
NISS WebSwap: A Web Service
for Data Swapping

Ashish P. Sanil, Shanti Gomatam , Alan F. Karr
and Chunhua “Charlie” Liu

Technical Report Number 126
June, 2002 (revised: February, 2003)

National Institute of Statistical Sciences
19 T. W. Alexander Drive

PO Box 14006
Research Triangle Park, NC 27709-4006

www.niss.org

NISS

NISS WebSwap : A Web Service for Data Swapping

Ashish P. Sanil, Shanti Gomatam, Alan F. Karr and Chunhua “Charlie” Liu1

National Institute of Statistical Sciences, Research Triangle Park, NC 27709-4006, USA
{ashish,sgomatam,karr,cliu}@niss.org

Abstract

Web Services are an exciting new form of distributed computing that allow users to invoke remote
applications nearly transparently. National Institute of Statistical Sciences (NISS) has recently started
hosting NISS Web Services as a service and example to the statistical sciences community. In this paper,
we describe and provide usage information forNISS WebSwap, the initial NISS Web Service, which
swaps one or more attributes (fields) between user-specified records in a microdata file, uploading the
original data file from the user’s computer and downloading the file containing the swapped records.

1 Introduction

NISS WebSwap is a Web service (see§3) that swaps one or more attributes (fields) between user-specified
records in a microdata file, uploading the original data file from the user’s computer and downloading the
file containing the swapped records.

Data swapping[7, 8] is a strategy for protecting confidentiality in released microdata records. In the
simplest case, values of a single attribute are swapped between randomly selected pairs of records. The
purpose of data swapping is to introduce uncertainty into the mind of any data user or intruder as to whether
records correspond to real data elements. In the example in Figures 3 and 6, only seven of the ten records
shown from the post-swap database are “real.” Swapping does not change the marginal distribution of
any attribute. Nor does it change either the joint distribution of the unswapped attributes or—if more than
one attribute is swapped2—the joint distribution of the swapped attributes. Itdoes, however, distort joint
distributions involving both swapped and unswapped attributes.

Not all attributes are swapped, of course. We call the subset of attributes that are swapped theswapped
attributesor swap attributes. The fraction of records in the microdata that are initially marked to be swapped
will be called theswap rate, and is denoted byr. We allow only true swaps, which result in different pre-
and post-swap values for the records being swapped.

In some situations there may be conditions on pairs of records, defined by attributes other than swap
attributes, in order for a pair of records to be feasible swap candidates for each other. For instance, in the
microdata presented in Figure 3, we may allow swaps of Age (the first attribute following the identifier)
only between those records with the same value of Employer Type (the second attribute), or allow swaps of
Age only between those records that have different values of Education (the third attribute). Such attributes
whose values define the feasibility of swap candidates are calledconstraining attributes.

When swapping is used for purposes of statistical disclosure limitation (SDL), several choices are nec-
essary: the swap attributes, the swap rate, and constraints (if any). We conceptualize these choices as taking
place in a risk-utility framework [2, 4]. In virtually all cases, there is a tradeoff: higher utility implies higher
risk. NISS WebSwap is usable, for example, to generate swapped databases under a range of choices,

1The authors thank Adrian Dobra for his input. Support for the research was provided by National Science Foundation grant
EIA–9876619 to NISS and by the National Center for Education Statistics (NCES).

2In our framework, multiple attributes are always swapped simultaneously.

1

and to compute risk–utility (R–U) frontiers that quantify tradeoffs and inform the selection process [4].
Although risk and utility are not explicitly part ofNISS WebSwap, we mention illustrative examples.

A widely held viewpoint in the field of SDL is that records with rare attribute values are susceptible to
identity disclosure. Well-established rules such as then-rule—records that fall in any cell with a (non-zero)
count less than or equal ton (in practice,n is often 2) are considered to be at risk—embody this viewpoint
and are often used to characterize risk. Based on this reasoning, one measure of risk is the number of
unswapped recordsthat fall in cells with low counts in a cross-tabulation of the post-swap data.

