

高周波窓に用いられるセラミックに関する研究

京セラ株式会社 山本裕亮(報告) 吉住浩之 中村勝美 高エネルギー加速器研究機構 山本康史 道園真一郎

PASJ2021 WEOA02, Y. YAMAMOTO - 1/14

目 次

- 1. 大型高周波窓の課題
- 2. 共同研究の方針
- 3. 試験方法·結果
 - 3-1 二次電子放出係数
 - 3-2 比誘電率·誘電正接
 - 3-3 表面抵抗率·体積抵抗率
 - 3-4 TiNコーティングの分析
- 4. まとめ・今後の方針

PASJ2021 WEOA02, Y. YAMAMOTO - 2/14

1. 大型高周波窓の課題

高周波窓

- 粒子加速器では、クライストロンで発生 させたマイクロ波を導波管を通して加速 空洞に入射して荷電粒子を加速させる ため、クライストロン、導波管、加速空 洞(入力カップラー)それぞれの仕切りと してセラミック製の高周波窓(RF窓)が 必要になる。
- 大電力高周波運転時における発熱を 抑制するため低誘電正接が必要
- セラミック表面上のマルチパクタ放電を 抑制するため低二次電子放出係数 (δ_{SEE})が必要

図1 高エネ研STF 高周波窓の使用例

京セラ株式会社

- 一般的なアルミナセラミック:サイズ大きくなると誘電正接が高くなる傾向
- 近年、加速器の大型化により大型の高周波窓(RF窓)のご依頼が増加
- 今まで採用されているアルミナ材料(AO479B)はサイズによっては誘電正接が増加
- 高周波窓のサイズに依存しない新たな低誘電正接材(AO479U)を開発

<u>2. 共同研究の方針</u>

■ 目的

京セラと高エネルギー加速器研究機構が共同研究にて、国際リニアコライダー(ILC) 計画をモチーフに高周波窓としての必要特性を満たす材料・プロセスを開発することに より将来の加速器の性能向上に貢献する

■評価項目

表 1

評価項目	測定方法	測定場所			
二次電子放出係数 (δ _{SEE})	次頁以降に詳細を記載	KEK			
表面抵抗率·体積抵抗率	直流3端子法	JFCC			
比誘電率・誘電正接	空洞共振器法 (1GHz、2GHz)	AET			
	円柱共振器法 (1.3GHz)	京セラ			
デプスプロファイル	XPS、Ar+スパッタ	京セラ			

二次電子放出係数 表面・体積抵抗率: 誘電正接: デプスプロファイル:

京セラ株式会社

マルチパクタ放電の起こりやすさに関係 絶縁材料としての性能の確認 高周波を通した時の発熱に関係 TiNコーティングの厚みなどの状態の調査

PASJ2021 WEOA02, Y. YAMAMOTO - 5/14

図4 二次電子放出係数測定装置概略図

京セラ株式会社

PASJ2021 WEOA02, Y. YAMAMOTO - 6/14

■ 下記表のサンプルを用意して、加速器製造工程による二次電子放出係数への影響を調査
 ① セラミック材質の差異
 ② TiNコーティングの有無
 ③ 熱処理の有無
 ④ TiNコーティング会社の差異
 ⑤ 洗浄方法

表 2

			工程③	工程④	工程(5)
磁器作製 (アルミナ純度)	メタ焼成	コーティング	熱処理 (HT)	熱処理 (HT)	洗浄方法
	\rightarrow	\rightarrow	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
	メタライズ焼成	\rightarrow	Auロウ付け (at 1000℃)	\rightarrow	エタノール超音波洗浄 (USR)
	メタライズ焼成	\rightarrow	\rightarrow	Agロウ付け (at 800℃)	エタノール超音波洗浄 (USR)
	メタライズ焼成	\rightarrow	Auロウ付け (at 1000℃)	Agロウ付け (at 800℃)	エタノール超音波洗浄 (USR)
AO479U	メタライズ焼成	\rightarrow	Auロウ付け (at 1000℃)	Agロウ付け (at 800℃)	オゾン水洗浄 (O₃)
(99.6%)	\rightarrow	TiN A社	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
	メタライズ焼成	TiN A社	Auロウ付け (at 1000℃)	\rightarrow	エタノール超音波洗浄 (USR)
	メタライズ焼成	TiN A社	Auロウ付け (at 1000℃)	Agロウ付け (at 800℃)	エタノール超音波洗浄 (USR)
	メタライズ焼成	TiN A社	Auロウ付け (at 1000℃)	Agロウ付け (at 800℃)	オゾン水洗浄 (O₃)
	メタライズ焼成	TiN B社	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
AO479B	\rightarrow	\rightarrow	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
(99.7%)	\rightarrow	TiN A社	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
AO473A	\rightarrow	\rightarrow	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
(93%)	メタライズ焼成	\rightarrow	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
HA95	\rightarrow	\rightarrow	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)
(95%)	\rightarrow	TiN A社	\rightarrow	\rightarrow	エタノール超音波洗浄 (USR)

