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Nonlinear Multiresolution Signal Decomposition
Schemes—~Part Il: Morphological Wavelets

Henk J. A. M. HeijmansMember, IEEEand John Goutsiasenior Member, IEEE

Abstract—in its original form, the wavelet transform is a linear ~ as the skeleton [3]. A short overview of this framework is pro-
tool. However, it has been increasingly recognized that nonlinear vided in Section II.
extensions are possible. A major impulse to the development of Wavelet si ld iti . lativel tool
nonlinear wavelet transforms has been given by the introduction of avelel signal decomposi |on_ IS a relatively new 100
the lifting scheme by Sweldens. The aim of this paper, which is a se- developed over the past ten or fifteen years. It has attracted
quel of a previous paper devoted exclusively to the pyramid trans- the interest of scientists from various disciplines, in partic-
form, is to present an axiomatic framework encompassing most ex- ular mathematics, physics, computer science, and electrical
isting linear and nonlinear wavelet decompositions. Furthermore, engineering. Although wavelet decomposition is linear
it introduces some, thus far unknown, wavelets based on mathe- signal analysis tool, it is starting to be recognized that non-
matical morphology, such as the morphological Haar wavelet, both linear extensions are possible [4]-[22]. Tlitting scheme

in one and two dimensions. A general and flexible approach for the .

construction of nonlinear (morphological) wavelets is provided by recently introduced .by Sweldens [23]-{25] (fee also [26] for

the lifting scheme. This paper briefly discusses one example, the @ Predecessor to this scheme, known as a “ladder network”),
max-lifting scheme, which has the intriguing property that pre- has prOV|ded a useful way to construct nonlinear wavelet
serves local maxima in a signal over a range of scales, dependingdecompositions. The enormous flexibility and freedom that

on how local or global these maxima are. the lifting scheme offers has challenged researchers to develop

Index Terms—Coupled and uncoupled wavelet decomposition, Various nonlinear wavelet transforms [4]-{13], [17], [19], [21],
lifting scheme, mathematical morphology, max-lifting, morpho- [22], [27].
logical operators, multiresolution signal decomposition, nonlinear The literature on nonlinear wavelet decompositionsgrir
wavelet transform. ically decimated nonlinear filter bankss they are sometimes
called, is not extensive. In 1991, Pei and Chen [28], [29] were
I. INTRODUCTION among the first to propose a nonredundant (in the sense that
preserves the number of pixels in the original image) nonlinear
ODAY, it is generally accepted that multiresolution apsubband decomposition scheme based on mathematical mor-
proaches, such as pyramids and wavelets, are importghblogy. Their approach however does not guarantee perfect re-
in signal and image processing applications. This is largely duenstruction. In 1994, Egger and Li [4] proposed a nonlinear
to the fact that signals (and images in particular) often contailecomposition scheme with perfect reconstruction based on a
physically relevant features at many scales or resolutions. Fonadian-type operator (see also [6]). Independently, Floréncio
proper understanding of such signals, multiresolution (or mu#nd Schafer [5] have presented a similar decomposition; see also
tiscale) techniques are indispensable. But there exist other gb6dCh. 7]. More recently, Queiroet al. [21] proposed a non-
reasons for why taking recourse to multiresolution approach&i§ear wavelet decomposition, corresponding to the quincunx

A major one is that multiresolution algorithms may offer som&Mmpling grid, for low-complexity image coding; see also [7,
attractive computational advantages. Ch. 8]. In [7], Floréncio discusses nonlinear perfect reconstruc-

In a previous paper [1], to be referred to here as Part I, we halpn filter banks in more detail, and attempts to give a better

presented an axiomatic framework for pyramid decompositioHEderSt"’mdlng of these issues by relating them to the so-called

of signals, which encompasses several existing approachesqrﬂ*lCal morphological Sa”.‘p"”g theorenn [9], Cha f%‘.‘d Cha-
Szrro constructed a nonlinear wavelet decomposition scheme

particular, linear pyramids (such as the Laplacia_n pyramid pr means of a morphological opening operator. The resulting
posed by Burt and Adelson [2]), and morphological tools sufi 5| gecomposition scheme guarantees perfect reconstruction.

However, these authors did not have at their disposal the lifting
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steps (based on a median operator), and discuss applications i@onsider a family/; of signal spaces. Hergmay range over
compression and denoising. a finite or an infinite index set. Assume that we have two fami-
Many of the sphemes proposed in the previousl_y mentior_lﬁds.of operators, afamilyjj. of analysis operatorsnappingV;
papers are special cases of the general schemes discussed 'ﬂﬁ*&'%ﬂ, anda familyz/;j of synthesis operatorsappingV; ; ,
paper. Therefore, the theory presented here provides a rafhgq intoy. . Here, the upward arrow indicates that the corre-

general framework for constructing nonlinear filter banks wit ponding operator maps a signal to the higher level, whereas

perfect reconstruction. It is worth noticing however that the P"he downward arrow indicates that the operator maps a signal
posed theory depends on three conditions. These conditions are

required in order for the proposed multiresolution schemes. qa Iow_er level. The_analy5|s operatp} IS chosen to r(_aduce
guarantee perfect reconstruction and be nonredundant (in %grmano? fron_1 a signak; € Vj, yl_eldlng ascaled signal
sense that repeated applications of these schemes producé e = ¥, (%) in Vj41. The synthesis operaterr; maps the
same result). Moreover, these conditions lead to the concepsefled signat ;. back toz; = T/Jj'(wjﬂ) in V;, in such a way
nonlinear biorthogonal-like multiresolution analysis, to be dishat«: ¢! (x;) is “close” tox;. By composing analysis opera-
cussed in Section l1I-C, which is a natural extension of the cofbrs, we can travel from any levelto any higher levelj. This
cept of biorthogonal multiresolution analysis associated witflves an operator
linear wavelet decompositions.

The aim of this paper is twofold. First, we present an L=l ol ol >
axiomatic framework to wavelet-type multiresolution signal
decomposition that encompasses all known linear and nonlingdrich maps an element ivi; to an element irt/;. On the other
wavelet decomposition schemes. Second, we introduce a fantind, by composing synthesis operators, we can travel from any
of nonlinear wavelets based on morphological operators. Thkel j to any lower level. This gives an operator
simplest nontrivial example of a morphological wavelet is the
so-called morphological Haar wavelet. As we said before, the z/)b = z/)ﬁ/)fﬂ ---z/)j»_l, >
lifting scheme provides a general method for the construction of
various wavelet decompositions. In the linear case, this schemich takes us from level back to leveki. Since the analysis
in combination with direct methods based on Fourier dperators are designed to reduce the information content of a
z-transform techniques, has lead to a large variation in wavesignal, they are not invertible in general. In particulaf,z/);
decomposition schemes. In the nonlinear case, however, wheit not be the identity operator in general. On the other hand,
techniques which are comparable with the (linear) Fourigre always avoid synthesis operatdxj%that reduce information

or z-transform are nonexistent, the lifting scheme is dmy  content. In other words;; is taken to be injective. In fact, both
known general method to construct wavelet decompositiongngitions are automatically satisfied if we make the following
In this paper, we restrict ourselves to constructions based é’é‘sumptionid denotes thédentity operator).