Because data swapping may change the joint probability distribution of sets of attributes containing
the swap attributes, one can measure the (dis)utility or distortion resulting from swapping by means of the
distance between the pre- and post-swap distributions of the data. Hellinger distance, for example, is used
in [3, 4] to study systematically the effect of different choices of swap attributes and swap rate for Current
Population Survey (CPS) data.

The remainder of the paper summarizesNISS WebSwap functionality and the data swapping algorithm
(§2), treats implementation ofNISS WebSwap as a Web service (§3) and describes theNISS WebSwap
client software (§4).

2 Functionality

The principal functionality ofNISS WebSwap is simultaneously to swap prescribed attributes in a specified
fraction of the records in a database. The user specifies the data file containing the microdata records (see
§4.4) and the swap rater—the fraction of records for which the specified attributes will be swapped, typically
on the order of 1–10%. At most2r% of the records will actually be swapped; fewer will be swapped if
records marked to be swapped are swapped with one another. Details of how pairs of records to be swapped
are selected appear below.

NISS WebSwap allows the user to specify that two records will be swapped only if designated con-
straining attributes are either equal (Example: swapping may be allowed only for record pairs both drawn
from the same state) or different (Example, records may be swapped only if they come from different coun-
ties). Constraints are optional, and may be used in any combination. For the purposes of constraints, all
attributes are treated as categorical.

TheNISS WebSwap swapping algorithm operates in the following manner.3

1. Initially, mark all records as unswapped, and setRS, the number of swapped records, to zero.

2. Randomly select a user-specified fraction (the swap rater) of the records and mark them as records
to be swapped. LetRTS be the number of records to be swapped.

3. Select a recordR1 at random from the current set of marked, unswapped records.

4. Select a second recordR2 at random from the current set ofall unswapped records (marked or not).

5. Determine whether the swap is atrueswap:R1 6= R2. If not, return to Step 4.

6. Determine whether equality and inequality constraints are satisfied. If not, return to Step 4.

7. Interchange the swapped attribute(s) betweenR1 andR2, markbothas swapped, and set

RS =

{
RS + 1 if only R1 had been marked for swapping
RS + 2 if both R1 andR2 had been marked for swapping

3This is a general overview; fine details of the implementation are omitted.

2

(If R2 had also been marked for swapping, then no record replaces it, which is why fewer than2r%
of the records may actually be swapped.)

8. If RS < RTS, return to Step 3.

3 Web Services Implementation

Web services[1] is a technology that started taking shape in early 2002, and has evolved and expanded
rapidly since then. A Web service is an application that exists in a distributed environment, such as the
Internet or an organization’s intranet. A Web service accepts a request, performs its function based on the
request, and returns a response. Communications to and from a Web service are encoded using extensible
markup language (XML) [9]. For example, a client invokes a Web service by sending an XML message,
then waits for the XML response. Because all communication is in XML, Web services are not tied to any
specific operating system or programming language. Java, Perl and Python programs can all communicate,
and Windows applications can interact with Unix applications.

A Web service has a public interface, defined in a common XML grammar. The interface describes
the methods available to clients and specifies the signature for each method. Currently, interface definition
is accomplished via the Web Service Description Language (WSDL). This opens dramatic possibilities for
software re-use: to employ a particular Web Service, we can use its WSDL to determine how to access from
within our applications the services it provides!

NISS WebSwap is implemented as a free Web service, and its WSDL description is available (Ap-
pendix A). This description enables interested users to access the swapping services using XML-based
requests (which does require some expertise and effort, though). SinceNISS WebSwap is largely a re-
search tool to perform data swapping, we provide a GUI-basedclient (see§4) to access the service and
perform the swapping.

The entireNISS WebSwap application consists of the client, which communicates with a JavaServlet
[6] running on our server, which in turn passes requests to and from the Web Service, also running on our
server. Technically, the Servlet is the client of the Web service, and what we call the client is a client of
the Servlet, whereas a “true” Web service client would access the service directly. However, we felt that for
general users, the GUI client should be as lightweight and portable as possible, which is accomplished by
inserting the Servlet layer to handle the XML messaging.

