

Suppose �rst that we have M objects, indexed by an integer 0 � m < M , to map onto P

processes, using block size r. The m-th item will be stored in the i-th location of block b on
process p, where

hp; b; ii =

�jm
r

k
modP;

�
bm
r
c

P

�
; mmod r

�
:

In the special case where r = 2r̂ and P = 2P̂ are powers of two, this mapping is really just bit
extraction, with i equal to the rightmost r̂ bits of m, p equal to the next P̂ bits of m, and b

equal to the remaining leftmost bits of m. The distribution of a block-partitioned matrix can
be regarded as the tensor product of two such mappings: one that distributes the rows of the
matrix over Pr processes, and another that distributes the columns over Pc processes. That is,
the matrix element indexed globally by (m;n) is stored in location

h(p; q); (b; d); (i; j)i =

3

�
(
jm
r

k
modPr;

jn
c

k
modPc);

��
bm
r
c

Pr

�
;

�
bn
c
c

Pc

��
; (mmod r; nmodc)

�
:

The nonscattered decomposition (or pure block distribution) is just the special case r =
dM=Pre and c = dN=Pce. Similarly a purely scattered decomposition (or two dimensional
wrapped distribution) is the special case r = c = 1.

2.6 PBLAS

In order to simplify the design of ScaLAPACK, and because the BLAS have proven to be very
useful tools outside LAPACK, we chose to build a Parallel BLAS, or PBLAS, whose interface
is as similar to the BLAS as possible. This decision has permitted the ScaLAPACK code
to be quite similar, and sometimes nearly identical, to the analogous LAPACK code. Only
one substantially new routine was added to the PBLAS, matrix transposition, since this is a
complicated operation in a distributed memory environment [3].

We hope that the PBLAS will provide a distributed memory standard, just as the BLAS
have provided a shared memory standard. This would simplify and encourage the development
of high performance and portable parallel numerical software, as well as providing manufacturers
with a small set of routines to be optimized. The acceptance of the PBLAS requires reasonable
compromises among competing goals of functionality and simplicity. These issues are discussed
below.

The PBLAS operate on matrices distributed in a 2D block cyclic layout. Since such a data
layout requires many parameters to fully describe the distributed matrix, we have chosen a more
object-oriented approach, and encapsulated these parameters in an integer array called an array

descriptor. An array descriptor includes

(1) the number of rows in the distributed matrix,
(2) the number of columns in the distributed matrix,
(3) the row block size (r in section 2.5),
(4) the column block size (c in section 2.5),
(5) the process row over which the �rst row of the matrix is distributed,
(6) the process column over which the �rst column of the matrix is distributed,
(7) the BLACS context, and
(8) the leading dimension of the local array storing the local blocks.

For example, here is an example of a call to the BLAS double precision matrix multiplication
routine DGEMM, and the corresponding PBLAS routine PDGEMM; note how similar they are:

CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA,

A(IA, JA), LDA,

B(IB, JB), LDB, BETA,

C(IC, JC), LDC)

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,

A, IA, JA, DESC_A,

B, IB, JB, DESC_B, BETA,

C, IC, JC, DESC_C)

DGEMM computes C = BETA * C + ALPHA * op(A) * op(B), where op(A) is either A or its
transpose depending on TRANSA, op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMM
is the same, with the exception of the way in which submatrices are speci�ed. To pass the
submatrix starting at A(IA,JA) to DGEMM, for example, the actual argument corresponding to the
formal argument A would simply be A(IA,JA). PDGEMM, on the other hand, needs to understand
the global storage scheme of A to extract the correct submatrix, so IA and JA must be passed in

4

separately. DESC A is the array descriptor for A. The parameters describing the matrix operands
B and C are analogous to those describing A. In a truly object-oriented environment matrices and
DESC A would be the synonymous. However, this would require language support, and detract
from portability.

Our implementation of the PBLAS emphasizes the mathematical view of a matrix over its
storage. In fact, it is even possible to reuse our interface to implement the PBLAS for a di�erent
block data distribution that would not �t in the block-cyclic scheme.

The presence of a context associated with every distributed matrix provides the ability to
have separate \universes" of message passing. The use of separate communication contexts by
distinct libraries (or distinct library invocations) such as the PBLAS insulates communication
internal to the library from external communication. When more than one descriptor array
is present in the argument list of a routine in the PBLAS, it is required that the individual
BLACS context entries must be equal. In other words, the PBLAS do not perform \intra-
context" operations.

