PASJ2021 TUP050

日本大学電子線利用研究施設 PXR ラインにおけるテラヘルツ光源の研究開発

RESEARCH AND DEVELOPMENT OF TERAHERTZ SOURCES AT LEBRA-PXR BEAM LINE IN NIHON UNIVERSITY

境 武志^{#, A)}, 清 紀弘^{B)}, 早川恭史^{A)}, 住友洋介^{A)}, 早川 建^{A)}, 田中俊成^{A)}, 野上杏子^{A)}, 高橋由美子^{A)}, 斉藤広斗^{A)}, 廣原 匠^{A)}

Takeshi Sakai^{#, A)}, Norihiro Sei^{B)}, Yasushi Hayakawa^{A)}, Yoske Sumitomo^{A)}, Ken Hayakawa^{A)}, Toshinari Tanaka^{A)}, Kyoko Nogami^{A)}, Yumiko Takahashi^{A)}, Hiroto Saito^{A)}, Takumi Hirohara^{A)}

^{A)} Laboratory for Electron Beam Research Application (LEBRA), Nihon University

^{B)} National Institute of Advanced Industrial Science and Technology (AIST)

Abstract

Development of a 125 MeV S-band electron linac for the generation of terahertz radiation (THz) has been underway at LEBRA in Nihon University as a joint research with KEK and National Institute of Advanced Industrial Science and Technology (AIST). The THz measurement system can now be used in low-humidity environments by improving the humidity measurement system, and we have confirmed that the THz intensity increases by about 30% in low-humidity conditions. Based on the previous development of light sources, we are now developed new THz light sources. We have been developed the Coherent Cherenkov radiation (CCR) source using the High-Resistivity Silicon hollow circular truncated cone and the Coherent Transition Radiation (CTR) optical vortex source using the helical structure metal target. In this paper, we report on the improvement of the dry air measurement system and the development of the THz sources.

1. はじめに

日本大学電子線利用研究施設 LEBRA では、高エネ ルギー加速器研究機構との共同研究によりSバンド電子 線型加速器の高度化を進め、加速器で加速した最大エ ネルギー100 MeV の電子ビームを用いて、FEL とパラメ トリック X 線放射 (PXR)の光源開発を進めている。各光 源は、日大内外の共同利用施設として、各種共同利用 実験に用いている[1-4]。また、産業技術総合研究所 (AIST)との共同研究も進めており、FEL 及び、PXR 各 ビームラインにおいて、テラヘルツ波 (THz) 光源開発を 行っている[5-9]。

FEL ラインでは、上流側の偏向電磁石からのコヒーレント遷移放射光源の基礎測定を参考に、アンジュレーター下流側に設置している 45°偏向電磁石で発生させた THz 領域のコヒーレントエッジ放射(CER)光源開発を行った。LEBRA での THz-CER 光源の大きな特徴として、FEL と THz 輸送光路の交差箇所に酸化インジウムスズ蒸着ミラーを用いており、FEL 輸送ビームラインへ THz-CER 光を重畳する事が可能な光学系であることが挙げられる。この光学系は、FEL の発振を妨げることなく、THz-CER を同時測定可能であり、FEL 発振の調整の指標にも使うことができている[10]。

PXR ビームラインでも、2013 年度から THz 領域のコ ヒーレント遷移放射(CTR)、偏向電磁石からの CER 等 の基礎測定、輸送光学系の設置を行っている。これまで の光源開発を踏まえ、2019 年度から、放射源に形状を 工夫した誘電体中空円錐管を用いた平面波コヒーレント チェレンコフ放射(CCR)源の製作に取り組んでいる。ま た 2021 年度からは新たに CTR 光源部分を改良して、ら せん状の金属ターゲットを用いた簡易的なテラへルツ帯

sakai@lebra.nihon-u.ac.jp

域 CTR の光渦光源開発を進めている。光源のユーザー 利用研究も進めているため、光学輸送系及び、測定系も 改良をおこない、輸送系では FEL ライン光学系を参考に、 トロイダルミラーへ交換している。測定系では、超乾燥空 気システム用に低湿度時でも測定できる絶対湿度測定 を導入した。本発表では、PXR ラインでの各光源開発状 況に関して報告する。