The client is a Java application that collects user’s swapping specifications and transmits the specifi-
cations and data to the Servlet using Java’s remote method invocation (RMI) protocol. The Servlet is a
(server-side) Java application that runs within a “servlet container” on the NISS Web Services server. The
Servlet, using libraries that accompany Sun’s Web services toolkit, bundles the data and specifications into
an XML request that it transmits, using the simple object access protocol (SOAP), to the Web service. The
Web service receives the request from the Servlet, extracts the data, carries out the requested swapping, and
rewraps the swapped data and auxiliary information as an XML response that is passed back to the Servlet.
Finally, the Servlet unbundles the XML response and transmits the swapped data back to the client on the
user’s machine. The process is depicted in Figure 1.

3

Figure 1:NISS WebSwap components.

4 TheNISS WebSwap Client

Here we describe theNISS WebSwap client software. Figure 2 shows both theNISS WebSwap system
and the associate files (on the user’s machine), consisting of two input files (§4.4), an automatically produced
specifications file (§4.5), and two output files (§4.6).

4.1 System Requirements

TheNISS WebSwap program requires that a Java 2 runtime environment compliant with the Java 2 Plat-
form, Standard Edition (J2SE) version 1.3.1 or 1.4.x be installed on the user’s computer. This can be down-
loaded fromhttp://java.sun.com or from the Web sites of operating system vendors. An Internet
connection is required to access the NISS Web services server.

4.2 Software Installation

First, download theNISS WebSwap distributionNISSWebSwap v11.zip from the NISS Web site, at
www.niss.org/WebServices/dg/WebSwap.html . Unzip the distribution into separate directory,
for example, namedNISSWebServices. Finally, read theREADME.webswap file bundled with the distri-
bution. Data, description and specifications files (see below) may reside in any directory, but must all be in

4

Figure 2: TheNISSWebSwap System. Rectangles are the software components and parallelograms are
the input and output files; data files are in gray. TheNISS WebSwap–produced specifications file is in the
center of the diagram.

the same directory. By default output and log files are placed in that same directory.

4.3 Starting NISS WebSwap

NISS WebSwap is distributed in JAR (Java Archive) format: the fileNISSWebSwap.jar contains all
necessary executable code. There are two ways to launch theNISS WebSwap application. Fordirect start,
which is available only under Windows 9x/NT/2000/XP, double–click onNISSWebSwap.jar in Windows
Explorer or any other file browser. If the proper Java 2 runtime environment has been installed, this will
startNISS WebSwap. Command-line invocationrequires that the commandjava be in the system “path,”
and that it invoke the correct version of the Java 2 runtime environment. Then, execute the command

java -jar NISSWebSwap.jar

from the command prompt of a Unix/Linux or Windows system.

4.4 Input Files

Two input files are required byNISS WebSwap: a data filecontaining the microdata records and ade-
scription filecontaining corresponding metadata. Samples of both are contained in theNISS WebSwap
distribution.

5

1,25 55,Gov,Bach,UM,W,M,40,<50
2,25 55,SE,Bach,M,W,M,<40,<50
3,25 55,Pvt,HS,UM,W,M,40,<50
4,25 55,Pvt,<HS,M,NW,M,40,<50
5,25 55,Pvt,Bach,M,NW,F,40,<50
6,25 55,Pvt,Bach+,M,W,F,40,<50
7,25 55,Pvt,<HS,M,NW,F,<40,<50
8,25 55,SE,HS,M,W,M,40+,50+
9,25 55,Pvt,Bach+,UM,W,F,40+,50+
10,25 55,Pvt,Bach,M,W,M,40,50+

Figure 3: Sample CSV data filewebswapdemo.orig included in theNISS WebSwap distribution. The
file contains an 8–attribute data set derived from the CPS [5]. The first entry in each record is the ID; the
“real attributes” are Age, Employer Type, Education, Marital Status, Race, Sex, Hours Worked, and Salary.