We have not included specialized routines to take advantage of packed storage schemes
for symmetric, Hermitian, or triangular matrices, nor of compact storage schemes for banded
matrices.

2.7 ScaLAPACK { LU Decomposition

Given the infrastructure described above, the ScaLAPACK version (PDGETRF) of the LU
decomposition is nearly identical to its LAPACK version (DGETRF).

SEQUENTIAL LU FACTORIZATION CODE

DO 20 J = 1, MIN(M, N), NB

JB = MIN(MIN(M, N)-J+1, NB)

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J),

$ IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J - 1

DO 10 I = J, MIN(M, J+JB-1)

IPIV(I) = J - 1 + IPIV(I)

10 CONTINUE

Apply interchanges to columns 1:J-1.

CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)

IF(J+JB.LE.N) THEN

Apply interchanges to columns J+JB:N.

CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,

$ IPIV, 1)

Compute block row of U.

CALL DTRSM('Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+1, ONE, A(J, J), LDA,

$ A(J, J+JB), LDA)

IF(J+JB.LE.M) THEN

Update trailing submatrix.

CALL DGEMM('No transpose', 'No transpose',

$ M-J-JB+1, N-J-JB+1, JB, -ONE,

$ A(J+JB, J), LDA, A(J, J+JB), LDA,

$ ONE, A(J+JB, J+JB), LDA)

END IF

END IF

20 CONTINUE

PARALLEL LU FACTORIZATION CODE

DO 10 J = JA, JA+MIN(M,N)-1, DESCA(4)

JB = MIN(MIN(M,N)-J+JA, DESCA(4))

I = IA + J - JA

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL PDGETF2(M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.0 .AND. IINFO.GT.0)

$ INFO = IINFO + J - JA

Apply interchanges to columns JA:J-JA.

CALL PDLASWP('Forward', 'Rows', J-JA, A, IA, JA, DESCA,

$ J, J+JB-1, IPIV)

IF(J-JA+JB+1.LE.N) THEN

Apply interchanges to columns J+JB:JA+N-1.

CALL PDLASWP('Forward', 'Rows', N-J-JB+JA, A, IA,

$ J+JB, DESCA, J, J+JB-1, IPIV)

Compute block row of U.

CALL PDTRSM('Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+JA, ONE, A, I, J, DESCA, A, I,

$ J+JB, DESCA)

IF(J-JA+JB+1.LE.M) THEN

Update trailing submatrix.

CALL PDGEMM('No transpose', 'No transpose',

$ M-J-JB+JA, N-J-JB+JA, JB, -ONE, A,

$ I+JB, J, DESCA, A, I, J+JB, DESCA,

$ ONE, A, I+JB, J+JB, DESCA)

END IF

END IF

10 CONTINUE

The Cholesky decompositions (PDPOTRF and DPOTRF) and QR decompositions (PDGE-
QRF and DGEQRF) are analogous.

5

2.8 ScaLAPACK - Symmetric Eigenproblem

The solution of the symmetric eigenproblem PDSYEVX consists of three phases: (1) reduce the
original matrix A to tridiagonal form A = QTQT where Q is orthogonal and T is tridiagonal,
(2) �nd the eigenvalues � = diag(�1; :::; �n) and eigenvectors U = [u1; :::; un] of T so that
T = U�UT , and (3) form the eigenvector matrix V ofA soA = Q(U�UT)QT = (QU)�(QU)T =
V �V T . Phases 1 and 3 are analogous to their LAPACK counterparts, similarly to LU. However,
our current design for phase 2 di�ers from the serial (or shared memory) design. We have chosen
to do bisection followed by inverse iteration (like the LAPACK expert driver DSYEVX), but with
the reorthogonalization phase of inverse iteration limited to the eigenvectors stored in a single
process. A straightforward parallelization of DSYEVX would have led to a serial bottleneck and
signi�cant slowdowns in the rare situation of matrices with eigenvalues tightly clustered together.
The current design guarantees that phase (2) is inexpensive compared to the other phases once
problems are reasonably large. An alternative algorithm which completely eliminates the need
for reorthogonalization has recently been discovered by Parlett, Fernando, and Dhillon [17], and
we expect to use this version of the routine in the near future. This new routine will guarantee
high accuracy and high speed independent of the eigenvalue distribution.