2. LEBRA125MeV 電子線形加速器と各光源

日本大学 LEBRA 125 MeV 電子線形加速器の概要 図を Fig. 1 に、仕様を Table 1 に示す。加速器の主な構成は、-100 kV 三極管タイプの DC 電子銃、プリバン チャー、バンチャー、4 m の S バンド加速管 3 本から構成されており、高周波源には出力電力 20 MW の真空排 気系を強化し、パルス幅 20 µs の長パルス動作させてい るクライストロン 2 台を用いている。ビーム電流 200 mA (フルバンチモード)、繰り返し最大 12.5 Hz、ビームパル ス幅 5~20 µs で通常は運転しており、利用実験に必要 なビームエネルギーに応じて 40~100 MeV の間で変更 している。また加速周波数 2856 MHz の 64 分周、128 分 周の間欠的にビームを引き出すバーストモードでの運転 も可能であり、バーストモード運転時はフルバンチモード に比べ、ビーム電流を1 桁程度多くすることができる。

加速された電子ビームは、FEL ビームライン、もしくは パラメトリック X 線放射 (PXR) 発生用ビームラインに送ら れる。各光源の実績としては、FEL は非線形結晶を用い た高調波の発生方式を導入しており、0.4~6.3 µm の波 長領域で利用実験に用いられている。また、PXR は Si(111)、Si(220)、ダイヤモンド結晶を用いることで 4~ 60 keV までの領域をカバー可能であるが、基本的には Si(220) を用い、エネルギーは 34 keV 程度までを利用 実験に用いている[1-4]。

Figure 1: Layout of the 125MeV electron linac, PXR line, FEL line and THz line at LEBRA.

Table 1: Specifications of the LEBRA 125 MeV Electron Linac and FEL, PXR and THz Light Sources

Accelerating RF frequency	2856 MHz
Beam Energy	40~100 MeV
Macropulse duration	$5\sim 20~\mu s$
Klystron peak RF power	20 MW
Repetition rate	$2 \sim 12.5 \text{ pps}$
Macropulse beam current	200 mA
FEL wavelength*	$0.4\sim 6.3~\mu m$
PXR energy	$4\sim 60\;keV$
THz wavelength	$0.1 \sim 4.0 \ THz$
FEL line	CER
PXR line	CTR, CER, CSR
THz Power	$\sim 1.0 \text{ mJ}$

* 0.4~1.3 μ m: results obtained by nonlinear beta barium borate (BBO) crystal.

PXR ライン THz 輸送ライン及び、測定系の改良

LEBRAのPXRビームラインでは、導体薄膜へ高エネ ルギー電子ビームを当てて発生させるコヒーレント遷移 放射、偏向電磁石で発生させるコヒーレントエッジ放射 光源の開発を行っており、2019年度から新たにTHz帯 域のコヒーレントチェレンコフ放射(CCR)光源も開発を 始めている[9,11]。

THz 光輸送重畳ラインでは、輸送系に用いていたミ ラーが平面ミラーであったため、重畳させる直前のミラー で収差が発生し、プロファイルに問題があった。そこで、 FEL ライン直線部の THz 輸送系でも採用したトロイダル ミラーを参考に、PXR ラインにもトロイダルミラー(水平面 曲率半径:2.179 m、垂直面曲率半径:2.032 m)を採用し た。トロイダルミラーにする事で、THz-CER のビームプロ ファイルを調整している。

THz の干渉計等は、グローブボックスを改造した測定 系を用いている。さらにこの測定系では、超乾燥空気シ ステム(CKD 製 HD1.5 [12])を導入することで、低湿度環 境で大気中の水の吸収の影響を受けにくくすることがで きている。しかし、これまで用いていた湿度計は、簡易型 の湿度計(おんどとり TR-72nw-S[13])を用いており、仕 様上、相対湿度 10%以下の低湿度環境では、正しい値 を表示できず、問題となっていた。そこで、低湿度環境で も正しく測れるように、絶対湿度センサー(TAA80[14])を 導入した。