morphological operators. Attention is paid to the max-lifting Pyramid Condition: The analysis and synthesis operators

scheme, yvhich has_ the interesting property that it preservgs 1/}4 are said to satisfy theyramid conditiorif ww — id
local maxima of a signal over several scales. oé'V J R
J+1-

This paper is organized as follows. In Section I, we briefly it i that th id dition imolies that

recall the pyramid transform introduced in Part I. In Section Ill, IS eastly seen that the pyramid condition implies tha
it ; Dbyl = ¢!, plylypt = ¢t and thatp!v! is idempotent.

we present a general definition of a wavelet transform, which V\zf’e R AR R RS J iV e
refer to as theoupled wavelet decomposition schefhepecial NOW: suppose that all previous conditions are satisfied, and
case is theuncoupled wavelet decomposition schemelass that we have addition and subtraction operaters- on V7,
which the linear biorthogonal wavelets belong to. Section I§Uch thate; +(z2—x1) = 2, for zy, 2> € V;. Given an input
is entirely devoted to a simple nontrivial uncoupled wavel&ignalzo € Vo, we consider the following recursive signal
decomposition scheme based on morphological operators, &lysis scheme, called tpgramid transform
so-calledmorphological Haar waveletWe discuss the one-di-
mensional (1-D) as well as the nonseparable two-dimensional <o — {@1, o} = {z2, y1, Yo} — -+~
(2-D) case. In Section V, we discuss the lifting scheme within —{&rt1; Y, Yn—1, *" 5 Yoy — -+
the axiomatic context of this paper. In particular, it is shown that
two nonlinear lifting steps generally lead to a coupled wavelethere
decomposition scheme. A number of examples, based on mor-
phological operators, are discussed. Another important example Tj+1 IT/); (;) € Vit
of the lifting scheme is introduced in Section VI. This is referregind
to as themax-lifting schemghe most striking property of which
is that it preserves local maxima of a signal over several scales,
depgnding on how local or global the_se maxima are. Finally, #},q original signalz, € Vj
Section VII, we conclude with some final remarks.

Yj :xj;i/}j'(xj-i—l)v i=>0.

can beexactlyreconstructed from
Tr4+1 andyg, y1, - - -, yx Dy means of the backward recursion
€L = z/}]i'(xj-i—l)—i_ij J= k? k— 1,---,0.

II. PYRAMID TRANSFORM

In Part 1, we presented a comprehensive discussion on the lll. GENERAL WAVELET DECOMPOSITIONSCHEMES

pyramid transform. In this section, we briefly recall the main In this section, we present a formal definition of a general
ideas of that work. wavelet decomposition scheme. This scheme encompasses
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Fig. 1. One stage of the coupled wavelet decomposition scheme.

linear wavelet decompositions as a special case, but allows also

a broad class of nonlinear wavelet decomposition schemes. BT g %2

We start in Section 1lI-A with the definition of the so-called ¥ - - i’

coupled wavelet decomposition scheme which comprises two w—1 | 1 . -
analysis operators, one for the signal and one for the detail, and y—f b [
one synthesis operator. The uncoupled wavelet decomposition )

scheme introduced in Section IlI-B is a special case of the __ _ _
coupled wavelet decomposition, in the sense that the synthes '%5) ;g;?!;ﬁgggpled wavelet decomposition scheme: (a) signal analysis
operator is the sum of two synthesis operators, the signal and '

the detail synthesis operators. The linear wavelet decompositigd)4s as well. Now, given an input signaj € Vo, consider the
belongs to this second class; in this case the signal and del’é“bwing recursive analysis scheme:

analysis (resp. synthesis) operators correspond to lowpass and

highpass analysis (resp. synthesis) operators. In Section V, it xg — {z1, y1} = {z2, y2, 1} — -~

will be e_xplained that the Iiﬂing scheme provides a practical —{ T Yy Vb1, - UL — - (3)
and flexible method to design both coupled and uncoupled
wavelet decomposition schemes. where
.. YA
A. Coupled Wavelet Decomposition Tit1 =v; (x;) € Vina
The coupled wavelet decomposition extends the pyranfidd
scheme discussed in Part |; see also Section Il. Assume that Yj+1 Iw; () € Wiy, 7 =0. 4)

there exist set¥; andW;. We refer toV; as thesignal space at The oridinal sianak b " tructed f q

levelj and toW; as thedetail space at level. Signal analysis € original sighak, can beexactlyreconstructed from,, and

consists of decomposing a signal in the direction of increasng’hyQ’ T Uk by means of the following recursive synthesis

4 by means okignal analysis operators;;: Vi — Vj41 and stheme.

detail analysis operators;;.: V; — Wj41. On the other hand, T; = \pﬁ (Tj41, Yjt1)s j=k—-1,k—2,---,0 (5)

signal synthesiproceeds in the direction of decreasifgby _ N o )

means obynthesis operator@ﬁ: Vig1 X Wp1 — V;. Thisis which shows that the decomposition (3) and (4) is invertible. We

illustrated in Fig. 1. refer to the signal representation scheme governed by (1)—(5)
The previous decomposition scheme is required to yield@8 thecoupled wavelet decomposition scheleck diagrams

complete signal representation, in the sense that the mappifiystrating this scheme, for the case wher= 3, are depicted

(], wh): V= Vi x Wy andWh: Vi x Wygy — Vyare INFig.2. N

inverses of each other. This leads to the following conditions: The relationship between the coupled wavelet decomposition

scheme and the pyramid scheme discussed in Part | can be easily

Vil@), wl(@) =2, ifzeV; (1) established. Recall that the latter scheme is governed by the
o _ N pyramid condition. Let the operatots], w!, ¥} constitute a
which is called theperfect reconstruction conditigand coupled wavelet decomposition. Fix an elemghte W, for
i ; Loy, ) 1 — gyl 0
1/1;(‘1% (z,9)) ==z, fzeVip,veWpn @ every‘J/, andeefmi/’j 'f'Vﬂ—'ld_) VJ ?151/12]' (a:) N \I;j(ai’ vyvs)
%T'(‘I’f(% y) =y, freVip,yeWi, z € Vji1. Now, the first identity in (2) gives); (v (z)) =

@, @ € Vjy1. In other words, the paify!, ;) satisfies the

The two conditions in (2) guarantee that the decompositigiyramid condition.

is nonredundant. Condition (1) implies that the mapping U led Wavelet D i

WV — Vi x Wigr, given byl () = (1] (z), w](z)), - Uncoupled Wavelet Decomposition

is injective (i.e., one-to-one) and thallj is surjective (i.e., Of particular interestis the case when there exists a binary op-

onto). On the other hand, (2) implies thhﬁ is surjective and eration+ onV;, which we calladdition(notice that+- may also
depend ory), and operatorsj;j»: Vigr = V5 andwj: Wit —

that ¥t is injective. Furthermore, if (1) holds and ¥ is
J : (L) J V; such that

surjective (or\Ifj is injective) then (2) holds as well. Also, if
(2) holds and if¥'} is surjective (or¥] is injective), then (1)  Ti(w, y) = ¢i(a)twi(y), = € Vip1, y € Wig1. (6)
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Viu W,, Itis obvious that conditions (7)—(9) are satisfied, witbeing
the standard addition. The lazy wavelet, better known in the

: signal processing community as tpelyphase transform of

®; | Analysis order 2 [32], is not of great interest by itself; the reason why it
is discussed here is because it is often used as a starting point
v for the lifting scheme to be discussed in Section V. ]

I Example 2 §-Transform): The S-transform can be consid-
ered as a nonlinear modification of the Haar wavelet with the
additional property that it maps integer-valued signals onto in-
teger-valued signals, but without abandoning the property of
perfect reconstruction. In this case, the analysis operators are

,
Analysis | W;

Fig. 3. One stage of the uncoupled wavelet decomposition scheme.

