

コンパクトERLにおける中赤外自由 電子レーザー運転のための入射器の 最適化

田中織雅、宮島司、東直(KEK)

第18回日本加速器学会年会 2021年8月12日(木) 10:50~11:10 オンライン (Zoom)

内容

- 1. 初めに
- 2. 入射器最適化
 - ターゲット
 - 課題
 - ・ 重要な注意事項
 - 設定
 - 電子銃電圧対ビーム性能
 - •初期レーザー時間分布の影響
 - 同時最小化
 - •入射部オプティックスデザイン

- 3. 設計性能と測定結果の比較
 - バンチャー調整
 - オプティクスマッチング
 - オプティクス調整後のビームプ
 ロファイル
 - 測定されたビームサイズ

4. まとめ

- 1. 初めに
- 2. 入射器最適化
 - ターゲット
 - 課題
 - ・ 重要な注意事項
 - 設定
 - 電子銃電圧対ビーム性能
 - •初期レーザー時間分布の影響
 - 同時最小化
 - 入射部オプティックスデザイン

- 3. 設計性能と測定結果の比較
 - バンチャー調整
 - オプティクスマッチング
 - オプティクス調整後のビームプ ロファイル
 - 測定されたビームサイズ

4. まとめ

 目標: 空間電荷効果が支配的な入射器における最適化を行って、
 IR-FEL発振点で適切なビーム性能を得ること
 Gun

• Target beam performance at the Main linac exit:

- Bunch charge : 60 pC
- Bunch length : 2 ps (rms) (The bunch is compressed in the first arc section.)
- Energy spread : 0.1%
- Norm. rms emittance : $< 3 \pi$ mm mrad

- <u>Required beam performance at the U1:</u>
 - Bunch charge : 60 pC
 - Repetition rate : 1.3 GHz
 - Bunch length : 0.5 2 ps (FWHM)
 - Energy spread : 0.1%
 - Norm. rms emittance : 3π mm mrad

THOBO3 入射器最適化 2020年6月と2021年2月~3月の課題

- 入射器のビーム性能:500 kV DCガンの安定した高加速電圧供給が重要
- 課題1:2020年11月の誤操作によるトラブルにより、光電面DCガンの 電圧が480kV低下した。それでも必要なビーム性能を達成できるか?
- ・課題2:以前の運転ではバンチ長と横方向エミッタンスの同時最小化 に基づくビーム輸送条件を使用したが、FEL光の生成には不十分だった。
 ^{19.9}
 → FEL発振には進行方向ダイナミクスがより重要
 ^{19.7}
 ^{19.7}
 - ・今回:バンチ長と縦方向のエミッタンスの最小化に切り替える。
- 追加のタスク:初期レーザー時間分布の影響を調査
 - 以前の運転:モデルで単一のガウスを使用
 - 今回の運転:7つのガウスパルスのスタック

	Jun. 2020 operation	Feb.–Mar. 2021 operation
Electron gun voltage	500 kV	480 kV
Optimization objective	Simultaneous minimization of bunch length and transverse emittance	Simultaneous minimization of bunch length and longitudinal emittance
Initial laser dist.	40 ps FWHM single Gaussian	40 ps FWHM flat-top ⁶

- •入射部と周回部を接続するマッチングポイント(A2点)が主空洞 (MLSC)の後にあるのはなぜか?
 - 空間電荷効果の影響は、17.6 MeVの点周回部エネルギーで小さいため(入射 エネルギーは5 MeVであることに注意)
- •なぜ点A2で粒子分布を確認するのか?
 - これは、一貫したS2Eシミュレーションを可能にするため。
 - cERLのさまざまなコンポーネントは、さまざまなコード(GPT、ELEGANT、 Genesisなど)でシミュレート
 - 加速器モデルと実際のマシンの間のギャップを小さくするため、より良いトラッキングの初期分布が欠かせない

- <u>入射器最適化</u>: General Particle Tracer (GPT) with Multi Objective Genetic Algorithm (MOGA)
- <u>Objectives</u>: 主空洞(MLSC)の出口で、
 バンチ長さと縦方向エミッタンスを同時に 最小化。
- MOGAの最適化パラメーター(13変数) は、下のラッティスにマゼンタで示され ている。

Constrants

RMS bunch length < 1.8 ps

Transverse rms emittance $< 3.0 \pi$ mm mrad

Betatron function $\beta_x < 8.0 \text{ m}; \beta_y < 20.0 \text{ m}$

Alpha function $-2.0 < \alpha_x < 0.0; -0.5 < \alpha_y < 0.5$

- 電子銃電圧が400kVに低下すると、主空洞出口におけるビーム性能はどれくらい悪化するか?
- 最適化により、450~500kVの範囲のガン電圧でビーム性能に大きな違いは見られなかった。
- ただし、425 kV未満の電圧では、短いバンチ長を維持できなくなる(空間電荷効果)
- 電子銃の調整結果を考慮して、電子銃の運転電圧を480kVと決めた

