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Nonlinear Multiresolution Signal Decomposition
Schemes—Part II: Morphological Wavelets

Henk J. A. M. Heijmans, Member, IEEE,and John Goutsias, Senior Member, IEEE

Abstract—In its original form, the wavelet transform is a linear
tool. However, it has been increasingly recognized that nonlinear
extensions are possible. A major impulse to the development of
nonlinear wavelet transforms has been given by the introduction of
the lifting scheme by Sweldens. The aim of this paper, which is a se-
quel of a previous paper devoted exclusively to the pyramid trans-
form, is to present an axiomatic framework encompassing most ex-
isting linear and nonlinear wavelet decompositions. Furthermore,
it introduces some, thus far unknown, wavelets based on mathe-
matical morphology, such as the morphological Haar wavelet, both
in one and two dimensions. A general and flexible approach for the
construction of nonlinear (morphological) wavelets is provided by
the lifting scheme. This paper briefly discusses one example, the
max-lifting scheme, which has the intriguing property that pre-
serves local maxima in a signal over a range of scales, depending
on how local or global these maxima are.

Index Terms—Coupled and uncoupled wavelet decomposition,
lifting scheme, mathematical morphology, max-lifting, morpho-
logical operators, multiresolution signal decomposition, nonlinear
wavelet transform.

I. INTRODUCTION

T ODAY, it is generally accepted that multiresolution ap-
proaches, such as pyramids and wavelets, are important

in signal and image processing applications. This is largely due
to the fact that signals (and images in particular) often contain
physically relevant features at many scales or resolutions. For a
proper understanding of such signals, multiresolution (or mul-
tiscale) techniques are indispensable. But there exist other good
reasons for why taking recourse to multiresolution approaches.
A major one is that multiresolution algorithms may offer some
attractive computational advantages.

In a previous paper [1], to be referred to here as Part I, we have
presented an axiomatic framework for pyramid decompositions
of signals, which encompasses several existing approaches; in
particular, linear pyramids (such as the Laplacian pyramid pro-
posed by Burt and Adelson [2]), and morphological tools such
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as the skeleton [3]. A short overview of this framework is pro-
vided in Section II.

Wavelet signal decomposition is a relatively new tool
developed over the past ten or fifteen years. It has attracted
the interest of scientists from various disciplines, in partic-
ular mathematics, physics, computer science, and electrical
engineering. Although wavelet decomposition is alinear
signal analysis tool, it is starting to be recognized that non-
linear extensions are possible [4]–[22]. Thelifting scheme,
recently introduced by Sweldens [23]–[25] (see also [26] for
a predecessor to this scheme, known as a “ladder network”),
has provided a useful way to construct nonlinear wavelet
decompositions. The enormous flexibility and freedom that
the lifting scheme offers has challenged researchers to develop
various nonlinear wavelet transforms [4]–[13], [17], [19], [21],
[22], [27].

The literature on nonlinear wavelet decompositions, orcrit-
ically decimated nonlinear filter banksas they are sometimes
called, is not extensive. In 1991, Pei and Chen [28], [29] were
among the first to propose a nonredundant (in the sense that
preserves the number of pixels in the original image) nonlinear
subband decomposition scheme based on mathematical mor-
phology. Their approach however does not guarantee perfect re-
construction. In 1994, Egger and Li [4] proposed a nonlinear
decomposition scheme with perfect reconstruction based on a
median-type operator (see also [6]). Independently, Florêncio
and Schafer [5] have presented a similar decomposition; see also
[7, Ch. 7]. More recently, Queirozet al. [21] proposed a non-
linear wavelet decomposition, corresponding to the quincunx
sampling grid, for low-complexity image coding; see also [7,
Ch. 8]. In [7], Florêncio discusses nonlinear perfect reconstruc-
tion filter banks in more detail, and attempts to give a better
understanding of these issues by relating them to the so-called
critical morphological sampling theorem. In [9], Cha and Cha-
parro constructed a nonlinear wavelet decomposition scheme
by means of a morphological opening operator. The resulting
signal decomposition scheme guarantees perfect reconstruction.
However, these authors did not have at their disposal the lifting
scheme, which was developed during the same period [23]–[25].
The same remark applies to the work of Hampson and Pesquet
[8], [11], [17] who developed nonlinear perfect reconstruction
filter banks by considering a triangular form of the polyphase
representation of a filter bank. The resulting approach is more
or less identical to the lifting scheme.

In four recent papers [10], [12], [13], [22], Claypooleet al.
use the lifting scheme to build nonlinear wavelet transforms. In
the first paper [10], they propose an adaptive lifting step using
a nonlinear selection criterion. In the other three papers [12],
[13], [22], they use combinations of linear and nonlinear lifting
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steps (based on a median operator), and discuss applications in
compression and denoising.

Many of the schemes proposed in the previously mentioned
papers are special cases of the general schemes discussed in this
paper. Therefore, the theory presented here provides a rather
general framework for constructing nonlinear filter banks with
perfect reconstruction. It is worth noticing however that the pro-
posed theory depends on three conditions. These conditions are
required in order for the proposed multiresolution schemes to
guarantee perfect reconstruction and be nonredundant (in the
sense that repeated applications of these schemes produce the
same result). Moreover, these conditions lead to the concept of
nonlinear biorthogonal-like multiresolution analysis, to be dis-
cussed in Section III-C, which is a natural extension of the con-
cept of biorthogonal multiresolution analysis associated with
linear wavelet decompositions.