We refer tog}, wr as thesignal synthesisind thedetail syn-
thesis operatorgrespectively. Conditions (1), (2) become

given by
pipl (@) twiwl(@) =2,  ifzeV; (7) 2(2n) + 2(2n + 1)
DL (@)t () =z, fzeVig, ye Wi (8) Yle)n) = { 2 J
wj(z/)j(a:)—i-wj(y)) =Y, ifz €Vt y € Wit1. (9) wl(@)(n) =x(2n + 1) — z(2n).

(3)—(9) as theuncoupled wavelet decomposition sche@ae

stage of this scheme is illustrated in Fig. 3. PHx)(2n) =9t (x)(2n + 1) = z(n)
Given an input signat, € V, and the corresponding recur- y(n) . y(n) +1
sive analysis scheme given in (3) and (4),can be perfectly «’(¥)(2n) = — {TJ andw’(y)(2n +1) = {TJ -
reconstructed fronz;, andyy, ¥, - - -, yx by means of the fol-
lowing recursive synthesis scheme: Here |-] denotes the floor function, i.e., fare R, |¢] is the
! _— . largest integekt. Refer to Fig. 5 for an illustration.
wj =i (@j4)+w; (i), j=k-Lk=2-,0 The specific character of these operators guarantee that

Therefore, signat; at level; is reconstructed from information INt€ger signals are mapped on;o integer signals, and we
that is only available at levgl+ 1. First, signalz, ; is mapped M choosdy, = Vi = Wi = Z%, i.e., all doubly infinite

down to leveli by means of the sianal svnthesis operator integer-valued sequences. It is easy to' show ?hat conditions
f] y N g L y P ak} (7)—(9) are all satisfied here as well, provided thais taken to
So as to obtain an approximatién = 1;(x;41) of z;; then,

the detail signal; ., is mapped down to level by means of be the standard addition.

the detail svnthesi o 10 obtain the detail sianal The S-transform, where 5” stands for “sequential,” has
€ detail synthesis opera f S0 as o obtain the detail signalya ey known in the literature for several years, and has been

_ 1 i fi i . . . . .
e; = w;j(y;+1) at levely; finally, the results are combined bygyccessfully used in medical imaging for lossless compression

means of the addition operater. ~ [33]. During the years, several modifications and generaliza-
Equation (6) concerns only the structure of the synthesis pg[gns have been proposed, e.g., see [34]. ]
A block diagram illustrating this part, for the case whee:= 3, e should point out here that certain continuity issues may

is depicted in Fig. 4. The analysis partis the same as in Fig. 2(&ise in the case of an infinite-level wavelet decomposition
The Imear_blorthogonal wavelet transform [30] complies pekcheme. However, these issues, which become manifest in
fectly well with our abstract framework. In [31], we have prethe case of infinite decompositions, lie outside the scope of

transform as an uncoupled wavelet decomposition. finite-level wavelet decomposition schemes.

In the examples provided below, we consider only one step
in the decomposition; i.e., we only consider decompositions b8: Nonlinear Biorthogonal-Like Multiresolution Analysis

tweenVo andVy, W,. For simplicity, we delete the subindices  the jinear biorthogonal multiresolution analysis framework

J = 0iin the corresponding analysis and synthesis operatorsy3g] can be conceptually extended to the more general frame-

Example 1 (Lazy WaveletjThe simplest example of an un-y,q i of the uncoupled wavelet decomposition scheme. Indeed,
coupled wavelet decomposition is the transform that splits & qiger/ G+ — Ran($;) and WY+ = Rana,), where
j = J J - Jm

1-D discrete signak:(n) into its odd and even samples. Le R
Vo = Vi = W, = RZ, i.e., the space of doubly infinite Aar(z/;) denotes theange of an operator), ¢; = +;+; and

. T - - o :
real-valued sequences @ Then, the analysis operators ar&’; = «;«; (recall our discussion and notation in Section ).

given by From (7), we geF that every signﬁlel'Vj1 has a unique chlom—
positionz = '+, wherez’ € Vj(ﬂr ) andy’ € WJ,(JJr ),
P (z)(n) = z(2n) andw' (z)(n) = z(2n + 1) namelyz = ¢;(x)+&;(x). Thus, we may write
whereas the synthesis operators are given by V= Vj(”l) @ W](Hl).
*(x)(2n) = z(n) andy* (z)(2n +1) = 0 Let us assume that there existsiane V; (which depends of
1

w'(y)(2n) = 0andw'(y)(2n + 1) = y(n). in general) such that+0, = 0,4z = =, for everyz € V;, and
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Fig. 4. Signal synthesis part of a three-level uncoupled wavelet decomposition scheme.

Ls+t)/2] t—s u

s t u u —v/2] [(w+1)/2]

Fig. 5. Anillustration of theS-transform. The white and gray nodes correspond to the even and odd samples, respectively.

z/;j(ov) = 0,. If there exists a®,, € W; (which also depends LetVp, = Vi = W, = RZ be the lattice of doubly infinite
onj in general) such thatj,(ow) = 0,, then (8) and (9) imply real-valued sequences. Define the analysis and synthesis opera-

that

This implies that/3j and@; are idempotent operators & (also
calledprojectiong. Furthermore (12) and (13) imply that

tors as
Wk (z) =z, forz c V. 10 P (z)(n) =2(2n) A z(2n + 1) (14)
1/JT1/1( ) B fz:: © W;-H (11) wl(@)(n) =x(2n) — z(2n + 1) (15)
o) = oIy € Wi 0D i w)en) =i @)+ 1) = () (16)
Vyei ) =0u - fory € Wi A2 L ly)2n) =y(m) v 0, wh(y)(@n +1) = —(y(n) AO). (17)
wlps(z) =0,,  forz € V1. (13)

Here “A” denotes minimum andv” denotes maximum. In Part

I, we have seen that the operatars, ¢! satisfy the pyramid

condition. The corresponding pyramid was called the morpho-

logical Haar pyramid (see Example 2 in Part I). It can also be

A s shown that (14)—(17) satisfy conditions (7)—(9), provided that

Yo =wi; =0 is taken to be the standard addition. Therefore, the morpholog-
ical Haar wavelet is another example of an uncoupled wavelet

whereQ is the operator ol; whichis identically0,,. The projec- decomposition scheme.

tions+); anda; arecomplementaryn the sense that, +o; = Fig. 6 illustrates the computations associated with the anal-
id, whereid denotes thédentityoperator, and+;+&;)(z) = ysis and synthesis operators of a three-stage morphological Haar
1/3]» (z)+0;(x), forz € V;. wavelet decomposition scheme. The gray nodes indicate the de-

tail signal. Notice that the signal analysis operator guarantees

V. MORPHOLOGICAL HAAR WAVELET that the range of values of the scaled signals, j > 1} is
the same as the range of values of the original sigpalt fur-

