PASJ2021 THOB05

100mA 級単孔 CW 引き出しマイクロ波イオン源の開発 DEVELOPMENT OF A 100mA-CLASS SINGLE-HOLE CW-EXTRACTION MICROWAVE ION SOURCE

永嶋 和也^{#, A)}, 関 孝義 ^{A)}, 足利 沙希子 ^{A)} Kazuya Nagashima^{#, A)}, Takayoshi Seki^{A)}, Sakiko Ashikaga^{A)} A) Hitachi, Ltd.

Abstract

In order to realize stable operation of a high-energy, high-current ion beam for a neutron source, we have developed an ion source capable of single-hole extraction of a 100 mA class large-current continuous beam. To extract a stable large current CW without discharge between electrodes, the extraction electrode voltage of the ion source was set to 50 kV, and a magnetic path was provided to reduce the leakage magnetic field to the extraction electrode. By the performance test of the developed microwave ion source, the current characteristics of the H⁺ beam in case of the electrode hole diameter of φ 12 mm were evaluated, and the continuous beam generation of 140 mA for 2 hours or more was confirmed.

1. 背景と目的

産業および医療用中性子源[1]では、高エネルギーか つ大電流の CW(continuous wave)イオンビームを安定供 給する要求がある。高エネルギーの大電流イオンビーム を得るには、大電流の CW イオンビームを生成可能なイ オン源とそれを加速できる RFQ(Radio Frequency Quadrupole)などの高周波加速器が必要である。イオン 源で生成したイオンビームを安定に加速するためには、 RFQ アクセプタンスとの整合性を考慮して、低発散かつ 収束の良いビームが生成可能な単孔引出しのイオン源 が望ましい。大電流の単孔 CW 引出しを実現するには、 引出し電極孔径の大口径化および引出し電圧の高電圧 化に伴って、高密度プラズマの維持、電極間放電の抑 制およびビーム発散の抑制が課題となる。日立製作所 は、ホウ素中性子補足療法向けに、最大電流 40 mA の CW イオンビームが生成可能なイオン源を開発してきた [2]。このイオン源大電流化技術を基に、さらなる大電流 イオンビームの要求を満たす 100 mA 級の単孔 CW 引 出しを実現するイオン源を開発する。

2. マイクロ波イオン源の設計

イオン源には、大きく分けてプラズマの点火にフィラメ ントを用いる方式とマイクロ波を用いる方式があるが、本 研究では大容量の均一なプラズマが生成可能で、メンテ ナンス性に優れる後者方式を採用する。イオン源の設計 では、先述の(1)高密度プラズマの維持、(2)電極間放電 の抑制、(3)ビーム発散の抑制の3つを考慮した。設計し たイオン源の概観を Fig. 1 に示す。以下で、設計の詳細 について説明する。

Figure 1: Design of the micro-wave ion source.

2.1 イオン源の基本設計

イオン源の基本設計として、目標の100 mA以上の大 電流ビームを引き出し可能な引出し電極孔径および引 出し電圧を決定する。放電室で生成されたプラズマは、 引出し電極の静電界によって正イオンがビームとして引 出される。プラズマ密度が一定の場合、引出し電極の孔 面積に比例して、引出しビーム電流が増加するが、孔径 が大きくなると、引出しれ中心部での電位が電極電位よ りも低くなるため、プラズマ密度を抑え込む電界強度が 得られなくなることでビームが発散する。低発散かつ大 電流のイオンビームを生成するためには、引出し電極の 孔径、電極間隔、電極電位を考慮して、電極を設計する 必要がある。

イオン源から引出せる最大ビーム電流は、空間電荷制限電流 Isiで表すことができる[3]。

$$I_{si} = (\frac{2a}{d})^2 \cdot 4.3 \times 10^{-8} \cdot (\frac{1}{M})^{\frac{1}{2}} \cdot V^{\frac{3}{2}}$$
(1)

ここで、a = 引出し孔径, d = 引き出し電極間隔, M = 粒子の質量数, V = 引き出し電圧である。なお引き出し電極間隔 <math>dは、プラズマから2枚目の電極表面までの距離 を表す。またプラズマで生成されるイオン飽和電流 I_{pi} は、

[#] kazuya.nagashima.ev@hitachi.com

$$I_{pi} = 3.0 \times 10^{-13} \cdot a^2 \cdot (\frac{1}{M})^{\frac{1}{2}} \cdot T_e^{\frac{1}{2}} \cdot n$$
 (2)

で表される[3]。ここで、 T_e = 電子温度 [eV], n = プラズマ密度 [1/cm³]であり、a, Mは式(1)と共通である。この 2 式が目標電流値を満たすように引出し電極を設計する。 本研究では、100 mA 以上の大電流イオンビームを生成 するために、引き出し電圧を 50 kV、引出し電極孔径を 12 mm とした。これに加えて、一般的なイオン源の電子 温度 T_e = 15 eV、電子密度 $n = 5 \times 10^{11}$ [1/cm³]を仮定し て、実験的経験より引出し電極孔径と電極間隔のアスペ クト比 2a/d が 1.1 となるように引出し電極構造を基本設 計した[4]。