The aim of this paper is twofold. First, we present an
axiomatic framework to wavelet-type multiresolution signal
decomposition that encompasses all known linear and nonlinear
wavelet decomposition schemes. Second, we introduce a family
of nonlinear wavelets based on morphological operators. The
simplest nontrivial example of a morphological wavelet is the
so-called morphological Haar wavelet. As we said before, the
lifting scheme provides a general method for the construction of
various wavelet decompositions. In the linear case, this scheme,
in combination with direct methods based on Fourier or
-transform techniques, has lead to a large variation in wavelet

decomposition schemes. In the nonlinear case, however, where
techniques which are comparable with the (linear) Fourier
or -transform are nonexistent, the lifting scheme is theonly
known general method to construct wavelet decompositions.
In this paper, we restrict ourselves to constructions based on
morphological operators. Attention is paid to the max-lifting
scheme, which has the interesting property that it preserves
local maxima of a signal over several scales.

This paper is organized as follows. In Section II, we briefly
recall the pyramid transform introduced in Part I. In Section III,
we present a general definition of a wavelet transform, which we
refer to as thecoupled wavelet decomposition scheme. A special
case is theuncoupled wavelet decomposition scheme, a class
which the linear biorthogonal wavelets belong to. Section IV
is entirely devoted to a simple nontrivial uncoupled wavelet
decomposition scheme based on morphological operators, the
so-calledmorphological Haar wavelet. We discuss the one-di-
mensional (1-D) as well as the nonseparable two-dimensional
(2-D) case. In Section V, we discuss the lifting scheme within
the axiomatic context of this paper. In particular, it is shown that
two nonlinear lifting steps generally lead to a coupled wavelet
decomposition scheme. A number of examples, based on mor-
phological operators, are discussed. Another important example
of the lifting scheme is introduced in Section VI. This is referred
to as themax-lifting scheme, the most striking property of which
is that it preserves local maxima of a signal over several scales,
depending on how local or global these maxima are. Finally, in
Section VII, we conclude with some final remarks.

II. PYRAMID TRANSFORM

In Part 1, we presented a comprehensive discussion on the
pyramid transform. In this section, we briefly recall the main
ideas of that work.

Consider a family of signal spaces. Here,may range over
a finite or an infinite index set. Assume that we have two fami-
lies of operators, a family of analysis operatorsmapping
into , and a family of synthesis operatorsmapping
back into . Here, the upward arrow indicates that the corre-
sponding operator maps a signal to the higher level, whereas
the downward arrow indicates that the operator maps a signal
to a lower level. The analysis operator is chosen to reduce
information from a signal , yielding ascaled signal

in . The synthesis operator maps the
scaled signal back to in , in such a way
that is “close” to . By composing analysis opera-
tors, we can travel from any levelto any higher level . This
gives an operator

which maps an element in to an element in . On the other
hand, by composing synthesis operators, we can travel from any
level to any lower level . This gives an operator

which takes us from level back to level . Since the analysis
operators are designed to reduce the information content of a
signal, they are not invertible in general. In particular,
will not be the identity operator in general. On the other hand,
we always avoid synthesis operatorsthat reduce information
content. In other words, is taken to be injective. In fact, both
conditions are automatically satisfied if we make the following
assumption ( denotes theidentityoperator).

Pyramid Condition: The analysis and synthesis operators
, are said to satisfy thepyramid conditionif

on .
It is easily seen that the pyramid condition implies that

, , and that is idempotent.
Now, suppose that all previous conditions are satisfied, and
that we have addition and subtraction operators, on ,
such that for . Given an input
signal , we consider the following recursive signal
analysis scheme, called thepyramid transform:

where

and

The original signal can beexactlyreconstructed from
and by means of the backward recursion

III. GENERAL WAVELET DECOMPOSITIONSCHEMES

In this section, we present a formal definition of a general
wavelet decomposition scheme. This scheme encompasses



HEIJMANS AND GOUTSIAS: PART 2: MORPHOLOGICAL WAVELETS 1899

Fig. 1. One stage of the coupled wavelet decomposition scheme.

linear wavelet decompositions as a special case, but allows also
a broad class of nonlinear wavelet decomposition schemes.
We start in Section III-A with the definition of the so-called
coupled wavelet decomposition scheme which comprises two
analysis operators, one for the signal and one for the detail, and
one synthesis operator. The uncoupled wavelet decomposition
scheme introduced in Section III-B is a special case of the
coupled wavelet decomposition, in the sense that the synthesis
operator is the sum of two synthesis operators, the signal and
the detail synthesis operators. The linear wavelet decomposition
belongs to this second class; in this case the signal and detail
analysis (resp. synthesis) operators correspond to lowpass and
highpass analysis (resp. synthesis) operators. In Section V, it
will be explained that the lifting scheme provides a practical
and flexible method to design both coupled and uncoupled
wavelet decomposition schemes.

A. Coupled Wavelet Decomposition

The coupled wavelet decomposition extends the pyramid
scheme discussed in Part I; see also Section II. Assume that
there exist sets and . We refer to as thesignal space at
level and to as thedetail space at level. Signal analysis
consists of decomposing a signal in the direction of increasing

by means ofsignal analysis operators : and
detail analysis operators : . On the other hand,
signal synthesisproceeds in the direction of decreasing, by
means ofsynthesis operators . This is
illustrated in Fig. 1.