A. One-Dimensional Case thermore guarantees that, if the original signglis discrete-

In this section, we discuss a morphological variant of the Hagalued, the scaled signajs;;, ; > 1} will be discrete-valued
wavelet in one dimension. The major difference with the class well, a highly desirable property in lossless coding applica-
sical linear Haar wavelet is that the linear signal analysis filt¢éions [37]. Moreover, the morphological Haar wavelet decom-
of the latter is replaced by an erosion (or dilation), i.e., by takingpsition scheme may do a better job in preserving edges,in
the minimum (or maximum) over two samples. Readers who aae compared to the linear case. This is expected, since the signal
unfamiliar with the basic concepts of mathematical morpholo@nalysis filters in the linear Haar wavelet decomposition scheme
are referred to [35], [36]. are linear lowpass filters, and as such smooth-out edges. The
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A\, as the binary operatios on V;. Then, we define analysis
and synthesis operators [cf. (14)—(17)] as follows:

! (2)(n) =2(2n)
wl(@)(n) =2(2n) A z(2n +1)

P (@)(2n) =9 (@) (2n + 1) = 2(n)
wH(y)(2n) =0 andw' (y)(2n + 1) = y(n).

Itis easy to verify that this defines an uncoupled wavelet decom-
position scheme. Notice that the detail signd{x) contains 1's
only at a transition (from 0 to 1 or vice versa) in signathat
occurs at an even point. The decompositiosaf-dual in the
sense that

$1(@) = $7(2) ando () = w' (2)
wherez(n) = 1—z(n). Such a binary scheme can be extended,
without serious effort, to finite-valued signals with values in
{0,1,---, N =1}, N < oo, and withA being replaced by
“addition moduloN.”

O——®
®

OF——Q——F0 OO %@—O
Q—©®

©)

i

©
©
@—>O0
®
©)

(a

B. Two-Dimensional Case

We can extend the morphological Haar wavelet decomposi-
@ tion scheme to two and higher dimensions by using a separable
filter bank (e.g., by sequentially applying the 1-D decomposi-
tion on the columns and rows of a 2-D image) [30], [32]. How-
ever, we can also define a nonseparable 2-D version of the mor-
@ @ @ phological Haar wavelet. Indeed, 1& and V; consist of all
l 0 3 0/1 l 1/lo functions fromZ?2 into R and letW; consist of all functions from

@

<
(=
N

2/ 10
7% into R2. We introduce the following notation. By, 2n we
denote the pointém, n), (2m, 2n) € 72, respectively, and by
2ny, 2nT, 207 the pointy2m+1, 2n), (2m, 2n+1), (2m+
1, 2n + 1), respectively. Define

!
g
L
;
'
A

(®) Y1 (z)(n) =2(2n) A z(2n4) Az(2nT) Az(2n]) (18)
Fig. 6. Computations associated with a three-stage morphological Haar T _ i
wavelet decomppsi_tion scheme: _(a)_ signal analysis and (b) signal synthesis. w (a:) (n) (w'b (a:)('n,), wh(a:)('n,), wd(x)(")) (19)
The gray nodes indicate the detail signal. wherew,,, wy,, wg represent the vertical, horizontal, and diag-
onal detail signals, given by

signal analysis filters in the morphological Haar case are none,(z)(n) = £ (2(2n) — z(2n") + 2(2ny) — 2(2nL)) (20)
linear, and as such may preserve edge information. wi(@)(n) = %(x(%) —2(2n)) + 2(2nF) — 2(2 i)) (21)

In (14), we have chosen to use minimum. It is obvious that _ L(p(2 9 9 M 29
we can also take maximum instead, i.e., we can set wa(@)(m) = 3((2n) — 2(2n4) — @(2n7) + 2(2n7). (22)
b

The synthesis operators are now given by

PH@)(2n) =9 (2)(2n4) = 9 (2)(2n")

and leaves! unchanged. In this case, the corresponding signal :z/;i(g;)(znj:) = z(n) (23)
synthesis operatap* is the same as in (16), but the detail YN hd

thesis operator becomes

P (z)(n) = 2(2n) V 2(2n + 1)

W ()(2n) = (yo(n) + yn(n) V (v, ( )+ va(n))

w!(y)(2n) =y(n) AO V (yn(n) + ya(n)) V
and . W (y)(2n1) = (yo(n) — yn(m)) v (v, ( ) — ya(n))
W @En+1) == VO). V (—pn(m) = ya(m) v 0

Notice that, when we use minimum in the signal analysis op- «'()(2n") = (yu(n) — yu(n)) V (—y ( ) — ya(n))
erator, (", ') is an adjunction, whereas when we use max- V (yn(n) — ya(n)) v
imum, (»*, 1) is an adjunction [36]. ! _ _ _

It is not difficult to define a binary version of the wavelet wH()(2L) = (~yu(n) = yu(m) v ( a(n) = y»())
decomposition scheme (14)—(17). IndeedWgt= V; = W, = V (ga(n) = yn(n)) v O

{0, 1} be the Boolean lattice of doubly infinite sequences afhere we writey € W, asy = (., 1., va). It is not difficult
Os and 1s. We choose the “exclusive OR” operation, denotedtbyshow that conditions (7)—(9) are all satisfied, provided that
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Scaled Vertical arranginguy, uo, us, ug in decreasing order. Observe that, in
z(2n) | z(2n*) Wavelet 2,(n) y,(n) this case and fok = 4 we obtain the morphological Haar
Transform wavelet (and forc = 1 its dual). In the following, and for the
> Sonal | Defal sake of illustration, we present a 2-D binary example that is built

Horizontal | Diagonal by takingb to be themedianof the sequence, , w1, uz, us, ua.

z(2n,) | o(2n3) ya(m) | vam) Consider an input signal, with z(2n) = a, z(2ny) = b,
Detall Detail #(2n) = ¢, andz(2nl) = d. The signal analysis operator is

given by

Fig. 7. Two-dimensional Haar wavelet transforms an input signiala scaled z/)T(a:)('n,)
signalz; and the vertical, horizontal, and diagonal detail signalsy;., va,

respectively. =median(z(2n), z(2n), z(2n), z(2n™), x(2ni)) (24)
. N . Takew! as in (19), where
+ is taken to be the standard addition. Thergfore, this is a 2-D wo(z)(n) =2(2n) A 2(2nT) (25)
example of an uncoupled wavelet decomposition scheme.