ID,K
Age,C
EmplType,C
Educ,C
MarStatus,C
Race,C
Sex,C
AveHours,C
Salary,C

Figure 4: Sample description filewebswapdemo.desc included in theNISS WebSwap distribution, cor-
responding to the data filewebswapdemo.orig.

Data File. The file containing the microdata must be in comma-separated value (CSV) format, with one
record per line, as illustrated in Figure 3. CSV files can be produced by most database management systems
and statistical packages (such as SAS), as well as Microsoft Excel. Both Microsoft/Excel CSV (MS) and
ISO standard CSV (ISO) are supported.The first entry in each record must be a unique identifier. The
simplest way to create identifiers, as in Figure 3, is to number the records.

Description File. The description file is an ASCII metadata file containing the names and types of the
attributes in the data file. Figure 4 illustrates a description file. Each line in the description file corresponds
to one attribute, and has the form

AttributeName, AttributeType .

Allowable attribute types are: K = record identifier, C = categorical and R = real. The order of attribute
names in the description file must match the order in which the attributes appear in the data file. Some
inconsistencies between the data file and description file (for instance, unequal numbers of attributes) are
detected by theNISS WebSwap client.

6

1024
webswapdemo.orig
webswapdemo.desc
webswapdemo.log
webswapdemo.swapped
webswapdemo.specs
25.0
S,O,O,O,O,O,O,O
MS

Figure 5: Sample specifications filewebswapdemo.specs produced by theNISSWebSwap client from
the description filewebswapdemo.desc and swapping specification shown in Figure 9. The swap rate is
(an unrealistically high) 25%; Age is to be swapped, and all other attributes are unconstrained.

4.5 The Specifications File

The specifications file is an ASCII text file produced by theNISS WebSwap client, containing the follow-
ing items:

• Number of records in the data file;

• Names of the data file, description file, log file, output file and specifications file;

• The swap rate;

• The swapping specification: for each attribute, in the order specified by the description file, whether
it is to be Swapped, must remain Fixed, must Differ between any pair of records that are swapped, or
is not constrained—Other.

• The CSV type of the data file.

Existing specifications files may be loaded directly by theNISS WebSwap graphical user interface (GUI):
see§4.7.

The specifications file is required by theNISS WebSwap Web service. Because it is produced auto-
matically with the proper structure by theNISS WebSwap GUI, it should not be edited by hand.

4.6 Output Files

As shown in Figure 2,NISS WebSwap produces and downloads to the user’s computer two files: anoutput
file containing the swapped microdata and alog filecontaining details of the swapping process.

The output file is in the same CSV format as the data file. An example is shown in Figure 6. Record
identifiers are retained.

The log file, illustrated in Figure 7, contains both details of the user input (file names and swapping
specification) and results such as the number of swaps performed.

4.7 NISS WebSwap User Interface

TheNISS WebSwap GUI is used to create or edit the specifications file required by theNISS WebSwap
Web service, by allowing the user to specify files and construct the swapping specification. The main

7

1,25 55,Gov,Bach,UM,W,M,40,<50
2,25 55,SE,Bach,M,W,M,<40,<50
3,25 55,Pvt,HS,UM,W,M,40,<50
4,<25,Pvt,<HS,M,NW,M,40,<50
5,25 55,Pvt,Bach,M,NW,F,40,<50
6,25 55,Pvt,Bach+,M,W,F,40,<50
7,25 55,Pvt,<HS,M,NW,F,<40,<50
8,<25,SE,HS,M,W,M,40+,50+
9,<25,Pvt,Bach+,UM,W,F,40+,50+
10,25 55,Pvt,Bach,M,W,M,40,50+

Figure 6: Sample CSVNISS WebSwap output filewebswapdemo.swapped arising from the data file,
description file and specifications file appearing in Figures 3, 4 and 5. Comparison with Figure 3 shows that
“Age” has been swapped for records 4, 8, and 9.