The previous decomposition scheme is required to yield a
complete signal representation, in the sense that the mappings

and : are
inverses of each other. This leads to the following conditions:

if (1)

which is called theperfect reconstruction condition, and

if

if .
(2)

The two conditions in (2) guarantee that the decomposition
is nonredundant. Condition (1) implies that the mapping

, given by
is injective (i.e., one-to-one) and that is surjective (i.e.,
onto). On the other hand, (2) implies that is surjective and
that is injective. Furthermore, if (1) holds and if is
surjective (or is injective) then (2) holds as well. Also, if
(2) holds and if is surjective (or is injective), then (1)

(a)

(b)

Fig. 2. Three-level coupled wavelet decomposition scheme: (a) signal analysis
and (b) signal synthesis.

holds as well. Now, given an input signal , consider the
following recursive analysis scheme:

(3)

where

and

(4)

The original signal can beexactlyreconstructed from and
by means of the following recursive synthesis

scheme:

(5)

which shows that the decomposition (3) and (4) is invertible. We
refer to the signal representation scheme governed by (1)–(5)
as thecoupled wavelet decomposition scheme. Block diagrams
illustrating this scheme, for the case when , are depicted
in Fig. 2.

The relationship between the coupled wavelet decomposition
scheme and the pyramid scheme discussed in Part I can be easily
established. Recall that the latter scheme is governed by the
pyramid condition. Let the operators constitute a
coupled wavelet decomposition. Fix an element , for
every , and define as ,

. Now, the first identity in (2) gives
, . In other words, the pair satisfies the

pyramid condition.

B. Uncoupled Wavelet Decomposition

Of particular interest is the case when there exists a binary op-
eration on , which we calladdition(notice that may also
depend on ), and operators and

such that

(6)
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Fig. 3. One stage of the uncoupled wavelet decomposition scheme.

We refer to as thesignal synthesisand thedetail syn-
thesis operators, respectively. Conditions (1), (2) become

if (7)

if (8)

if (9)

We refer to the signal representation scheme governed by
(3)–(9) as theuncoupled wavelet decomposition scheme. One
stage of this scheme is illustrated in Fig. 3.

Given an input signal and the corresponding recur-
sive analysis scheme given in (3) and (4),can be perfectly
reconstructed from and by means of the fol-
lowing recursive synthesis scheme:

Therefore, signal at level is reconstructed from information
that is only available at level . First, signal is mapped
down to level by means of the signal synthesis operator
so as to obtain an approximation of ; then,
the detail signal is mapped down to level by means of
the detail synthesis operator so as to obtain the detail signal

at level ; finally, the results are combined by
means of the addition operator.

Equation (6) concerns only the structure of the synthesis part.
A block diagram illustrating this part, for the case when ,
is depicted in Fig. 4. The analysis part is the same as in Fig. 2(a).

The linear biorthogonal wavelet transform [30] complies per-
fectly well with our abstract framework. In [31], we have pre-
sented two different ways to view a linear biorthogonal wavelet
transform as an uncoupled wavelet decomposition.

In the examples provided below, we consider only one step
in the decomposition; i.e., we only consider decompositions be-
tween and . For simplicity, we delete the subindices

in the corresponding analysis and synthesis operators.
Example 1 (Lazy Wavelet):The simplest example of an un-

coupled wavelet decomposition is the transform that splits a
1-D discrete signal into its odd and even samples. Let

, i.e., the space of doubly infinite
real-valued sequences on. Then, the analysis operators are
given by

and

whereas the synthesis operators are given by

and

and

It is obvious that conditions (7)–(9) are satisfied, withbeing
the standard addition. The lazy wavelet, better known in the
signal processing community as thepolyphase transform of
order 2 [32], is not of great interest by itself; the reason why it
is discussed here is because it is often used as a starting point
for the lifting scheme to be discussed in Section V.

Example 2 ( -Transform): The -transform can be consid-
ered as a nonlinear modification of the Haar wavelet with the
additional property that it maps integer-valued signals onto in-
teger-valued signals, but without abandoning the property of
perfect reconstruction. In this case, the analysis operators are
given by

The corresponding synthesis operators are given by

and

Here denotes the floor function, i.e., for , is the
largest integer . Refer to Fig. 5 for an illustration.

The specific character of these operators guarantee that
integer signals are mapped onto integer signals, and we
may choose , i.e., all doubly infinite
integer-valued sequences. It is easy to show that conditions
(7)–(9) are all satisfied here as well, provided thatis taken to
be the standard addition.

The -transform, where “ ” stands for “sequential,” has
been known in the literature for several years, and has been
successfully used in medical imaging for lossless compression
[33]. During the years, several modifications and generaliza-
tions have been proposed, e.g., see [34].

We should point out here that certain continuity issues may
arise in the case of an infinite-level wavelet decomposition
scheme. However, these issues, which become manifest in
the case of infinite decompositions, lie outside the scope of
the work presented here, and we choose to limit ourselves to
finite-level wavelet decomposition schemes.

C. Nonlinear Biorthogonal-Like Multiresolution Analysis

The linear biorthogonal multiresolution analysis framework
[30] can be conceptually extended to the more general frame-
work of the uncoupled wavelet decomposition scheme. Indeed,
consider Ran and Ran , where
Ran denotes therangeof an operator , and

(recall our discussion and notation in Section II).
From (7), we get that every signal has a unique decom-
position , where and ,
namely . Thus, we may write

Let us assume that there exists an (which depends on
in general) such that , for every , and
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Fig. 4. Signal synthesis part of a three-level uncoupled wavelet decomposition scheme.