The analysis operators” andw! in (18) and (19) map a wi(z)(n) =(2n) A& 2(2ny) (26)
quadruple of signal values, as the ones depicted in the left wa(z)(n) =z(2n) A z(2nd). (27)

hand-side OfT Fig. 7, to the quadruple at the right hand-sidggferring to Fig. 7, the coefficients in the matfjg] are mapped
herex; = !(x) andy, = w,(z) (the same fows, ya). An o [Le], wheret = median(a, a, b, ¢, d), v = a A b,v =

example, illustrating one step of this decomposition is depicted A . andw = a A d. It is not difficult to verify thata =

in Flg_. 8. . _ _ t A (uAvAw), wheret = median(a, a, b, ¢, d),u =a A b,
Asinthe 1-D case, the minimum in the expressionforcan , _ A ¢, andw = a A d. To understand this, we distinguish

be replaced by a maximum. Moreover, as we explain belowit, cases: 1) A v A w = 0: this means that at least one of

can also be replaced by any (extension opagitive Boolean ¢ yajues, v, w equals 0, which implies that at least one of

functionwithout destroying the condition of perfect reconstruGe vajues. c. d equalsa. This yields that = a, which is in
tion. Recall that every Boolean functidncan be written as a agreement’wi’thz —tA0.2uAvAw=1: thenu = v =

sum-of-products, where the sum represents the “OR” or “may- _ 1, henceb = ¢ = d = @. This yields that = a@. Again,
imum” and where the product represents the “AND” or “mingis is in agreement with = ¢ A 1.

imum.” If the Boolean function is positive, then this sum-of- Having a recovered front, «, v, w, we can recoveb from
products can be written without complemented variables. Sugh_ (@AD)Aa=uAtA (uwAvAw). Similarly, we can

a positive Boolean function can be easily extended ff0ml} g . andd. This leads to synthesis operators, given by (23) and
to R by replacing the sum by maximum and the product by min-

imum [36, Sec. 11.4]. wH(y)(2n) =yu(n) A yn(n) A ya(n)
Suppose now thai is a positive Boolean function of four W) (2ng) = un(n) A (yoln) Ayn(n) Aya(n))
variables and let)" be given by W )(2nT) = gu(n) A (yo(n) A yr(n) A ya(n))
Pl (@)(n) = b(x(2n), 2(2n.), 2(20), 2(2n) WM ()0 t) =ya(n) & (yo(m) A (n) A ya(n).

and takew' to be the same as in (19). The value oftis again not difficult to show that conditions (7)—(9) are all
b(u1, u2, ug, ug) equals one of its four arguments; whictsatisfied, provided that is taken to be the “exclusive OR” op-
one depends on the ranking of these four elements, and €&ator. An example, illustrating one step of this decomposition,
be deduced from (the signs of) — uy, u; — us, uy — ug. 1S depicted in Fig. 9.

Knowing the value ob(u;, us, usz, u4), along with the three

differencesu; — uo, u; — us3, u1 — uy, We are able to com- V. LIFTING SCHEME

putew,, ug, uz, ws. This observation can be used to recover o yseful and very general technique for constructing new
the original signalz from ¥'(z) andw(z). Namely, using \yayelet decompositions from existing ones has been recently
(20)-(22), itis easy to show that proposed by Sweldens [23]-[25], and is known as lifiing
(2n) — 2(2n4) =wh(2)(n) + wa(z)(n) sche_me Lifting amounts to modifying the analy_sis and syn-
#(2n) — 2(2n) = wo(2)(n) + wa(x)(n) thesis operators in such a way that the properties of the mod-
+ v ified scheme are “better” than those of the original one. Here,
2(2n) — x(2n]) = wy(x)(n) + wi(x)(n). “better” can be interpreted in different ways. For example, in
This leads to the signal synthesis operator (23) and to def&i¢ linear case, it may mean that the number of vanishing mo-
synthesis operators that are similar to the ones used by fRents is larger. Lifting can be used to construct wavelet decom-
2-D version of the morphological Haar wavelet decompositid®Psitions for signals that are defined on arbitrary domains, or to
scheme discussed above. The particular form of the detg@nstruct nonlinear coupled or uncoupled wavelet decomposi-
synthesis operators depends on the choice for the Booldigs (in the sense of the definitions given in Section Ill), which
function b. Clearly, the resulting wavelet decomposition wills of interest to us. Two types of liting schemes can be distin-
be uncoupled. guished:
We can také to be thekth order statistic of, us, us, uy,  Prediction Lifting This modifies the detail analysis oper-
i.e., thekth value of the sequence of length four obtained by  atorw! and the signal synthesis operaiforin the coupled
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(9) (o)

Fig. 8. Multiresolution image decomposition based on the 2-D morphological Haar wavelet transform. (a) An iamabéb) its decomposition into the scaled
imagew' " (z), given by (18), and the detail images (z), wx(x) andw,(z), given by (20)—(22).

(@] (©)

Fig. 9. Multiresolution binary image decomposition based on the 2-D median wavelet transform. (a) Binary iavadyéb) its decomposition into the scaled
imagew'" (z), given by (24), and the detail images (z), wx(x) andw,(z), given by (25)—(27).

case, or the signal synthesis operatérin the uncoupled cations, such as data compression, it is desirable to develop
case. wavelet schemes that produce small detail siggals w (o).

« Update Lifting This modifies the signal analysis operato6tarting from a scheme like above, we might try to decrease
! and the signal synthesis operatbt in the coupled the detail signak; by utilizing signal information contained
case, or the detail synthesis operatérin the uncoupled in z; = 11(xg). This may be accomplished by means of a
case. prediction operatorr: V; — W, and a difference operater

We treat these two cases separately. In both cases, the liftftig#¥1 and by setting

operator may differ from level to level. However, for simplicity o) = g1 2 m(z1) (28)
we restrict ourselves to operators between levels 0 and 1. !
as the new detail signal. This leads to the analysis step depicted
A. Prediction Lifting in Fig. 10. )
Assume now that there exists an addition operatam W,

Consider one level of a coupled wavelet decompositiogwu
scheme, governed by the analysis operaiprs V, — V1,
w': Vo — Wi and the synthesis operatdr: Vi x Wi — Vo, (y1 +42) — 92 = (11 — v2) + v2 = y1, Y1, Y2 € Wi
such that the conditions (1), (2) are satisfied. In many appli- (29)

ch that
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Fig. 10. Analysis and synthesis steps of a prediction lifting scheme.

It is evident that the original signal, can be reconstructed from Then, the prediction-lifted wavelet decomposition, given
27 andy, since by (30), (31), is uncoupled (with respect to the same ad-
T = \pi(xb y) = \pi(xb v+ w(w)). dition operator+) with synthesis operators

This leads to the synthesis step depicted in Fig. 10. Thus, wear-  %3(%) = ¢*(z)+w'n(x) andw(y) = w* ().
rive at theprediction lifting schemavith analysis and synthesis Proof: Under the given assumptions, we can write

operators given by wh( ol . NG Lyt
T e b ) = W ey +n(@) = 9 @)ty (@)
Uhe) = (@), wi(e) =w'(@) Z wpl @), eV () M ()bt ()

(30) e e
n =W (z)tw'n(x))tw ,
Uiz, y) =0 (e, yin(z), weWi,yeW. (1) (W (@)+win(z))+w ()
To show that this defi led let d _t_wh|ch proves the result. ™
0 show that this defines a coupled wavelet decompositiong, .16 3 (Lifting  the  Morphological  Haar

. 7o b | enti "
si:hen;e, 2W € mushv:erzjfy tzafﬂe}wp%/a_ntfl% satisfy conditions Wavelet): Consider the morphological Haar wavelet discussed
(1) and (2) as well. Indeed, let € Vo; then in Section IV-A. Recall thalp = Vi = W7 = RZ and that