2.9 Heterogeneous Networks

There are special challenges associated with writing reliable numerical software on networks
containing heterogeneous processors, i.e., processors which may do oating point arithmetic dif-
ferently. This includes not just machines with completely di�erent oating point formats and
semantics (e.g. Cray versus workstations running IEEE standard oating point arithmetic),
but even supposedly identical machines running with di�erent compilers or even just di�erent
compiler options. The basic problem lies in making data dependent branches on di�erent pro-
cessors, which may branch di�erently than expected on di�erent processors, leading to di�erent
processors executing a completely di�erent section of code than the other processors expect. We
give three examples of this below.

The simplest example is an iteration where the stopping criterion depends on the machine
precision. If the precision varies from processor to processor, di�erent processors will have
signi�cantly di�erent stopping criteria than others. In particular, the criterion for the most
accurate processor may never be satis�ed if it depends on data computed less accurately by
other processors. Many problems like this can be eliminated by using the largest machine
epilson among all participating processes. Routine PDLAMCH returns this largest value, replacing
the uniprocessor DLAMCH. Similarly, one would use the smallest overow threshold and largest
underow threshold for other calculations. But this is not a panacea, as subsequent examples
show.

Next, consider the situation where processors sharing a distributed vector v compute its two-
norm, and depending on that either scale v by a constant much di�erent from 1, or do not. This
happens in the inner loop of the QR decomposition, for example. The two-norm is computed by
the ScaLAPACK routine PDNRM2, which computes two-norms locally and does a reduction. If the
participating processors have di�erent oating point formats, they may receive di�erent values
of the two-norm on return, just because the same oating point numbers cannot be represented
on all machines. This two-norm is then compared to a threshold, and if it exceeds the threshold
scaling takes place. Since the two-norm may be di�erent, and the threshold may be di�erent,
the result of the comparison could di�er on di�erent processors, so that one process would scale
the sub-vector it owns, and another would not. This would very likely lead to erroneous results.
This could in principle be corrected by extending the reduction operation PDNRM2 to broadcast
a discrete value (like the boolean value of a comparison); then all participating processors would
be able to agree with the processor at the root of the reduction tree.

6

However, there are still harder problems. Consider bisection for �nding eigenvalues of sym-
metric matrices. In this algorithm, the real axis is broken into disjoint intervals to be searched
by di�erent processors for the eigenvalues contained in each. Disjoint intervals are searched
in parallel. The algorithm depends on a function, call it count(a,b), that counts the number
of eigenvalues in the half open interval [a, b). Using count, intervals can be subdivided into
smaller intervals containing eigenvalues until the intervals are narrow enough to declare the
eigenvalues they contain as \found". One problem is that two processors with di�erent oating
point formats cannot even agree on the boundary between their intervals, because they cannot
store the same oating point number. This could result in multiple copies of eigenvalues if inter-
vals overlap, or missing eigenvalues if there are gaps between intervals. Furthermore, the count
function may count di�erently on di�erent processors, so an interval [a, b) may be considered
to contain 1 eigenvalue by processor A, but 0 eigenvalues by processor B, which has been given
the interval by processor A during load balancing. This can happen even if processors A and
B are identical, but if their compilers generate slightly di�erent code sequences for count. We
have not yet decided what to do about all of these problems, so we currently only guarantee
correctness of PDSYEVX for networks of processors with identical oating point formats (slightly
di�erent oating point operations are acceptable). See [4] for details.

3 The Distributed Linear Algebra Machine (DLAM)

In this section, we present a theoretical model of a parallel computer dedicated to dense linear
algebra. This model is from an abstraction of physical models. This ideal model provides a
convenient framework for developing parallel algorithms without worrying about the implemen-
tation details or physical constraints. However, we de�ned this restricted model such that actual
code should be easily produced from it.

The model can be applied to obtain theoretical performance bounds on parallel computers
or to estimate the execution time before or after the algorithm has been implemented. The
abstract model is also useful in scalability and programmability analysis.

A P -process DLAM is constructed out of P \BLAS-processes" interconnected by a logical
\BLACS-network". This network is a Pr � Pc logical mesh such that Pr:Pc � P . Data are
exchanged between BLAS processes through the BLACS network by calling BLACS primitives.
The processes can only perform BLAS and BLACS operations.