Fig. 5. An illustration of theS-transform. The white and gray nodes correspond to the even and odd samples, respectively.

. If there exists an (which also depends
on in general) such that , then (8) and (9) imply
that

for (10)

for (11)

for (12)

for (13)

This implies that and are idempotent operators on(also
calledprojections). Furthermore (12) and (13) imply that

where is the operator on which is identically . The projec-
tions and arecomplementaryin the sense that

, where denotes theidentityoperator, and
, for .

IV. M ORPHOLOGICALHAAR WAVELET

A. One-Dimensional Case

In this section, we discuss a morphological variant of the Haar
wavelet in one dimension. The major difference with the clas-
sical linear Haar wavelet is that the linear signal analysis filter
of the latter is replaced by an erosion (or dilation), i.e., by taking
the minimum (or maximum) over two samples. Readers who are
unfamiliar with the basic concepts of mathematical morphology
are referred to [35], [36].

Let be the lattice of doubly infinite
real-valued sequences. Define the analysis and synthesis opera-
tors as

(14)

(15)

(16)

(17)

Here “ ” denotes minimum and “” denotes maximum. In Part
I, we have seen that the operators satisfy the pyramid
condition. The corresponding pyramid was called the morpho-
logical Haar pyramid (see Example 2 in Part I). It can also be
shown that (14)–(17) satisfy conditions (7)–(9), provided that
is taken to be the standard addition. Therefore, the morpholog-
ical Haar wavelet is another example of an uncoupled wavelet
decomposition scheme.

Fig. 6 illustrates the computations associated with the anal-
ysis and synthesis operators of a three-stage morphological Haar
wavelet decomposition scheme. The gray nodes indicate the de-
tail signal. Notice that the signal analysis operator guarantees
that the range of values of the scaled signals is
the same as the range of values of the original signal. It fur-
thermore guarantees that, if the original signalis discrete-
valued, the scaled signals will be discrete-valued
as well, a highly desirable property in lossless coding applica-
tions [37]. Moreover, the morphological Haar wavelet decom-
position scheme may do a better job in preserving edges in,
as compared to the linear case. This is expected, since the signal
analysis filters in the linear Haar wavelet decomposition scheme
are linear lowpass filters, and as such smooth-out edges. The
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(a)

(b)

Fig. 6. Computations associated with a three-stage morphological Haar
wavelet decomposition scheme: (a) signal analysis and (b) signal synthesis.
The gray nodes indicate the detail signal.

signal analysis filters in the morphological Haar case are non-
linear, and as such may preserve edge information.

In (14), we have chosen to use minimum. It is obvious that
we can also take maximum instead, i.e., we can set

and leave unchanged. In this case, the corresponding signal
synthesis operator is the same as in (16), but the detail syn-
thesis operator becomes

and

Notice that, when we use minimum in the signal analysis op-
erator, is an adjunction, whereas when we use max-
imum, is an adjunction [36].

It is not difficult to define a binary version of the wavelet
decomposition scheme (14)–(17). Indeed, let

be the Boolean lattice of doubly infinite sequences of
0s and 1s. We choose the “exclusive OR” operation, denoted by

, as the binary operation on . Then, we define analysis
and synthesis operators [cf. (14)–(17)] as follows:

and

It is easy to verify that this defines an uncoupled wavelet decom-
position scheme. Notice that the detail signal contains 1’s
only at a transition (from 0 to 1 or vice versa) in signalthat
occurs at an even point. The decomposition isself-dual, in the
sense that

and

where . Such a binary scheme can be extended,
without serious effort, to finite-valued signals with values in

, , and with being replaced by
“addition modulo .”

B. Two-Dimensional Case

We can extend the morphological Haar wavelet decomposi-
tion scheme to two and higher dimensions by using a separable
filter bank (e.g., by sequentially applying the 1-D decomposi-
tion on the columns and rows of a 2-D image) [30], [32]. How-
ever, we can also define a nonseparable 2-D version of the mor-
phological Haar wavelet. Indeed, let and consist of all
functions from into and let consist of all functions from

into . We introduce the following notation. By we
denote the points , respectively, and by

the points
, respectively. Define

(18)

(19)

where represent the vertical, horizontal, and diag-
onal detail signals, given by

(20)

(21)

(22)

The synthesis operators are now given by

(23)

and

where we write as . It is not difficult
to show that conditions (7)–(9) are all satisfied, provided that
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Fig. 7. Two-dimensional Haar wavelet transforms an input signalx to a scaled
signalx and the vertical, horizontal, and diagonal detail signalsy ; y ; y ,
respectively.

is taken to be the standard addition. Therefore, this is a 2-D
example of an uncoupled wavelet decomposition scheme.

The analysis operators and in (18) and (19) map a
quadruple of signal values, as the ones depicted in the left
hand-side of Fig. 7, to the quadruple at the right hand-side;
here and (the same for ). An
example, illustrating one step of this decomposition is depicted
in Fig. 8.

As in the 1-D case, the minimum in the expression forcan
be replaced by a maximum. Moreover, as we explain below, it
can also be replaced by any (extension of a)positive Boolean
functionwithout destroying the condition of perfect reconstruc-
tion. Recall that every Boolean functioncan be written as a
sum-of-products, where the sum represents the “OR” or “max-
imum” and where the product represents the “AND” or “min-
imum.” If the Boolean function is positive, then this sum-of-
products can be written without complemented variables. Such
a positive Boolean function can be easily extended from
to by replacing the sum by maximum and the product by min-
imum [36, Sec. 11.4].