Ul (x), wl(2)) is the standard addition. L&t and= on W, be defined by
= V() (2), wi(z) + 79)(x)) vty = 3o + o) andyn = g =201 — 1o
= Uy (z), (W' (z) = 7" () + 7 (z)) where+, — are the standard addition and subtraction. Obvi-
=y (2), (@) =2 ously, the equalities in (29) are satisfied. Define the prediction
where we have used (1) for the original scheme, and (29)—(32peratorr: Vi — Wi by
Now, letx € V1, y € Wi; then m(z)(n) = z(n) — z(n + 1).
Pz, y) =T (U (z, y + n(2) =2 From (14)—(17), (30) and (31), we obtain a coupled nonlinear

where we have used the first equation in (2) for the origindf@velet decomposition scheme with analysis and synthesis op-
scheme, and (30) and (31). Finally, ke Vi, y € Wy;then  erators given by

W (Wh(z, ) Pl ()(n)
=l (U (z, y + 7(2)) = wp T (U (z, y + 7(x))) =z(2n) Az(2n 4+ 1) (33)
= (y 4+ 7)) > wlz) =y wh(x)(n)
where we have used (2) and (29)—(31). In these expressions, =2(z(2n) —2(2n + 1)) — (z(2n) Az(2n + 1))
and= can be the standard addition and subtraction, respectively, +(z(2n+2) Ax(2n +3)) (34)

but other choices can be envisaged as well. In the binary case, !, y(2n)

for example, we may choosg and = to be the exclusive OR. pre

An example will be given in Example 5. = a(n) + |
The following result provides some additional properties for V5 (z, ¥)(2n + 1)

the case when the initial wavelet decomposition is uncoupled. =z(n) — [(y(n) + z(n) —z(n + 1)) A O]. (36)
Proposition 1: Consider an uncoupled wavelet decomposi|=his scheme has two

tion scheme betweeW, and V7, Wy, with synthesis operators

!, w', a prediction operator: V; — W7, and binary opera-

tions +, — on W1 such that (29) is satisfied. Furthermore, asySroduces a zero detaill signal, whereas by two “vanishing mo-

sume that . ] o _ments” we mean that a linear signgln) = an + b produces
1) binary operato#- onV} is associative and commutative;y zerg detail signal. This is illustrated in Fig. 11. Observe that

2) wh: W1 — Vpis “linear,” in the sense that the wavelet transform in (33), (34) maps integer-valued signals
whyy +u2) = wr(y) 4wt (w2), w1, 2 € Wi (32) onto integer-valued signals. n

(y(n) +x(n) —z(n+1)) V0 (35)

(S

G+

vanishing moments” as opposed to the
morphological Haar wavelet that has only one. By one “van-
ishing moment” we mean that a constant input sigrial) = b
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Fig. 11. Morphological Haar wavelet decomposition scheme, with analysis operatots', as compared to the wavelet decomposition scheme (33), (34)
obtained after prediction lifting. Notice that' () is zero at points where the input signal is constant, wheré4s) is zero at points where the input signal is
linear.

B. Update Lifting not satisfy the constraint, we may choos@ such a way that

Instead of modifying the detail signal, as we did in (28), we x%, given by (38), does satisfy this const_raint. We refer to the
may choose to modify the scaled signal using the informa- work of Sweldens [23]-[25] and Daubechies and Sweldens [38]

tion in y,. We assume that there exist addition and subtractidf more details. o _ N
operatorst, = on V; such that The update step in (38) gives rise to the diagrams depicted in

Fig. 12. Itis clear that the input signa} can be reconstructed
(21 + 22) — 12 = (x1 — @2) + T2 = 71, 21, 22 € V1. (37) from 2! andy,, since

We get a modified scaled signal by setting 2o = Whay, y) = Ul £ Aw), vi).

L D
wy =21 = Aly)- (38)  Thus, we arrive at thepdate lifting schemwith analysis and
Here, \ is an operator, mapping/; into V;, called theupdate Synthesis operators given by
operator. Although, in principle, every mapping can be al- N N <yt N N
lowed as an update operator, in practice we choosesuch a o) =91 (2) = 'l (2), w,(z) =W (z), z € Vo
way that the resulting scaled signal satisfies a certain constraint. (39)
I_n the linear case, it is often re_quired that the resulting analysiqfi(% y) =UHa F Ay), v) reVy, yeW. (40)
filter zo — 2/ is a lowpass filter. Alternatively, we may re-
quire that this mapping preserves a given signal attribute (e.lgr the same way as we did for the prediction lifting scheme, we
average or maximum). If the unmodified scaled signatioes can show that (39) and (40) defines a coupled wavelet decompo-

7
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Fig. 12. Analysis and synthesis steps of an update lifting scheme.

sition scheme. Furthermore, the following analogue to Proposletice that, the update operator adjusts the valug®4) based
tion 1 can be established. on the local structure of the input sign&ln). If the difference
Proposition 2: Consider an uncoupled wavelet decomposiz(2n—1)—z(2n—2) is negative (or positive) and the difference
tion scheme betweer, andV;, W, with synthesis operators z(2n + 1) — 2(2n) is positive (or negative), then no adjustment
¥, w', an update operatov: W; — Vi, and binary operations is made. This happens, for example, whé2n) is a local min-
+, —onV; such that (37) is satisfied. Furthermore, assume thiatum (or maximum), as illustrated in Fig. 13(a). If however both
1) binary operato#- on V, is associative and commutative;differencess(2n—1)—x(2n—2) andz(2n+1)—x(2n) are neg-
2) ¥t Vi — Vo is “linear,” in the sense that ative (or positive), them(2n) is adjusted by adding the smallest
) (in absolute value) difference. For example, whem) (lo-
o Fv) = o)+ (v2), v, v €Vi. (1) cally) oscillates between two values, as depicted in Fig. 13(b),

Then, the update-lifted wavelet decomposition, given b:%en (43) will bringzx(2n) in line with x(2n — 1), thus get-
t

(39) and (40), is uncoupled (with respect to the same a ga scalec_i signfgb IT’“ (z) that app_ro?dmates: “be_t t(_ar" than
dition operatori) with synthesis operators e scaled signap'(x) before prediction-update lifting. Con-
cerning the last property, one may observe that it holds for pos-

Pl (z) = ¥H(z) andw! (v) = vt (y)+  A\(w). itive as well as for negative constants
Alternatively, we may choose
In the following example we build a nonlinear wavelet

scheme by concatenation of a prediction and an update lifting
step.