The DLAM presented here could be very easily extended by adding a host process. This

host process could act like a server acting upon a user request, creating the BLACS-network,
distributing the data, starting the BLAS-processes and collecting the results. This host process
could also be used for fault-tolerant applications. In this case, it would take the appropriate
course of action in the case of a BLAS-process failure. In the following sections, however, we
describe only the hostless DLAM.

3.1 The BLAS Process

As mentioned before, an e�cient implementation of the BLAS masks the e�ects of the processor
memory hierarchy and frees the programmer from local tuning of this basic kernel. The per-
formance of the BLAS heavily depends on the number of memory references per oating point
operation. This ratio naturally sorts the BLAS in three levels, where routines belonging to the
same level usually reach similar execution rates. Consequently, the BLAS processes are, as far
as performance analysis is concerned, able to perform only three instructions, corresponding
to the three BLAS levels. The execution times per oating point operation of each of these
instructions are then denoted by i, with i = 1; 2; 3.

7

3.2 The BLACS Network

The BLAS processes communicate with each other via calls to the BLACS. For the sake of
simplicity, we model a restricted subset of the possible BLACS operations, namely point-to-
point communication and broadcast/combine operations along a row or column of the mesh. It
is customary to model the time for sending a message of n items between two processes by

Ts(n; �; �) = �+ n�

where � denotes the latency, and � the inverse of the bandwidth. The broadcast/combine
operations are more complicated since the BLACS allow the user to specify a topology argument
[8, 10]. We estimate the cost of broadcasting n items using a split-ring topology to p�1 processes
by

Tb(
0S � ring; p; n; �; �) = K(0bcast0;0 S � ring0; p; n) Ts(n; �; �).

Similarly, the cost of a 1-tree combine operation of n items involving p processes is estimated
by

Tc(
0S � ring; p; n; �; �) = K(0combine0;0 S � ring0; p; n) Ts(n; �; �).

At this level of the model, it is not possible to determine the values of K because no assumption
has been made so far on the physical network to model. This justi�es the introduction of these
functions K().

3.3 Accuracy and Re�nement of the DLAM

When applying numerically the results obtained by the DLAM, we choose 1 = 2 = 0, assuming
that the cost of these instructions will always be negligible compared to BLACS operations or
a Level 3 instruction. We determined 3 as being the achieved peak performance of the BLAS
matrix-multiply GEMM. This approximation is incorrect for small block sizes, in which case
Level 2 operations are performed and 2; 3 should be set respectively to the achieved peak
performance of the BLAS matrix-vector multiply GEMV and zero. Obviously, these coarse
approximations could be re�ned by computing a piece-wise linear approximation of the i's
with respect to the problem size. This model smoothes the inuence of the physical memory
hierarchy and could be adapted to out-of-core BLAS operations.

Modeling the performance of the DLAM network is tightly coupled to the physical network.
Experimental values of � and � can easily be determined for a given machine. If the logical
mesh can be embedded into the physical network and the message collisions ignored, 2 log2(p)
is a good approximation of K(0combine0;0 1 � tree0; p; n) assuming the result has to be left on
the p processes and neglecting the cost of the local computations; similarly, K(0bcast0;0 1 �
tree0; p; n) � log2(p). When the communications can be pipelined, it is reasonable to estimate
K(0bcast0;0 S � ring0; p; n) by 2. Because this model ignores the probable collision of messages
or possible network contention problems, its accuracy depends on the number of physical links.
For instance, when comparing the performance obtained on an ideal DLAM with those obtained
on an ethernet based network of workstations sharing one physical link, it is important to use
appropriate values for K. Indeed, an upper bound for K(0combine0;0 1� tree0; p; n) is given by
2 (p � 1). However, for a given value of p, it is possible to experimentally determine constants
which take into account the cost due to network contention and message collisions. More
accurate models taking into account the collisions of messages could be used, but this is beyond
the scope of this paper. Finally, the described model could obviously be re�ned by computing a
piece-wise linear approximation of the time for sending a message with respect to the message
length.

8

3.4 The LU factorization on the DLAM

We present in this section the model corresponding to the parallel right-looking LU factoriza-
tion implemented in ScaLAPACK [9]. We restrict ourselves to the case where the matrix is
distributed on the processes using a square (r = c) block cyclic decomposition scheme. We
ignore the possible collision of messages on the network. It can be briey described as follows:
Assume the LU factorization of the k � r �rst columns has proceeded with k 2

�
0; 1; : : : n�1

r

	
.