Suppose now that is a positive Boolean function of four
variables and let be given by

and take to be the same as in (19). The value of
equals one of its four arguments; which

one depends on the ranking of these four elements, and can
be deduced from (the signs of) .
Knowing the value of , along with the three
differences , we are able to com-
pute . This observation can be used to recover
the original signal from and . Namely, using
(20)–(22), it is easy to show that

This leads to the signal synthesis operator (23) and to detail
synthesis operators that are similar to the ones used by the
2-D version of the morphological Haar wavelet decomposition
scheme discussed above. The particular form of the detail
synthesis operators depends on the choice for the Boolean
function . Clearly, the resulting wavelet decomposition will
be uncoupled.

We can take to be the th order statistic of ,
i.e., the th value of the sequence of length four obtained by

arranging in decreasing order. Observe that, in
this case and for , we obtain the morphological Haar
wavelet (and for its dual). In the following, and for the
sake of illustration, we present a 2-D binary example that is built
by taking to be themedianof the sequence .

Consider an input signal, with , ,
, and . The signal analysis operator is

given by

(24)

Take as in (19), where

(25)

(26)

(27)

Referring to Fig. 7, the coefficients in the matrix are mapped
to , where

, and . It is not difficult to verify that
where , ,

, and . To understand this, we distinguish
two cases: 1) : this means that at least one of
the values equals 0, which implies that at least one of
the values equals . This yields that , which is in
agreement with . 2) : then

, hence . This yields that . Again,
this is in agreement with .

Having recovered from , we can recover from
. Similarly, we can

find and . This leads to synthesis operators, given by (23) and

It is again not difficult to show that conditions (7)–(9) are all
satisfied, provided that is taken to be the “exclusive OR” op-
erator. An example, illustrating one step of this decomposition,
is depicted in Fig. 9.

V. LIFTING SCHEME

A useful and very general technique for constructing new
wavelet decompositions from existing ones has been recently
proposed by Sweldens [23]–[25], and is known as thelifting
scheme. Lifting amounts to modifying the analysis and syn-
thesis operators in such a way that the properties of the mod-
ified scheme are “better” than those of the original one. Here,
“better” can be interpreted in different ways. For example, in
the linear case, it may mean that the number of vanishing mo-
ments is larger. Lifting can be used to construct wavelet decom-
positions for signals that are defined on arbitrary domains, or to
construct nonlinear coupled or uncoupled wavelet decomposi-
tions (in the sense of the definitions given in Section III), which
is of interest to us. Two types of lifting schemes can be distin-
guished:

• Prediction Lifting. This modifies the detail analysis oper-
ator and the signal synthesis operator in the coupled
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Fig. 8. Multiresolution image decomposition based on the 2-D morphological Haar wavelet transform. (a) An imagex and (b) its decomposition into the scaled
image (x), given by (18), and the detail images! (x), ! (x) and! (x), given by (20)–(22).

Fig. 9. Multiresolution binary image decomposition based on the 2-D median wavelet transform. (a) Binary imagex and (b) its decomposition into the scaled
image (x), given by (24), and the detail images! (x), ! (x) and! (x), given by (25)–(27).

case, or the signal synthesis operatorin the uncoupled
case.

• Update Lifting. This modifies the signal analysis operator
and the signal synthesis operator in the coupled

case, or the detail synthesis operatorin the uncoupled
case.

We treat these two cases separately. In both cases, the lifting
operator may differ from level to level. However, for simplicity
we restrict ourselves to operators between levels 0 and 1.

A. Prediction Lifting

Consider one level of a coupled wavelet decomposition
scheme, governed by the analysis operators ,

and the synthesis operator ,
such that the conditions (1), (2) are satisfied. In many appli-

cations, such as data compression, it is desirable to develop
wavelet schemes that produce small detail signals .
Starting from a scheme like above, we might try to decrease
the detail signal by utilizing signal information contained
in . This may be accomplished by means of a
prediction operator : and a difference operator
on and by setting

(28)

as the new detail signal. This leads to the analysis step depicted
in Fig. 10.

Assume now that there exists an addition operatoron
such that

(29)
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Fig. 10. Analysis and synthesis steps of a prediction lifting scheme.

It is evident that the original signal can be reconstructed from
and , since

This leads to the synthesis step depicted in Fig. 10. Thus, we ar-
rive at theprediction lifting schemewith analysis and synthesis
operators given by

(30)

(31)

To show that this defines a coupled wavelet decomposition
scheme, we must verify that , , and satisfy conditions
(1) and (2) as well. Indeed, let ; then

where we have used (1) for the original scheme, and (29)–(31).
Now, let ; then

where we have used the first equation in (2) for the original
scheme, and (30) and (31). Finally, let ; then

where we have used (2) and (29)–(31). In these expressions,
and can be the standard addition and subtraction, respectively,
but other choices can be envisaged as well. In the binary case,
for example, we may choose and to be the exclusive OR.
An example will be given in Example 5.

The following result provides some additional properties for
the case when the initial wavelet decomposition is uncoupled.