2.2 高密度プラズマの維持

本研究では、H⁺ビーム生成を想定しており、放電室内 で高密度プラズマを生成・維持して、高い H⁺比率のイオ ンビーム生成を目指す。プラズマを生成する放電室は、 内部がプラズマで満たされた導波管と考えることができる。 通常は、放電室中のプラズマのインピーダンスを考慮し て寸法を決定するが、実験的経験より、真空を仮定して 設計しても、磁場分布の調整によりマイクロ波の吸収率 を十分に高めることができる[4]。そのため、内部が真空 の導波管を仮定して、立体回路理論からプラズマの安定 生成に適した単一モードのみ発生する直径 90 mmの円 筒構造とした。

マイクロ波発振器から出力されたマイクロ波は、一般 的に矩形断面の導波管によって伝送される。一方の放 電室は、磁場生成用コイル内で最大の空間を確保する ために円形断面が使用される。矩形導波管から円形放 電室へのマイクロ波伝送の際の接続部断面形状のミス マッチにより、伝送効率が低下する。断面形状を矩形か ら円形に徐々に変換するテーパ導波管は、滑らかな加 工が難しいため、矩形導波管から円形放電室に接続す るステップ導波管を開発した。ステップ部は、断面周長を、 矩形導波管および円形放電室の断面周長の幾何平均 となるように設計している。また矩形のステップ導波管の 短辺を円形放電室の曲率に合致した形状とした。このス テップ導波管を設けることで、スタブチューナでの調整な しでマイクロ波の反射をほぼ0とすることに成功した。

2.4 電極間放電の抑制

大電流イオンビームの安定動作実現には、引出し電 極間の放電を抑制する必要がある。電極間放電は、プラ ズマ生成用磁場が引出し部へ漏洩して、引出し電極間 でプラズマが生成されることが主な原因と考えられる[5]。 そこで、放電室周辺に磁路を設けて、さらに引出し電極 も磁性体で構成することで、引出し電極部への漏洩磁場 を低減させた。磁路の形状は、放電室内部の引出し電 極近傍で、使用するマイクロ波周波数 2.45 GHz の電子 サイクロトロン共鳴条件である 0.0875 T となるように設計 した。設計モデルを基に解析した磁場分布および実測し た磁場分布を Fig. 2 に示す。この結果より、引出し電極 部への漏洩磁場が低減していることが分かる。また実測 値より、設計通りの磁場分布が生成されていることが示さ れた。イオンビーム生成時には、マイクロ波の反射が低 減するように Fig. 1 に記載の2つのコイル電流値を変更

Figure 2: Axial magnetic field as a function of axial direction position.

2.5 ビーム発散の抑制

引出し電極は静電レンズの役割も果たすため、引出し たイオンビームの発散を抑えることができる。そこで、自 社開発の Boundary-Fit 法を用いた 3 次元軌道解析ソフ ト PISA3D を用いて、ビーム放出面や空間電荷を考慮し たビーム軌道解析より、低発散ビームが生成されるように 2.1 で基本設計した電極構造の詳細を決定した。複数枚 の電極を用いた多段引出しを用いる場合、エネルギー が小さく電界の影響を受けやすい 1 段目の構造が重要 となる。1 段目の電極間隔を変更した際のビーム発散角 を基準に電極構造の詳細を決定した。電極間隔を変更 した際のビーム発散角を Fig. 3 に示す。この結果より、本 開発のイオン源では、ビーム発散角が最小となるように 電極間隔を 12 mm とした。

Figure 3: Divergence angle as a function of extraction gap.

3. イオンビーム特性

イオンビームの特性を評価するために、ビーム中のイ オン種比率およびエミッタンスを測定した。なお、100 mA 以上の大電流 CW ビームに対応した検出器を設置する 代わりに、引出し電極孔径を12 mm から5 mm に変更し て、ビーム電流 40 mA かつ1 msec のパルスビームを用

PASJ2021 THOB05

いて評価を行った。

3.1 ビーム中のイオン種比率

イオン源から 50 keV のエネルギーで引出したイオン ビームを偏向電磁石で偏向しスリットを通過させることで、 ビーム中のイオン種を分離し、比率を測定した[6]。測定 時間ごとのビーム中の各種イオン比率を Fig. 4 に示す。

Figure 4: The ratio of ion species in a beam as a function of measurement time.