During the next step, the algorithm factors the next panel of r columns, pivoting if necessary.
Next the pivots are applied to the remainder of the matrix. The lower trapezoid factor just com-
puted is broadcast to the other process columns of the grid using a split-ring topology [8, 10],
so that the the upper trapezoid factor can be updated via a triangular solve. This factor is then
broadcast to the other process rows using a 1-tree topology [8, 10], so that the remainder of the
matrix can be updated by a rank-r update. This process continues recursively with the updated
matrix. The total execution time TLU(n

2; P) can be estimated by

(n � 1)Tc(
01� tree0; Pr; 2; �; �) + (Determine pivot row)

(n � 1)2Ts(r; �; �) + (Swap rows in current panel)

n�1
r
Tb(

0S � ring0; Pc; r; �; �) + (Broadcast pivot information)

n�1

rX
k=0

2r(Ts(
kr

Pc
; �; �) + Ts(

n � (k + 1)r

Pc
; �; �)) + (Swap remaining rows)

n�1

rX
k=0

Tb(
0S � ring0; Pc;

n� kr

Pr
; �; �) + (Broadcast lower trapezoid factor)

n�1

rX
k=0

n� (k + 1)r

Pc
r23 + (Triangular solve: BLAS 3 TRSM)

n�1

rX
k=0

Tb(
01� tree0; Pr;

n� (k + 1)r

Pc
; �; �) + (Broadcast upper trapezoid factor)

n�1

rX
k=0

2
n� (k + 1)r

Pr

n� (k + 1)r

Pc
r3 (Rank-r update: BLAS 3 GEMM)

Notice that we neglected the BLAS 1 computations performed during the factorization of the
current panel of columns, considering that the contribution of this operations to the execution
time is mostly due to communication. In addition, when the logical mesh can be embedded
into the physical network and the message collisions neglected, the previous formula can be
simpli�ed to:

TLU(n
2; P) = 2n log2(Pr)�+

n2

2P
(2Pc + Pr log2(Pr))� +

2n3

3P
3: (1)

9

4 Performance

An important performance metric is parallel e�ciency. Parallel e�ciency, E(N;P), for a prob-
lem of size N on P processors is de�ned in the usual way [13] as

E(N;P) =
1

P

Tseq(N)

T (N;P)
(2)

where T (N;P) is the runtime of the parallel algorithm, and Tseq(N) is the runtime of the best
sequential algorithm. An implementation is said to be scalable if the e�ciency is an increasing
function of N=P , the problem size per processor (in the case of dense matrix computations,
N = n2, the number of words in the input).

We will also measure the performance of our algorithm in Megaops/sec (or Gigaops/sec).
This is appropriate for large dense linear algebra computations, since oating point dominates
communication. For a scalable algorithm with N=P held �xed, we expect the performance to
be proportional to P .

We seek to increase the performance of our algorithms by reducing overhead due to load
imbalance, data movement, and algorithm restructuring. The way the data are distributed over
the memory hierarchy of a computer is of fundamental importance to these factors. We present in
this section extensive performance results on various platforms for the ScaLAPACK factorization
and reductions routines. Performance data for the symmetric eigensolver (PDSYEVX) are
presented in [5].

4.1 Choice of Block Size

In the factorization or reduction routines, the work distribution becomes uneven as the computa-
tion progresses. A larger block size results in greater load imbalance, but reduces the frequency
of communication between processes. There is, therefore, a tradeo� between load imbalance
and communication startup cost, which can be controlled by varying the block size.

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

matrix order

to
ta

l
M

fl
o

p
s

LU FACT. PREDICTED PERFORMANCE ON 16 (2x8) NODES I860

Predicted (dotted line)

ScaLAPACK (solid line)

r = 1

r = 8

r = 32

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

ti
m

e
 d

is
tr

ib
u

ti
o

n

BLOCK SIZE = 40

BANDWITH = 34.00 Mbytes/s

LATENCY = 56.00 us

FLOPS/NODE = 236.00 Mflops

LU PREDICTED TIME DISTRIBUTION ON 64 (4x16) NODES SP2

Latency (dashed)

Bandwith (dotted)

Communication (dashed−dotted)

Computation (solid)