Proposition 1: Consider an uncoupled wavelet decomposi-
tion scheme between and , with synthesis operators

, , a prediction operator , and binary opera-
tions on such that (29) is satisfied. Furthermore, as-
sume that

1) binary operator on is associative and commutative;
2) is “linear,” in the sense that

(32)

Then, the prediction-lifted wavelet decomposition, given
by (30), (31), is uncoupled (with respect to the same ad-
dition operator ) with synthesis operators

and

Proof: Under the given assumptions, we can write

which proves the result.
Example 3 (Lifting the Morphological Haar

Wavelet): Consider the morphological Haar wavelet discussed
in Section IV-A. Recall that and that
is the standard addition. Let and on be defined by

and

where are the standard addition and subtraction. Obvi-
ously, the equalities in (29) are satisfied. Define the prediction
operator by

From (14)–(17), (30) and (31), we obtain a coupled nonlinear
wavelet decomposition scheme with analysis and synthesis op-
erators given by

(33)

(34)

(35)

(36)

This scheme has two “vanishing moments” as opposed to the
morphological Haar wavelet that has only one. By one “van-
ishing moment” we mean that a constant input signal
produces a zero detail signal, whereas by two “vanishing mo-
ments” we mean that a linear signal produces
a zero detail signal. This is illustrated in Fig. 11. Observe that
the wavelet transform in (33), (34) maps integer-valued signals
onto integer-valued signals.
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Fig. 11. Morphological Haar wavelet decomposition scheme, with analysis operators , ! , as compared to the wavelet decomposition scheme (33), (34)
obtained after prediction lifting. Notice that! (x) is zero at points where the input signal is constant, whereas! (x) is zero at points where the input signal is
linear.

B. Update Lifting

Instead of modifying the detail signal, as we did in (28), we
may choose to modify the scaled signalusing the informa-
tion in . We assume that there exist addition and subtraction
operators , on such that

(37)

We get a modified scaled signal by setting

(38)

Here, is an operator, mapping into , called theupdate
operator. Although, in principle, every mapping can be al-
lowed as an update operator, in practice we choosein such a
way that the resulting scaled signal satisfies a certain constraint.
In the linear case, it is often required that the resulting analysis
filter is a lowpass filter. Alternatively, we may re-
quire that this mapping preserves a given signal attribute (e.g.,
average or maximum). If the unmodified scaled signaldoes

not satisfy the constraint, we may choosein such a way that
, given by (38), does satisfy this constraint. We refer to the

work of Sweldens [23]–[25] and Daubechies and Sweldens [38]
for more details.

The update step in (38) gives rise to the diagrams depicted in
Fig. 12. It is clear that the input signal can be reconstructed
from and , since

Thus, we arrive at theupdate lifting schemewith analysis and
synthesis operators given by

(39)

(40)

In the same way as we did for the prediction lifting scheme, we
can show that (39) and (40) defines a coupled wavelet decompo-
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Fig. 12. Analysis and synthesis steps of an update lifting scheme.

sition scheme. Furthermore, the following analogue to Proposi-
tion 1 can be established.

Proposition 2: Consider an uncoupled wavelet decomposi-
tion scheme between and , with synthesis operators

, , an update operator , and binary operations
on such that (37) is satisfied. Furthermore, assume that

1) binary operator on is associative and commutative;
2) is “linear,” in the sense that

(41)

Then, the update-lifted wavelet decomposition, given by
(39) and (40), is uncoupled (with respect to the same ad-
dition operator ) with synthesis operators

and

In the following example we build a nonlinear wavelet
scheme by concatenation of a prediction and an update lifting
step.

Example 4 (Lifting Based on the Median Operator):Let us
take , to be the standard subtraction, and, , to be
the standard addition. Consider the case of a prediction-update
lifting scheme with initial signal decomposition given by means
of the lazy wavelet, and prediction and update operators given
by

(42)
We obtain an uncoupled wavelet decomposition scheme, with
analysis and synthesis operators given by

(43)

(44)

(45)

(46)

Notice that, the update operator adjusts the value of based
on the local structure of the input signal . If the difference

is negative (or positive) and the difference
is positive (or negative), then no adjustment

is made. This happens, for example, when is a local min-
imum (or maximum), as illustrated in Fig. 13(a). If however both
differences and are neg-
ative (or positive), then is adjusted by adding the smallest
(in absolute value) difference. For example, when (lo-
cally) oscillates between two values, as depicted in Fig. 13(b),
then (43) will bring in line with , thus get-
ting a scaled signal that approximates “better” than
the scaled signal before prediction-update lifting. Con-
cerning the last property, one may observe that it holds for pos-
itive as well as for negative constants.

Alternatively, we may choose

and as in (42). This choice leads to an uncoupled wavelet
decomposition scheme that has two “vanishing moments,” in
the sense that the detail signal, resulting from an input signal

, will be zero.
Finally, one can replace the previous linear prediction oper-

ator, with the nonlinear prediction operator

This choice, together with (42) for the update operator, leads to
a coupled wavelet decomposition scheme.

Example 5 (Lifting Binary Wavelets):Let us now consider
the binary case, for which . The
previous example, based on the median operator, can be refor-
mulated for binary signals as well. For this case, we take, ,

, , to be the “exclusive OR” operator . We can now pro-
ceed with a prediction-update lifting scheme, with initial signal
decomposition given by means of the lazy wavelet and predic-
tion and update operators given by



1908 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

Fig. 13. Illustration of update lifting by means of (43). (a) Sincex(2n) is a local minimum inx, (43) mapsx(2n) into itself. (b) Sincex(2n�1)�x(2n�2) =
x(2n+ 1)� x(2n) = �1, the valuex(2n) is reduced by one, thus obtaining a scaled signal (x) that approximatesx “better than the scaled signal (x)
before prediction-update lifting.