Swapping Log:Thu Oct 24 17:22:16 EDT 2002
Number of risky records = 1024
Number of records marked for swapping = 256
Number of swaps performed: 223
-- listing properties --
desc.file=webswapdemo.desc
spec.file=webswapdemo.specs
attribute.specs=S,O,O,O,O,O,O,O
output.file=webswapdemo.swapped
num.records=1024
csv.type=MS
log.file=webswapdemo.log
data.file=webswapdemo.orig
swap.percentage=25.0

Figure 7: SampleNISS WebSwap log file webswapdemo.log corresponding to the demonstration data
file, description file and specifications file appearing in Figures 3, 4 and 5. Because only 223 swaps were
performed, in 33 of these, both records swapped must have been marked for swapping. In the other 190
swaps, only one of the records had been marked.

8

window (see Figure 8) serves as the means of communication to the user, recording loading of files, contents
of specifications files and the results of swapping, as well as warnings (black type) and errors (red type). Its
entire contents may be saved to a session file (§4.8).

The basic unit forNISS WebSwap is theproject, which is defined by its specifications file and associ-
ated data and description files. Existing projects are loaded via theOpen item on theProject menu, and
new ones are created with theNewitem.

Open loads an existing specifications file (*.specs), and provided that the data and description files
that it requires exist and be compatible, allows the user, by choosing theEdit item on theProject
menu, to edit the output file names and swapping specification, using the window shown in Figure 9.New
creates a project by selecting the underlying data file (*.orig), loads and verifies the associated description
file (*.desc), and provides a window, essentially identical to the one shown in Figure 9, that allows the user
to enter output file names and the swapping specification.

TheNewandEdit windows allow the user to specify or modify two principal items:

Output File Names: The default names for data filedata.orig aredata.specs for the specifications file (in
the case of a new project),data.swapped for the output file anddata.log for the log file. Any of these
may be changed by the user. If the name of the specifications file is changed, the names of the output
and log files are changed automatically to match it, but these may also be changed independently.
Similarly, if the name of the output file is changed, that of the log file changes to match it. Changing
the name of the log file alone is possible, but keeping the names of the output and log files identical
preserves their association for future reference.

The Swapping Specification.As outlined in§2, the swapping specification consists of the swap rate and
attribute specifications. The swap rate is set by the slider in theEdit (Figure 9) orNew project
windows. Allowable values are 1%,. . .,50%. Although the slider allows the swap rate to be set to
zero,NISS WebSwap will not save the specifications file in this case, and will produce an error
message. Attribute specifications specify, for each attribute, whether it is to beSwapped, must remain
Fixed, mustDiffer, or is unconstrained (Other). The selections are made by the checkboxes shown in
Figure 9. For a new project, the default value isOther for all attributes. If no attribute is chosen to be
swapped, the specifications file will not be saved, and an error message will result.

When the selections are complete, clicking on the “Save” button saves them to the specifications file. The
contents of the specifications file are then displayed in theNISS WebSwap main window.

Once a specifications file has been opened (and possibly edited) or created, the user simply clicks on the
“Swap” button (Figure 8) to perform the swapping. Figure 8 shows the messages resulting from a successful
swap, including the names of the output files. TheNISS WebSwap GUI does not provide direct capability
to view these files, but they may be examined with any file viewer. The CSV output file may also be opened
in applications such as Excel or statistical packages.

Figure 10 summarizes the major steps in using theNISS WebSwap GUI.

4.8 Session Files

Upon exit fromNISS WebSwap, the user has the option to save the cumulative contents of the main
window to a session file (*.session), or to append the contents to an existing session file.

9

Figure 8: TheNISSWebSwap main window, showing the messages produced when the swapping is per-
formed successfully.

References

[1] E. Cerami.Web Services Essentials. O’Reilly & Associates, Sebastopol, CA, 2002.