Most of the computation of the ScaLAPACK routines is performed in a blocked fashion
using Level 3 BLAS, as is done in LAPACK. The computational blocking factor is chosen to
be the same as the distribution block size. Therefore, smaller distribution block sizes increase
the loop and index computation overhead. However, because the computation cost ultimately

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LU performance on the Intel Paragon (r=c=20)

Matrix Size

G
fl
o

p
s

32x32

16x32

16x16

8x16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
QR performance on the Intel Paragon (r=c=6)

Matrix Size
G

fl
o

p
s

32x32

16x32

16x16

8x16

dominates, the inuence of the block size on the overall communication startup cost and loop
and index computation overhead decreases very rapidly with the problem size for a given grid
of processes. Consequently, the performance of the ScaLAPACK library is not very sensitive
to the block size, as long as the extreme cases are avoided. A very small block size leads to
BLAS 2 operations and poorer performance (see section 3.3). A very large block size leads to
computational imbalance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

4x16

4x8

2x8

LU performance on thin−node SP−2 (r=c=40)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Matrix Size

G
fl
o

p
s

QR performance on the Intel Paragon MP’s node (r=c=16)

4x16

4x8

2x8

The chosen block size impacts the amount of workspace needed on every process. This
amount of workspace is typically large enough to contain a block of columns or a block of
rows of the matrix operands. Therefore, the larger the block size, the greater the necessary
workspace, i.e the smaller the largest solvable problem on a given grid of processes. For Level 3
BLAS blocked algorithms, the smallest possible block operands are of size r� c. Therefore, it is
good practice to choose the block size to be the problem size for which the BLAS matrix-multiply
GEMM routine achieves 90 % of its reachable peak.

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

8x8

4x8

4x4

LLT performance on thin−node SP−2 (r=c=50)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LLT performance on the Intel Paragon (r=c=20)

Matrix Size
G

fl
o

p
s

32x32

16x32

16x16

8x16

Determining optimal, or near optimal block sizes for di�erent environments is a di�cult task
because it depends on many factors including the machine architecture, speeds of the di�erent
BLAS levels, the latency and bandwidth of message passing, the number of process available,
the dimensions of the process grid, the dimension of the problem, and so on. However, there is
enough evidence and expertise for automatically and accurately determining optimal, or near
optimal block sizes via an enquiry routine. Furthermore, for small problem sizes it is also possible
to determine if redistributing n2 data items is an acceptable cost in terms of performance as
well as memory usage. In the future, we hope to calculate the optimal block size via an enquiry
routine.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

QR, 8x8
LLT, 8x8

LU, 4x16

BRD, 8x8

TRD, 8x8

Performance comparison of various codes on 64 SP−2 thin nodes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Matrix Size

E
ff

ic
ie

n
c
y

LU Efficiency on the Intel Paragon MP’s node (r=c=16)

4x164x82x8

4.2 Choice of Grid Size

The best grid shape is determined by the algorithm implemented in the library and the under-
lying physical network. A one link physical network will favor Pr = 1 or Pc = 1. This a�ects

12

the scalabilty of the algorithm, but reduces the overhead due to message collisions. It is possible
to predict the best grid shape given the number of processes available. The current algorithms
for the factorization or reduction routines can be split into two categories.

If at every step of the algorithm a block of columns and/or rows needs to be broadcast, as
in the LU or QR factorizations, it is possible to pipeline this communication phase and overlap
it with some computation. The direction of the pipeline determines the shape of the grid. For
example, the LU, QR and QL factorizations perform better for \at" process grids (Pr < Pc).
These factorizations share a common bottleneck of performing a reduction operation along each
column (for pivoting in LU, and for computing a norm in QR and QL). The �rst implication
of this observation is that large latency message passing perform better on a \at" grid than
on a square grid. Secondly, after this reduction has been performed, it is important to update
the next block of columns as fast as possible. This is done by broadcasting the current block
of columns using a ring topology, i.e, feeding the ongoing communication pipe. Similarly, the
performance of the LQ and RQ factorizations take advantage of \tall" grids (Pr > Pc) for the
same reasons, but transposed.