Notice that , for . The anal-
ysis and synthesis operators resulting from this lifting scheme
can be expressed as

where are Boolean functions given by

Clearly, the resulting wavelet decomposition scheme is coupled
andself-dual, in the sense that

and

where .
We now mention the following important consequence of

Proposition 1 and Proposition 2. If the wavelet decomposition
used as a starting point for lifting is uncoupled and “linear,” in
the sense that the synthesis operators, satisfy (32), (41),
if the binary operators , (on and ) satisfy (29), (37),
and if the binary operator on is associative and commuta-
tive, then the resulting scheme after one lifting step (prediction
or update) is also uncoupled. However, after a second lifting
step (of the opposite type) the scheme will become coupled in
general. This implies that prediction-update and update-predic-
tion lifting schemes will in general give rise to coupled wavelet
decompositions, even if all assumptions associated with Propo-
sition 1 and Proposition 2 are satisfied. For example, prediction
lifting as described in Proposition 1 yields a modified synthesis
operator which is no longer “linear” and thus Proposition 2
is not applicable to the prediction lifted scheme.
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Fig. 14. Diagram illustrating the 1-D max-lifting scheme. The white nodes contain the scaled signalx (resp.x ), whereas the gray nodes contain the detail
signaly (resp.y ). The first lifting step (prediction) modifies the detail signal, whereas the second lifting step (update) modifies the scaled signal such that local
maxima are preserved. The initial decompositionx 7! x ; y is done by means of the lazy wavelet.

Finally, we point out that Daubechies and Sweldens [38] have
shown that linear wavelet transforms can be decomposed into
lifting steps. To what extent such a result can be generalized to
the nonlinear case remains to be seen.

VI. M AX- AND MIN-LIFTING SCHEMES

In this section, we briefly discuss a particular example of a
wavelet decomposition, by means of prediction-update lifting,
that leads to the so-calledmax-liftingscheme. More details on
this scheme will be provided in a forthcoming paper. We take,

to be standard subtraction,, , to be standard addition,
and we choose prediction and update operators as

In this case

(prediction) (47)

(update) (48)

Thus, as a prediction for we choose the maximum of its
two neighbors in , i.e., and . The update step
is chosen in such a way that local maxima of the input signal
are mapped to the scaled signal (see below). Here, a signal

is said to have a local maximum atif .
The max-lifting scheme yields a coupled wavelet decomposi-
tion. This is in agreement with observations made before, since
the max-lifting scheme is constructed by means of two nonlinear
lifting steps.

Given an input signal , let be the corresponding
lazy wavelet decomposition [i.e., and

], and let be the output given by the
max-lifting wavelet decomposition. The following properties
can be established [31]:

1) If has a local maximum at , then has a local max-
imum at with .

2) Suppose that , for .
Then, has a local maximum at or with value

depending on which value is the largest,
or .

3) If has a local maximum at, then has a local max-
imum at and .

Refer to Fig. 14 for an illustration. Properties 1) and 2) mean
that local maxima of the input signalare mapped to the scaled
signal . Property 3), on the other hand, guarantees that no new
local maxima of the signal are being created by the scheme.

If we replace the maximum in (47) and (48) with minimum,
we obtain the dual scheme, which we refer to as themin-lifting
scheme. The previous properties can be modified accordingly,
by replacing with and “maximum” with “minimum.”

We can extend the max- and min-lifting schemes to two di-
mensions by sequentially applying the 1-D decomposition on
the columns and rows of a 2-D image. Fig. 15 depicts the re-
sult of a single level wavelet image decomposition by means of
max-lifting. Notice that the decomposition produces one scaled
image and three detail images (a horizontal, vertical, and diag-
onal detail image). Notice also that the detail signals are zero
(or almost zero) at areas of smooth graylevel variation, and that
sharp graylevel variations are mapped to negative (black) detail
signal values.

Example 6: We now illustrate the 1-D max-lifting and min-
lifting schemes, applied on a signal of 512 samples, and
demonstrate the potential of these schemes for extracting re-
gions of stationary signal behavior. We may assume that a signal

consists of noise, representing signal variation within a
region, superimposed on a piecewise constant signal , rep-
resenting regions of stationary signal behavior. We are interested
in obtaining an approximation of from given data .

A very important observation here is that the max-lifting
scheme preserves the number and shapes of flat regions in
a piecewise constant signal. This is a direct consequence
of the fact that this scheme preserves local maxima and,
moreover, it does not create new ones. It is therefore ex-
pected that max-lifting will preserve, over a range of scales,
the number and shapes of regions of constant signal value.
Fig. 16 depicts the results of seven experiments based on a
three-level linear wavelet decomposition scheme, a four-level
max-lifting scheme, and a four-level min-lifting scheme.
Our computations consist of three steps: 1) signal analysis

, 2) filtering of the detail
signals , for , and 3) signal synthesis
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Fig. 15. Single-level separable image decomposition by means of max-lifting.