PXR 取出しポートから取り出した THz-CER を乾燥空 気の測定系へ入れ、1.0 THzバンドパスフィルターを用い て CER の強度を測定した。測定時は、室温 25.55± 0.05 ℃であり、乾燥空気を入れていない状態から、徐々 に乾燥空気を入れ測定した。測定した湿度と CER 強度 の関係をFig.2 に示す。図中の直線は、HITRANのデー タを用いて[15]、測定時の室温、気圧、建屋の標高で補 正したデータである。図を見てわかるように、測定された 強度と相対湿度の関係によく一致しており、新しい測定 系では、相対湿度 1 %程度まで問題無く測定できる事 が確認できた。ただし、低湿度時の変動が大きい事も分

PASJ2021 TUP050

かった。これは、電子バンチの変動による影響を受けや すいためであり、参照光用のバンドパスフィルターを検討 する必要があることが分かった。また、測定時は2月の空 気が乾燥した時期で、定常時でも湿度は低い状態 (20%程度)ではあったが、乾燥空気を入れる前の状態 に比べて、低湿度時(1%以下)には、THz光の強度は 20~30%程度上がることが確認できた。

Figure 2: THz-CER power and humidity measurement data in the box. The red line is the value from the HITRAN database corrected by the environmental parameters being measured.

4. PXR ラインにおける THz 光源の新規開発

PXR ラインの CTR 発生に用いているチェンバー部を 改良し、高抵抗 Si 製の中空円錐管を用いたテラヘルツ 波領域のコヒーレントチェレンコフ放射光源 (CCR)の開 発を進めている[16]。また、上部に設置しているターゲッ ト部分を改良し、らせん構造の導体ターゲットを用いた THz-CTR の光渦光源開発を 2021 年度から開始し、そ れぞれテストを始めている。発生部の概要図を Fig. 3 に 示す。

Figure 3: Schematic of a Coherent Cherenkov Radiation (CCR) source and a Coherent Transition Radiation (CTR) sources. (a) Back side. (b) Front side.

THz-CCR 光源には、早稲田大学で研究開発されている傾斜ビームによるコヒーレントチェレンコフ放射のような誘電体に直接電子ビームを通過させるような構造ではな

く[17]、東北大学電子光理学研究センターの t-ACTS で 開発されている非破壊ビーム位置モニターと同様な形状 の中空管構造を採用しており[18]、電子ビーム損失を無 視する事ができる。また、THz 帯域で透明な誘電体を用 いることで、誘電体内における吸収を無視できるため、本 装置では、高抵抗 Si を採用している。更に大きな特徴と しては、ビーム入射方向に対して、円錐形にしているた め、円錐管内で発生した CCR は、円錐管底面で位相を そろえることが可能であるという事が挙げられる。現在 THz-CCR に関しては基礎実験を進めている。

THz-CCR 光源に加えて、THz-CTR 光渦光源開発も 行っており、これまでの PXR ラインにおける CTR 光源開 発で用いていた光源部を使うことで、加速器で加速され、 短バンチ化された質の良い電子ビームを金属ターゲット に当て生成させる事を目指している。加速器ベースで発 生させる光源であるため、ミクロパルスあたりの強度が高 いといった特徴がある。将来的には、厚さ方向が可変な 金属ターゲットをらせん状に配置させ、THz-CTR 生成を 目指し、開発を計画している。

5. まとめと今後の課題

PXR ラインでは、THz 帯域におけるエッジ放射(CER)、 遷移放射(CTR)に加え、新たにコヒーレントチェレンコフ 放射(CCR)光源の開発を進めている。超乾燥空気を用 いた測定系では、新しく絶対湿度センサを導入し、低湿 度時でも測定が可能となった。HITRAN を用いた強度と 相対湿度の関係は測定結果によく一致しており、新しい 測定系では、相対湿度 1 %程度まで測定が問題無いこ とが確認できた。また低湿時(1 %以下)は、THz 光の強 度が 20~30 %程度強くなることを確認できた。現在は、 高抵抗 Si 製中空円錐管を用いた THz-CCR 光源開発、 らせん構造ターゲットを用いた THz-CTR 光渦の光源開 発を開始している。