プラズマ点火直後から 1 μ sec 程度までは、放電室内 に残った水などから生成されたイオン O⁺、OH⁺、OH₂⁺の 比率が支配的であるが、その後 0.1 msec 程度までは、 H₂⁺, H₃⁺が支配的となる。0.1 msec 以降は、H⁺の比率が 増加して支配的となり、それ以外の不要イオンの比率は 低下する。1 msec では、H₂⁺, H₃⁺の比率はそれぞれ 4.8% と 1.6%まで低下して、H⁺の比率が 90%に達する。H⁺の 比率は、その後も増加傾向にあるため、CW 引出し時に は 90%以上の H⁺比率を達成していると考えられる。

3.2 ビームエミッタンス

Figure 5: Divergence angle as a function of beam position and normalized 90% emittance of the ion beam.

複数個のファラデーカップを 1 mm ピッチで設置した 検出器を用いて、イオンビームのエミッタンスを測定し た [6]。検出器直前に設置した 0.25 mm のスリット位置と 検出器の位置を変化させながらイオンビームの位相空 間分布を測定した結果が Fig. 5 である。この位相空間分 布の 90%を含むようにフィットして計算した 90%規格化エ ミッタンスは、0.32 π・mm・mrad であった。自社開発ソフト PISA3D で計算した 90%規格化エミッタンスが 0.3 π・ mm・mrad であったので、設計値と 10%以内で一致する 実測値が得られた。

4. 大電流単孔 CW 引出し試験

4.1 イオンビームの電流特性

開発したイオン源を用いて、マイクロ波電力および水 素ガスの流量を変化させ時のビーム電流量を測定し、引 出しビーム電流特性を評価した。Figure 6 にマイクロ波電 力に対するイオンビーム電流量を示す。

Figure 6: The beam current as a function of micro-wave power.

マイクロ波電力の増加に伴ってビーム電流量も増加して、 マイクロ波電力 1200 W 時に最大電流 200 mA の CW ビームが得られた。実際に有効利用可能な低発散の ビームを生成するには、設計電流値付近の 125~150 mA となるマイクロ波電力 875 W の条件を使用する。

Figure 7: The beam current as a function of the gas flow.

PASJ2021 THOB05

Figure 8: The beam current and degree of vacuum as a function of measurement time.

また Fig. 7 には、水素ガス流量に対するビーム電流量 を示す。水素ガス流量の増加に伴って、ビーム電流量も 増加する。ガス流量が 5 sccm を超えるような条件では、 放電室内部や引出し電極部で放電が起こるため、大電 流かつ安定動作が実現できるガス流量は 4.5 sccm 程度 が適切と思われる。

4.2 大電流 CW 引出しビームの安定性

単孔 CW 引出し大電流イオン源の安定ビーム引出し を実証するために、引出し孔径 12 mm、引出し電圧 50 kV、マイクロ波電力 875 W、ガス流量 4.5 sccm の条 件で、長時間 CW 引出し試験を実施した。Figure 8 は、 測定時間ごとのビーム電流および真空度を表している。 試験開始後 5 分程度で 125 mA のビーム電流に達して、 ビーム電流量調整のための 2 度の水素ガス流量を調整 後には、140 mA のビーム電流を達成した。その後、真空 度を一定に保つように水素ガス流量を調整することで、 140 mA のビーム電流量を維持することができた。上記結 果より、2 時間以上の 100 mA 級 CW 単孔引出しにおい て、無放電の安定動作を確認した。

5. まとめ

単孔 CW 引出しの大電流イオン源を実現するために、 引出し孔径 12 mm、引出し電圧 50 kV のイオン源を開発 した。100 mA 以上の低発散イオンビームを安定にイオン 源から引出すために、引出し部への漏洩磁場を低減す る磁路を設置し、軌道解析に基づいて電極間隔を詳細 設計した。開発したイオン源の単孔 CW 引出し試験によ り、140 mA の大電流イオンビームを 2 時間以上無放電 で安定に引出せることを実証した。今後は、イオン源から 引出した大電流ビームを RFQ まで輸送する際の空間電 荷による発散を考慮した輸送系を開発する。

参考文献

- [1]「加速器」Vol. 13, No. 4, 2016 (253 258).
- [2] M. Tanaka et al., Rev. Sci. Instrum. 79, 02B317 (2008).
- [3] 石川順三:イオン源工学, アイオニクス株式会社, 1986.
- [4] T. Seki et al., "大電流酸素イオン注入用マイクロ波イオン 源の特性", Journal of the Vacuum Society of Japan, 42 (7), 670-675, 1999
- [5] T. Iga *et al.*, "A compact and high-proton-yield microwave ion source for proton linac", Proceedings of the 1st International Particle Accelerator Conference, Kyoto, May 23-28, 2010.
- [6] M. Tanaka *et al.*, "Production of high-current proton beams with a microwave ion source for accelerators", Proceedings of the 10th International Conference of Ion Source, Dubna, 2003, WP 36.