. Fig. 16(a) depicts a
signal with regions of stationary signal behavior, depicted
by the signal plotted with a thick line. In this case,
the noise component has been generated by smoothing (with
a four-tap averaging mask ) zero mean
white Gaussian noise with unit variance. Fig. 16(b) depicts
the signal (plotted with a thick line), obtained by means of
a three-level linear denoising scheme [the use of a denoising
scheme is justified here by considering as the noise-free
signal to be recovered by means of denoising, and the signal
variation within a particular signal region as noise to be
removed by denoising]. This scheme performs a three-level
signal analysis by using theSymmlet-8wavelet [30], filters
the detail signals by means of thesoft thresholdingoperator

sign , if , and ,
if , where [39], and produces
signal by means of signal synthesis based on the filtered
detail signals. We set . It is worthwhile noticing that,
although signal variation has been substantially reduced, the
reconstructed signal fails to capture the staircase structure
of signal . This is mainly due to the linear nature of the
wavelet decomposition scheme used. The signaldepicted in
Fig. 16(c) has been obtained by using the max-lifting scheme
with , whereas, Fig. 16(d) depicts the signal
obtained by using the min-lifting scheme with .
By taking , we preserve positive detail signal
information, whereas we discard negative information (i.e.,
we apply max-thresholding). By taking ,
we preserve negative detail signal information, whereas we
discard positive information (i.e., we applymin-thresholding).
Notice that the signal depicted in Fig. 16(c) is larger than the
original signal [i.e., is like an “upper envelope” for

]. In [31], we have shown that the corresponding operator
is a morphological closing, and it is therefore exten-

sive. The signal depicted in Fig. 16(d) is smaller than signal
[i.e., is like a “lower envelope” for ]. On the

other hand, Fig. 16(e) depicts the signalobtained by using
the max-lifting scheme with soft thresholding (with ),
whereas the signal depicted in Fig. 16(f) has been obtained
by means of the min-lifting scheme with soft thresholding

(with ). Fig. 16(g) depicts the signal obtained by
means of applying max-lifting on with max-thresholding,
followed by min-lifting with min-thresholding. On the other
hand, Fig. 16(h) depicts the signal obtained by means of
applying max-lifting on , followed by min-lifting; denoising
is obtained by applying soft thresholding on the detail signals
(with ), in the same manner as in Fig. 16(e) and (f). No-
tice that, in both cases, signal variation has been substantially
reduced, whereas the resulting signal successfully captures the
staircase nature of signal.

VII. CONCLUSIONS ANDFINAL REMARKS

The main objective of the work presented in this paper was to
provide a rigorous theoretical approach to the problem of non-
linear wavelet decomposition and develop tools that can be ef-
fectively used for building nonlinear multiresolution signal de-
composition schemes that are nonredundant and guarantee per-
fect reconstruction. The nonlinear schemes discussed as exam-
ples in this paper enjoy some useful and attractive properties.

1) Implementation can be done extremely fast by means of
simple operations (e.g., addition, subtraction, max, min,
median, etc.). This is partially due to the fact that only in-
teger arithmetic is used in calculations and that use of pre-
diction/update steps in the decomposition produces com-
putationally efficient implementations.

2) If the input to the proposed schemes is integer-valued,
the output will be integer-valued as well. Clearly, these
schemes can avoid quantization, an attractive property for
lossless data compression.

3) The proposed schemes can be easily adapted to the case of
binary images. This is of particular interest to document
image processing, analysis, and compression applications
(and other industrial applications) and is important on its
own right (e.g., see [40] for a recent work on constructing
wavelet decomposition schemes for binary images).

4) Due to the nonlinear nature of the proposed signal
analysis operators, important geometric information
(e.g., edges) is well preserved at lower resolutions. In
the case of the max- (min-) lifting schemes, for example,
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Fig. 16. (a) Signalx with regions of stationary signal behavior (plotted with a thick line). The result of applying onx a denoising scheme based on: (b) the
Symmlet-8 wavelet with soft thresholding, (c) max-lifting with max-thresholding, (d) min-lifting with min-thresholding, (e) max-lifting with soft thresholding, (f)
min-lifting with soft thresholding, (g) max-lifting with max-thresholding followed by min-lifting with min-thresholding, and (h) max-lifting with soft thresholding
followed by min-lifting with soft thresholding.
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local maxima (minima) are well preserved at lower
resolutions. This property may turn out to be particularly
useful in wavelet-based pattern recognition approaches
as, for example, wavelet-based face recognition schemes
[41].

Despite all these attractive properties, a number of open theo-
retical and practical questions need to be addressed before such
tools become useful in signal processing and analysis applica-
tions. For example, we need to better understand how to design
prediction and update operators that lead to nonlinear wavelet
decompositions that satisfy properties key to a given applica-
tion at hand, e.g., see the max-lifting scheme discussed in Sec-
tion VI. Another problem of interest is to investigate the rela-
tionship between the discrete nonlinear approach presented in
this paper and another nonlinear multiresolution approach to
signal analysis known as nonlinear (morphological) scale spaces
[42]–[46]. In fact, due to the popularity of nonlinear scale spaces
in signal analysis, it may be attractive to investigate the design
of nonlinear filter banks by means of discretizing continuous
morphological scale spaces. Toward this direction, Pouyeet al.
[20] have recently proposed a nonlinear filter bank that is built
by discretizing nonlinearpartial differential equations(PDEs)
used in scale-space theory. This is a very interesting approach
for constructing nonlinear filter banks that may be compatible
with current multiscale signal analysis techniques based on non-
linear PDEs.
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