The theoretical e�ciency of the LU factorization can be estimated by (see (1), (2)):

ELU(N;P) =
1

1 + 3P logPr
n2

�
3

+ 3
4n
(2Pc + Pr logPr)

�

3

For large n, the last term in the denominator dominates, and it is minimized by choosing a Pr
slightly smaller than Pc. Pc = 2Pr works well on Intel machines. For smaller n, the middle
term dominates, and it becomes more important to choose a small Pr. Suppose that we keep
the ratio Pr=Pc constant as P increases, thus we have Pr = u

p
P and Pc = v

p
P , where u and v

are constant [9]. Moreover, let ignore the log2(Pr) factor for a moment. In this case, Pr=n and
Pc=n are proportional to

p
P=n and n2 must grow with P to maintain e�ciency. For su�cient

large Pr, the log2(Pr) factor cannot be ignored, and the performance will slowly degrade with
the number of processors P . This phenomenon is observed in practice as shown in the plot
above showing the e�ciency of the LU factorization on the Intel Paragon.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Matrix Size

G
fl
o

p
s

8x8, r=c=6

4x8, r=c=12

TRD performance on thin−node SP−2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Matrix Size

G
fl
o

p
s

8x8, r=c=8

4x8, r=c=6

BRD performance on thin−node SP−2

The second group of routines physically transpose a block of columns and/or rows at every
step of the algorithm. In these cases, it is not usually possible to maintain a communication
pipeline, and thus square or near square grids are more optimal. This is the case for the
algorithms used for implementing the Cholesky factorization, the matrix inversion and the

13

reduction to bidiagonal form (BRD), Hessenberg form (HRD) and tridiagonal form (TRD). For
example, the update phase of the Cholesky factorization of a lower symmetric matrix physically
transposes the current block of columns of the lower triangular factor.

Assume now that at most P processes are available. A natural question arising is: could
we decide what process grid Pr � Pc � P should be used? Similarly, depending on P , it is
not always possible to factor P = Pr:Pc to create the appropriate grid. For example, if P
is prime, the only possible grids are 1 � P and P � 1. If such grids are particularly bad for
performance, it may be bene�cial to let some processors remain idle, so the remainder can be
formed into a \squarer" grid [15]. These problems can be analyzed by a complicated function
of the machine and problem parameters. It is possible to develop models depending on the
machine and problem parameters which accurately estimate the impact of modifying the shape
of the grid on the total execution time, as well as predicting the necessary amount of extra
memory required for each routine.

5 Future Directions

5.1 Future addition to ScaLAPACK

Basic building blocks like the BLAS, the BLACS and the PBLAS have been made publically
available. At the time this paper was written, the current version of the PBLAS was being
extended by removing alignment assumptions made on the operands. Moreover, the PBLAS
package is being internally restructured to facilitate its maintenance and reinforce its robustness.
Concurrently, many of the LAPACK functions missing in ScaLAPACK are being assembled and
integrated. These include condition estimation, iterative re�nement of linear solutions and linear
least square solvers. We are planning improved versions of the symmetric eigenvalue routine.
SVD and nonsymmetric eigenvalue routines are also in preparation. More elaborate testing and
timing programs are being developed to ensure the robustness and the e�ciency of the library.
Finally, banded, general sparse, and out-of-core prototype routines are being investigated.

5.2 Alternative Approaches to Libraries

Traditionally, large, general-purpose mathematical software libraries on uniprocessors and shared
memory machines have tried to hide much of the complexity of data structures and performance

issues from the user. For example, the LAPACK project incorporates parallelism in the Level 3
BLAS, where it is not directly visible to the user. Unfortunately, it is not possible to hide these
details as neatly on distributed memory machines. Currently, the data structures and data de-
composition must be speci�ed by the user, and it may be necessary to explicitly transform these
structures in between calls to di�erent library routines. These de�ciencies in the conventional
user interface have prompted extensive discussion of alternative approaches for scalable parallel
software libraries of the future. Here are some possibilities.

1. Traditional function library (i.e., minimumpossible change to the status quo in going from
serial to parallel environment). This will allow one to protect the programming investment
that has been made. More aggressive use of performance models may permit us to choose
the best layout and redistribute the input data structure automatically. This is attractive
for dense linear algebra since for large problems the O(n3) oating point operations will
dominate the O(n2) cost of redistribution.

2. Reactive servers on the network. A user would be able to send a computational problem to
a server that was specialized in dealing with the problem. This �ts well with the concepts
of a networked, heterogeneous computing environment with various specialized hardware

14

resources (or even the heterogeneous partitioning of a single homogeneous parallel ma-
chine). Again, this is attractive for dense linear algebra since O(n3) ops are performed
on a data structure of size O(n2).