- シミュレーションで実際のレーザー時間構 造を再現するために、3つ分布を調査:
 - 40 ps FWHM single Gaussian;
 - 40 ps FWHM flat;

j.

eny

• 40 ps FWHM flat with 20% dip. Transverse emittance

Real laser pulse

(a)

THOB03 入射器最適化 480kVでのバンチ長と縦方向エミッタンスの同時最小化の結果

- Population size: 50個の入射器設定
- •1つの設定から、マッチング点A2におけるバンチ長、横方向エミッタンス、および縦方向エミッタンス等を計算
- ・青い四角:バンチ長は1.8 ps、横方向エミッタンスは1.9 π mm mrad、縦方向エミッタンスは8.4 keV ps。

THOB03 入射器最適化 入射器オプティックスデザイン

- •2021年2月~3月の運転パラメータ:
 - Electron gun voltage: 480 kV.
 - Injector energy: 5.1 MeV.
 - Bunch charge: 60 pC.
 - Laser time structure: flat, FWHM 40 ps.
 - Laser XY distribution: radial Gaussian (rms = 1.191 mm) + 2 mm pinhole.
- 主空洞の出口における設計ビーム性能:
 - Normalized rms transverse emittance ε_{nx} , ε_{ny} : 1.74, 1.92 π mm mrad.
 - Normalized rms longitudinal emittance $\, \mathcal{E}_{\,\,\text{nz}}$: 8.4 keV ps.
 - RMS transverse beam size σ_x , σ_y : 0.69, 0.35 mm.
 - RMS bunch length σ_z : 1.8 ps.
 - RMS energy spread : 0.25%.
 - $\beta_x = 4.26 \text{ m}; \ \beta_y = 0.61 \text{ m}.$
 - $\alpha_x = -1.82; \ \alpha_y = 0.16.$

内容

- 1. 初めに
- 2. 入射器最適化
 - ・ターゲット
 - 課題
 - ・ 重要な注意事項
 - 設定

KEK50年

- 電子銃電圧対ビーム性能
- 初期レーザー時間分布の影響
- 同時最小化
- 入射部オプティックスデザイン
- ドイン

- 3. 設計性能と測定結果の比較
 - バンチャー調整
 - •オプティクスマッチング
 - オプティクス調整後のビームプ
 ロファイル
 - 測定されたビームサイズ

4. まとめ

設計性能と測定結果の比較 バンチャー空洞の位相調整

- 注意:入射器の目標は、適切なビームを生成し、 IR-FEL光生成のためにアンジュレーター入口に 輸送することである。
- ・位相調整:空間電荷効果なしの単一粒子の運動 で近似できる条件で調整(1pCのバンチ電荷)

縦方向ダイナミクスを調整するために、
 バンチャー相に対するエネルギー応答を

ビームエネルギーは、合流部にあるスク

加速電圧と位相を微調整した後、測定された応答は設計応答とほぼ一致した。

次に、バンチ電荷を60 pCに上げて、空間電荷効果込みの調整を行う。

測定した。

リーンで測定された。

THOBO3 設計性能と測定結果の比較 オプティクスマッチングの結果(空間電荷効果あり)

- •目標:空間電荷効果ありの条件で、各マッチングポイントでオプティクスを接続する
- 調整により、差異は初期状態よりもはるか に小さくなった。
- ・実際のエミッタンスは設計値と異なる可能 性があるため、わずかな差異が残っている。

(mm)

2/25@MP1(cam8)

2/25@MP2A(cam11)

THOBO3 オプティックス調整後のビームプロファイル

Note! Scales of simulation and actual measurement were matched

17

設計性能と測定結果の比較 測定されたビームサイズ

- 測定されたビームサイズは、入射器出 口(Cam3)を除いて、設計ビームサイズ とよく一致している。
- Cam3での垂直ビームサイズの偏差の理 由はまだ不明である(モデルには空洞 カプラーの効果を取り込み済み)。
- 励起レーザーの時間構造を含む空間電荷効果を調べる必要がある。
- これらの問題は次の研究トピック

まとめ

- 入射器の最適化により、主空洞の出口で適切なビーム性能を達成した:
 - 電子銃の電圧480kV;
 - ・レーザーの初期時間分布40psFWHMフラットトップ;
 - 主空洞クライオモジュールの出口でのバンチ長さと縦方向エミッタンスの同時 最小化。
- ・設計性能と測定結果を比較すると、横方向の動きがよく一致していることの確認が出来た。ただし、周回部のアーク部で測定した縦方向の動きは、予想通り行かなかった。それの原因を調べる研究結果は田中オリガ@TUP023のポスターにまとめている。
- ・設計通り入射部のビーム調整が出来たのおかげで、2021年2~3月に、 最終的に1電子バンチあたり約5.8nJのFELパルスエネルギーを達成する ことができた(阪井寛志@MOPOA04を参照)。