Example 4 (Lifting Based on the Median Operatob)et us
take —, — to be the standard subtraction, a#d+, + to be and\(y) as in (42). This choice leads to an uncoupled wavelet
the standard addition. Consider the case of a prediction-updaéomposition scheme that has two “vanishing moments,” in
lifting scheme with initial signal decomposition given by meanghe sense that the detail signal, resulting from an input signal
of the lazy wavelet, and prediction and update operators give(y,) = an + b, will be zero.

by Finally, one can replace the previous linear prediction oper-

) ator, with the nonlinear prediction operator
m(@)(n) = 2(n), A(y)(n) = —median(0, y(n — 1), y(n)). P P
(42)
We obtain an uncoupled wavelet decomposition scheme, with  w(z)(n) = median(z(n — 1), z(n), z(n + 1)).
analysis and synthesis operators given by

n(z)(n) = 5(z(n) +2(n +1))

1/);u($)(ﬂ) This choice, together with (42) for the update operator, leads to
a coupled wavelet decomposition scheme. [ |

Example 5 (Lifting Binary Wavelets).et us now consider
(0, 2(2n — 1) —(2n = 2), (20 + 1) —x(2n)) (43) e binary case, for whichy = Vv, = W, = {0, 1}2. The

= x(2n) + median

wh, (x)(n) previous example, based on the median operator, can be refor-
=2(2n +1) — z(2n) (44) mulated for binary signals as well. For this case, we take,
¥l (x)(2n) 4+, +, + to be the “exclusive OR” operatdk. We can now pro-
pu ) ceed with a prediction-update lifting scheme, with initial signal
= Ppu(@)(2n + 1) = x(n) (45) decomposition given by means of the lazy wavelet and predic-
w},u(y)(%) tion and update operators given by
= —median(0, y(n — 1), y(n))
Wy (y)(20 + 1) w(x)(n) =x(n)
= y(n) — median(0, y(n — 1), y(n)). (46)  A(y)(n) =median(0, y(n — 1), y(n)) = y(n) Ay(n —1).
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Fig. 13. lllustration of update lifting by means of (43). (a) Sin€én) is a local minimum inz, (43) maps:(2n) into itself. (b) Sincez(2n —1) —2(2n—2) =
#(2n 4+ 1) — 2(2n) = —1, the valuer(2n) is reduced by one, thus obtaining a scaled sigrjal() that approximates “better than the scaled signal ()
before prediction-update lifting.

Notice thammedian(0, s, t) = sAt,fors, t € {0, 1}. Theanal- Clearly, the resulting wavelet decomposition scheme is coupled
ysis and synthesis operators resulting from this lifting scheraadself-dual in the sense that
can be expressed as

E(E) = Pule) andw],(7) = w),, (@)

(@) (1)
=al(z(2n —2), z(2n — 1), z(2n), =(2n + 1)) wherez(n) = 1 — (n). -
w;u(w)(”) We now mention the following important consequence of
=bT(x(2n — 2), z(2n — 1), 2(2n), (2n + 1)) Proposition 1 and Proposition 2. If the wavelet decomposition
‘If}m (z, y)(2n) used as a starting point for_ lifting is uncouple_d and “linear,” in
T the sense that the synthesis operatgrsy,* satisfy (32), (41),
= a (x(n), y(n = 1), y(n)) if the binary operators-, - (on W, andV;) satisfy (29), (37),
(2, y)(2n 4+ 1) and if the binary operatof on Vj is associative and commuta-
= b (z(n), y(n — 1), y(n)) tive, then th_e resulting scheme after one lifting step (predi;ti_on
or update) is also uncoupled. However, after a second lifting
) ] step (of the opposite type) the scheme will become coupled in
wherea', b7, a!, b+ are Boolean functions given by general. This implies that prediction-update and update-predic-
tion lifting schemes will in general give rise to coupled wavelet
al(uy, uz, us, ws) =us + (uy + uz — 2ugu)(uy — us) decompositions, even if all assumptions associated with Propo-

) sition 1 and Proposition 2 are satisfied. For example, prediction
lifting as described in Proposition 1 yields a modified synthesis
al(ul, g, uz) =ur + (1 — 2u1)ugus operatorz/;}, which is no longer “linear” and thus Proposition 2
bi(ul, ugz, uz) =u1 + (1 — 2u1)(1 — uz)us. is not applicable to the prediction lifted scheme.

bl (u, ua, ug, ws) =ug + ug — 2uzuy
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Fig. 14. Diagram illustrating the 1-D max-lifting scheme. The white nodes contain the scaledssigmesp.«}), whereas the gray nodes contain the detail
signaly, (resp.y;). The first lifting step (prediction) modifies the detail signal, whereas the second lifting step (update) modifies the scaled signal sudh that loca
maxima are preserved. The initial decompositior~ z, y; is done by means of the lazy wavelet.

Finally, we point out that Daubechies and Sweldens [38] have 3) If 27 has a local maximum at, thenz has a local max-
shown that linear wavelet transforms can be decomposed into  imum atm € {2n — 1, 2n, 2n + 1} andz| (n) = z(m).
lifting steps. To what extent such a result can be generalized tdRefer to Fig. 14 for an illustration. Properties 1) and 2) mean

the nonlinear case remains to be seen. that local maxima of the input signalare mapped to the scaled
signalz. Property 3), on the other hand, guarantees that no new
VI. MAX- AND MIN-LIFTING SCHEMES local maxima of the signal are being created by the scheme.

In this section, we briefly discuss a particular example of a If we Fep'ace the maximum n (47) and (48) W'th. rinimum,
wavelet decomposition, by means of prediction-update Iif'[inﬁfe obtain the dual scheme, which we refer to astire lifting
that leads to the so-calladax-lifting scheme. More details on chemeT_he previous proeertle§ can"be. m?d'.f".ad acc“ordmgly,
this scheme will be provided in a forthcoming paper. We take by replacing with < and maximum .W.'th minimum. .
~ to be standard subtractiof, +, + to be standard addition, V€ a1 extend the max- and min-lifting schemes to two di-
and we choose prediction and update operators as mensions by sequentially apply|_ng the 1-_D decomposmon on
the columns and rows of a 2-D image. Fig. 15 depicts the re-
. . sult of a single level wavelet image decomposition by means of
m(@)(n) = 2(n)Va(ntl), My)(n) = —(OVy(n-1)Vy(n)). max-lifting. Notice that the decomposition produces one scaled
In this case image anq _three detail @mages (a horizontal, _ver_tical, and diag-
onal detail image). Notice also that the detail signals are zero
, - (or almost zero) at areas of smooth graylevel variation, and that
vi(n) =yi(n) = (z2(n) V a(n + 1)) (prediction) - (47) sharp graylevel variations are mapped to negative (black) detail
z1(n) + (0 Vyi(n—1) Vyi(n)) (update) (48) signal values.
Example 6: We now illustrate the 1-D max-lifting and min-
Thus, as a prediction fay; (n) we choose the maximum of its jifting schemes, applied on a signaj(n) of 512 samples, and
two neighbors iney, i.e.,z1(n) andz:(n +1). The update step demonstrate the potential of these schemes for extracting re-
is chosen in such a way that local maxima of the input signal gions of stationary signal behavior. We may assume that a signal
are mapped to the scaled signal(see below). Here, a signal () consists of noise, representing signal variation within a
x is said to have a local maximum atif z(n) > x(n £ 1). region, superimposed on a piecewise constant sigial, rep-
The max-lifting scheme yields a coupled wavelet decomposksenting regions of stationary signal behavior. We are interested
tion. This is in agreement with observations made before, singeobtaining an approximatiofy, of s, from given data.
the max-lifting scheme is constructed by means of two nonlineara very important observation here is that the max-lifting