[2] G. T. Duncan, S. A. Keller-McNulty, and S. L. Stokes. Disclosure risk vs. data utility: The R-U confi-
dentiality map.Management Sci., 2001. Under review.

[3] S. Gomatam and A. F. Karr. Distortion measures for categorical data swapping.J. Official Statist., 2003.
Under review.

[4] S. Gomatam, A. F. Karr, and A. P. Sanil. A risk-utility formulation for categorical data swapping.J.
Official Statist., 2003. Submitted for publication.

[5] S. Hettich and S. D. Bay. The UCI KDD Archive. Irvine, CA: University of California, Department of
Information and Computer Science, 1999. Available on-line atkdd.ics.uci.edu.

[6] Sun Microsystems, Inc. Java Servlet Technology. Information available on-line at
java.sun.com/products/servlet/.

[7] L. C. R. J. Willenborg and T. de Waal.Statistical Disclosure Control in Practice. Springer–Verlag, New
York, 1996.

[8] L. C. R. J. Willenborg and T. de Waal.Elements of Statistical Disclosure Control. Springer–Verlag,
New York, 2001.

10

Figure 9: TheNISSWebSwap Edit project window used to edit the specifications file shown in Figure
5. As desired, the user may change the names for the specifications, output and log files and the swapping
specification.

[9] World Wide Web Consortium. Extensible Markup Language (XML). Information available on-line at
www.w3.org/TR/REC-xml.

A The NISS WebSwap WSDL

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="Swap_dataService"
targetNamespace="http://WebSwap_swap.org/wsdl"
xmlns:tns="http://WebSwap_swap.org/wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ns2="http://WebSwap_swap.org/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<types>
<schema targetNamespace="http://WebSwap_swap.org/types"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tns="http://WebSwap_swap.org/types"
xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">

11

Figure 10: Summary of steps in usingNISS WebSwap. Top: usingNISS WebSwap with an existing
specifications file; the edit step is optional.Bottom: usingNISS WebSwap by creating a new specifications
file.

<complexType name="SwapData">
<sequence>

<element name="numFields" type="int"/>
<element name="outputFile" type="string"/>
<element name="numRecords" type="int"/>
<element name="riskCutoff" type="double"/>
<element name="data" type="tns:ArrayOfArrayOfstring"/>
<element name="dataFile" type="string"/>
<element name="constraints" type="base64Binary"/>
<element name="log" type="tns:ArrayOfstring"/>
<element name="swapRate" type="double"/>
<element name="riskFraction" type="double"/>
<element name="logFile" type="string"/>
<element name="csvType" type="string"/></sequence></complex Type>

<complexType name="ArrayOfArrayOfstring">
<complexContent>

<restriction base="soap-enc:Array">
<attribute ref="soap-enc:arrayType"

wsdl:arrayType="tns:ArrayOfstring[]"/>
</restriction></complexContent></complexType>

<complexType name="ArrayOfstring">
<complexContent>

<restriction base="soap-enc:Array">
<attribute ref="soap-enc:arrayType"

wsdl:arrayType="string[]"/></restriction>

12

</complexContent></complexType></schema></types>
<message name="doSwap">

<part name="SwapData_1" type="ns2:SwapData"/></message>
<message name="doSwapResponse">

<part name="result" type="ns2:SwapData"/></message>
<portType name="SwapIF">

<operation name="doSwap">
<input message="tns:doSwap"/>
<output message="tns:doSwapResponse"/></operation></portType>

<binding name="SwapIFBinding" type="tns:SwapIF">
<operation name="doSwap">

<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="http://WebSwap_swap.org/wsdl"/></input>
<output>

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="http://WebSwap_swap.org/wsdl"/></output>

<soap:operation soapAction=""/></operation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/></binding>

<service name="Swap_data">
<port name="SwapIFPort" binding="tns:SwapIFBinding">

<soap:address location="http://www.niss.web-services:8080/WebSwap/SwapIF"/>
</port></service></definitions>

13