3. Interactive environments like Matlab or Mathematica, perhaps with \expert" drivers (i.e.
knowledge-based systems) for special domains, such as structural analysis. Such envi-
ronments have proven to be especially attractive for rapid prototyping of new algorithms
and systems that may subsequently be implemented in a more customized manner for
higher performance. With the growing popularity of the many integrated packages based
on this idea, this approach would provide an interactive, graphical interface for specifying
and solving scienti�c problems. Both the algorithms and data structures are hidden from
the user, because the package itself is responsible for storing and retrieving the problem
data in an e�cient, distributed manner. In a heterogeneous networked environment, such
interfaces could provide seamless access to computational engines that would be invoked
selectively for di�erent parts of the user's computation according to which machine is most
appropriate for a particular subproblem.

4. Reusable templates (i.e., users adapt \source code" to their particular applications). A
template is a description of a general algorithm rather than the executable object code or
the source code more commonly found in a conventional software library. Nevertheless,
although templates use generic versions of key data structures, they o�er whatever degree
of customization the user may desire. We have constructed such a set of template for in-
teractive linear system solvers, and are currently constructing one for eigenvalue problems.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users' Guide".
SIAM, Philadelphia, PA, 1992.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. \LAPACK Users' Guide,

Second Edition". SIAM, Philadelphia, PA, 1995.

[3] J. Choi, J. Dongarra, and D.Walker. \Parallel Matrix Transpose Algorithms on Distributed
Concurrent Computers". Technical Report UT CS-93-215, LAPACK Working Note #65,
University of Tennessee, 1993.

[4] J. Demmel, I. Dhillon, and H. Ren. \On the correctness of parallel bisection in oating
point". Technical Report UCB//CSD-94-805, University of California, Berkeley Computer
Science Division, 1994. available via anonymous ftp from tr-ftp.cs.berkeley.edu, in directory
pub/tech-reports/csd/csd-94-805, �le all.ps.

[5] J. Demmel and K. Stanley. \The Performance of Finding Eigenvalues and Eigenvectors
of Dense Symmetric Matrices on Distributed Memory Computers". In Proceedings of the

Seventh SIAM Conference on Parallel Proceesing for Scienti�c Computing. SIAM, 1994.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. \A Set of Level 3 Basic Linear
Algebra Subprograms". ACM Transactions on Mathematical Software, 16(1):1{17, 1990.

[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. \Algorithm 656: An extended
Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs".
ACM Transactions on Mathematical Software, 14(1):18{32, 1988.

[8] J. Dongarra and R. van de Geijn. \Two dimensional Basic Linear Algebra Communication
Subprograms". Technical Report UT CS-91-138, LAPACK Working Note #37, University
of Tennessee, 1991.

15

[9] J. Dongarra, R. van de Geijn, and D. Walker. \A Look at Scalable Dense Linear Algebra
Librairies". Technical Report UT CS-92-155, LAPACK Working Note #43, University of
Tennessee, 1992.

[10] J. Dongarra and R. C. Whaley. \A User's Guide to the BLACS v1.0". Technical Report
UT CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.

[11] High Performance Forum. \High Performance Fortran Language Speci�cation". Technical
Report CRPC-TR92225, Center for Research on Parallel Computation, Rice University,
Houston, TX, May 1993.

[12] Message Passing Interface Forum. \MPI: A Message-Passing Interface standard". Interna-
tional Journal of Supercomputer Applications, 8(3/4), 1994.

[13] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. \Solving Problems

on Concurrent Processors", volume 1. Prentice Hall, Englewood Cli�s, N.J, 1988.

[14] R. Hanson, F. Krogh, and C. Lawson. \A Proposal for Standard Linear Algebra Subpro-
grams". ACM SIGNUM Newsl., 8(16), 1973.

[15] W. Hsu, G. Thanh Nguyen, and X. Jiang. \Going Beyond
Binary". http://www.cs.berkeley.edu/ xjiang/cs258/project 1.html, 1995. CS 258 Class
project.

[16] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. \Basic Linear Algebra Subprograms for
Fortran Usage". ACM Transactions on Mathematical Software, 5(3):308{323, 1979.

[17] B. Parlett, I. Dhillon, and V. Fernando. Private Communication, 1995.

16