lifting steps. scheme preserves the number and shapes of flat regions in
Given an input signals, let z1, y; be the corresponding a piecewise constant signal. This is a direct consequence
lazy wavelet decomposition [i.ezi(n) = =x(2n) and of the fact that this scheme preserves local maxima and,
y1(n) = z(2n + 1)], and letz}, y; be the output given by the moreover, it does not create new ones. It is therefore ex-
max-liting wavelet decomposition. The following propertiepected that max-lifting will preserve, over a range of scales,
can be established [31]: the number and shapes of regions of constant signal value.
1) If = has alocal maximum &n, thenz) has alocal max- Fig. 16 depicts the results of seven experiments based on a
imum atn with 21 (n) = z(2n). three-level linear wavelet decomposition scheme, a four-level
2) Supposethat(2n+1) > z(2n+1+4),for—2 < ¢ < 2. max-liting scheme, and a four-level min-lifting scheme.
Then,z{ has a local maximum at or n + 1 with value Our computations consist of three steps: 1) signal analysis
z(2n + 1) depending on which value is the larges2n) zo +— {z, vk, yu—1, ---, y1}, 2) filtering of the detail
orx(2n + 2). signalsy; — ¥;, forj = 1,2, ---, k, and 3) signal synthesis
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Fig. 15. Single-level separable image decomposition by means of max-lifting.

{2k, U Up_t> > Y1} — To = So. Fig. 16(a) depicts a (with v+ = 1). Fig. 16(g) depicts the signdl, obtained by
signal z¢ with regions of stationary signal behavior, depictecheans of applying max-lifting omo with max-thresholding,

by the signalso(n) plotted with a thick line. In this case, followed by min-lifting with min-thresholding. On the other
the noise component has been generated by smoothing (Wigind, Fig. 16(h) depicts the sign& obtained by means of

a four-tap averaging mask /4, 1/4, 1/4, 1/4]) zero mean applying max-lifting onzo, followed by min-lifting; denoising
white Gaussian noise with unit variance. Fig. 16(b) depicis obtained by applying soft thresholding on the detail signals
the signals, (plotted with a thick line), obtained by means of{with v = 0.4), in the same manner as in Fig. 16(e) and (f). No-

a three-level linear denoising scheme [the use of a denoisiinge that, in both cases, signal variation has been substantially
scheme is justified here by considerisg(n) as the noise-free reduced, whereas the resulting signal successfully captures the
signal to be recovered by means of denoising, and the sigatdircase nature of signa. ]
variation within a particular signal region as noise to be
removed by denoising]. This scheme performs a three-level
signal analysis by using th8ymmlet-8wavelet [30], filters
the detail signals by means of tiseft thresholdingoperator ~ The main objective of the work presented in this paper was to
7(n) = signy(n))(jy(n)| — t), if [y(n)| > t, andzy(n) = 0, Provide arigorous theoretical approach to the problem of non-
if [y(n)] < t, wheret = ~v/2xIn N [39], and produces linear wavelet decomposition and develop tools that can be ef-

signal $, by means of signal synthesis based on the filterdgctively used for building nonlinear multiresolution signal de-
detail signals. We set = 1. It is worthwhile noticing that, composition schemes that are nonredundant and guarantee per-
although signal variation has been substantially reduced, fig&t reconstruction. The nonlinear schemes discussed as exam-
reconstructed signal, fails to capture the staircase structur@les in this paper enjoy some useful and attractive properties.

of signal sg. This is mainly due to the linear nature of the 1) Implementation can be done extremely fast by means of

VII. CONCLUSIONS ANDFINAL REMARKS

wavelet decomposition scheme used. The sigpaepicted in

Fig. 16(c) has been obtained by using the max-lifting scheme

with 7i(n) = y(n) V 0, whereas, Fig. 16(d) depicts the sighal
obtained by using the min-lifting scheme wiitn) = y(n) A0.
By takingz(n) = y(n) Vv 0, we preserve positive detail signal

simple operations (e.g., addition, subtraction, max, min,
median, etc.). This is partially due to the fact that only in-
teger arithmetic is used in calculations and that use of pre-
diction/update steps in the decomposition produces com-
putationally efficient implementations.

information, whereas we discard negative information (i.e., 2) If the input to the proposed schemes is integer-valued,

we apply max-thresholding By taking 7(n) = wy(n) A 0,

we preserve negative detail signal information, whereas we

discard positive information (i.e., we appiyin-thresholdin

the output will be integer-valued as well. Clearly, these
schemes can avoid quantization, an attractive property for
lossless data compression.

Notice that the signaly depicted in Fig. 16(c) is larger than the 3) The proposed schemes can be easily adapted to the case of
original signalzo(n) [i.e., $o is like an “upper envelope” for binary images. This is of particular interest to document
zo(n)]. In [31], we have shown that the corresponding operator  image processing, analysis, and compression applications
zo — $o is a morphological closing, and it is therefore exten- (and other industrial applications) and is important on its
sive. The signab, depicted in Fig. 16(d) is smaller than signal own right (e.g., see [40] for a recent work on constructing
xzo(n) [i.e., o is like a “lower envelope” forzo(n)]. On the wavelet decomposition schemes for binary images).

other hand, Fig. 16(e) depicts the sigiglobtained by using  4) Due to the nonlinear nature of the proposed signal
the max-lifting scheme with soft thresholding (with = 1), analysis operators, important geometric information
whereas the signal, depicted in Fig. 16(f) has been obtained (e.g., edges) is well preserved at lower resolutions. In
by means of the min-lifting scheme with soft thresholding the case of the max- (min-) lifting schemes, for example,
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Fig. 16. (a) Signak, with regions of stationary signal behavior (plotted with a thick line). The result of applying, andenoising scheme based on: (b) the
Symmlet-8 wavelet with soft thresholding, (c) max-lifting with max-thresholding, (d) min-lifting with min-thresholding, (e) max-lifting vtithigsholding, (f)
min-lifting with soft thresholding, (g) max-lifting with max-thresholding followed by min-lifting with min-thresholding, and (h) max-liftitig s@ift thresholding
followed by min-lifting with soft thresholding.
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local maxima (minima) are well preserved at lower[10] R. Claypoole, G. Davis, W. Sweldens, and R. Baraniuk, “Nonlinear

resolutions. This property may turn out to be particularly

useful in wavelet-based pattern recognition approacheﬁl]

as, for example, wavelet-based face recognition schemes
[41].

tions. For example, we need to better understand how to design

prediction and update operators that lead to nonlinear wavel&l

decompositions that satisfy properties key to a given applica-

tion at hand, e.g., see the max-lifting scheme discussed in Ses]

tion VI. Another problem of interest is to investigate the rela-

tionship between the discrete nonlinear approach presented [%]

this paper and another nonlinear multiresolution approach to
signal analysis known as nonlinear (morphological) scale spaces

[42]-[46]. In fact, due to the popularity of nonlinear scale spaceéﬂ]

in signal analysis, it may be attractive to investigate the design

of nonlinear filter banks by means of discretizing continuougd8l

morphological scale spaces. Toward this direction, P&
[20] have recently proposed a nonlinear filter bank that is built

by discretizing nonlineapartial differential equation§PDES)

used in scale-space theory. This is a very interesting approach

for constructing nonlinear filter banks that may be compatiblg20]

with current multiscale signal analysis techniques based on non-
linear PDEs.
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