今後の課題として、現状の測定系では、低湿時のTHz 出力強度は電子バンチの変動の影響を受けやすいため、 参照光用のバンドパスフィルターを検討中である。また 高抵抗 Si 製中空円錐管を用いた THz-CCR 光源のプロ ファイル、強度測定、らせん構造ターゲットを用いた THz-CTR 光渦の光源テストを行う予定である。

謝辞

本研究開発の一部は JSPS 科研費 16H03912、 JP19H04406、21K12539の助成を受けて行いました。

参考文献

- [1] T. Sakai, "Development and application of electron linac at LEBRA in Nihon University", 放射光 May 2021 Vol.34 No.3, pp.153-162.
- [2] Y. Hayakawa, "Development of X-ray Source Based on Parametric X-ray Radiation at Nihon University", J. Particle Accelerator Society of Japan, Vol.6, No.2, 2009, pp.166-177.
- [3] Y. Hayakawa *et al.*, "First lasing of LEBRA FEL at Nihon University at a wavelength of 1.5 μm", 2002 Nucl. Instrum. Methods Phys. Res., Sect. A 483 29.
- [4] K. Nogami *et al.*, "Status of 125 MeV electron linac and light sources at LEBRA in Nihon University", Proceedings of the 18th Annual Meeting of Particle Accelerator Society of Japan, Aug. 9-12, 2021, this meeting.

Proceedings of the 18th Annual Meeting of Particle Accelerator Society of Japan August 9 - 12, 2021, QST-Takasaki Online, Japan

PASJ2021 TUP050

- [5] T. Sakai *et al.*, "Evaluation of Bunch Length by Measuring Coherent Synchrotron Radiation with a Narrow-Band Detector at LEBRA", Condens. Matter 2020, 5(2), 34; https://doi.org/10.3390/condmat5020034
- [6] N. Sei *et al.*, "Observation of intense terahertz-wave coherent synchrotron radiation at LEBRA", J. Phys. D, vol. 46, pp. 045104, 2013.
- [7] Y. Hayakawa *et al.*, "X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation", doi:10.1088/1748-0221/8/08/C08001.
- [8] N. Sei *et al.*, "Characteristics of Transported Terahertz-wave Coherent Synchrotron Radiation at LEBRA", in Proceedings of FEL2014, Basel, Switzerland, p541-544.
- [9] Y. Hayakawa *et al.*, "Project on the superposition of beamlines for parametric X-ray radiation and coherent transition radiation in the THz region at LEBRA", Journal of Physics: Conference Series 732 (2016) 012013.
- [10] T. Sakai *et al.*, "Development of coherent edge radiation source at FEL beam line in LEBRA", Proceedings of the 16th Annual Meeting of Particle Accelerator Society of Japan, July 31 - August 3, 2019, Kyoto, Japan, pp.465-467.
- [11] N. Sei *et al.*, "Millijoule terahertz coherent transition radiation at LEBRA", Jpn. J. Appl. Phys. 56, 032401 (2017).
- [12]CKD Corp.; https://www.ckd.co.jp/kiki/jp/product/detail/82/HD?t=lis t&cid=75&sid=0
- [13]T&D Corp.;
- https://www.tandd.co.jp/product/tr7wbnw_series.html [14] Toplas Engineering Co., Ltd;
- https://www.toplas-eng.com/humidity_measurement/21_ taa80c.html
- [15] The HITRAN Database; https://hitran.org/
- [16] N. Sei *et al.*, "First demonstration of coherent Cherenkov radiation matched to circular plane wave", Sci. Rep. 2017 Dec 12; 7(1):17440.
- [17] Y. Tadenuma et al., "DESIGN OF THE OPTICAL CAVITY FOR THE ENHANCEMENT OF COHERENT CHERENKOV THZ RADIATION", Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan, September 2 - 4, 2020, Online, pp.238-240.
- [18] K. Nanbu et al., "DEVELOPMENT OF BEAM MONITOR UTILIZING CHERENKOV RADIATION", Proceedings of the 17th Annual Meeting of Particle Accelerator Society of Japan September 2 - 4, 2020, Online, pp.482-484.