※ 工程は左から順におこなう。→は工程を実施せず次の工程へ進む。

京セラ株式会社

^{《Kyocera}3-1 二次電子放出係数 ②結果

京セラ株式会社

⑪δ_{SFF}のオゾン洗浄(O₃)の影響は確認できず

^{《Kyocera} 3-2 比誘電率・誘電正接 ①

- 測定場所: AET
- サンプル形状: 80mm x 3mm x 1 mm
- 周波数: 1GHz, 2GHz
- 測定モード: TM₀₁₀
- サンプル数: 1~5

図7 セラミックサンプル

図8測定装置

図10アルミナ材の誘電正接

AO479Uは2×10⁻⁵でAO479Bと同程度 AO479Uは熱処理で変化は無し AO473Aは純度が低いため3×10⁻⁴程度と高い

PASJ2021 WEOA02, Y. YAMAMOTO - 9/14

<u>3-2 比誘電率・誘電正接 ②</u>

- 測定場所: Kyocera
- サンプル形状: Φ102.5 x 51.3 mm

1

- 周波数: 1.3GHz
- 測定モード: TE₀₁₁
- サンプル数:

図 11 セラミックサンプル

1.E-03

loss tangent 1.E-04

1.E-05

0.5

1.0

1GHzと2GHzと同程度

1.5

2.0

Frequency [GHz]

AO479Uの1.3GHzにおける誘電正接は、

2.5

図14 アルミナ材の周波数に対する誘電正接

3.0

3.5

Dielectric

Resonator cavity

• AO479B

AO479U

• AO473A

S band Cavity

▲ AO479U

AO479U

Dielectric resonator

AO479Uの1.3GHzにおける比誘電率は、 1GHzと2GHzと同程度

京セラ株式会社

^{《KYOCERa} <u>3-3 表面抵抗率・体積抵抗率</u>

- 測定場所: JFCC
- サンプル形状: φ19 x 1 mm
- 印加電圧: 1 kV
- 加圧:
- 乾燥:
- 10kgf 200℃/2 hours 1 hour
- 測定時間:

図15 セラミックサンプル

京セラ株式会社

PASJ2021 WEOA02, Y. YAMAMOTO - 11/14

KYOCERa 3-4 TiNコーティングの分析

- □ TiNコーティングしたアルミナを、Ar+をスパッタしながら、XPSにて原子濃度を 測定することで、深さ方向の原子濃度の変化のデータが取得でき、TiNコー ティングの組成の確認や膜厚の推定をする
- □ 膜厚の推定は、チタン(Ti)濃度が最大値の1/2となった時の厚みとした

- サンプル形状:
- スパッタリングイオン種:
- スパッタリングレート:

京セラ株式会社

- X-ray Photoelectron Spectroscopy
- Φ19 mm x 1 mm
- Ar⁺
- 9 nm/min

PASJ2021 WEOA02, Y. YAMAMOTO - 12/14

KYOCERa

<u>3-4 TiNコーティングの分析</u>

<u>4. まとめ・今後の方針</u>

- まとめ
- 二次電子放出係数は、アルミナ材質によって差異はあるが、TiNコーティング後では アルミナ材質によらず一定であった
- 比誘電率はAO479Bは9.8、AO479Uは9.6程度で、誘電正接は両材料とも 2×10⁻⁵程度であった
- 体積抵抗率は、AO479BとAO479Uは10¹⁷Ω/□で同等であった
- 表面抵抗率はAO479Bが10¹⁷Ω・cmに対して、AO479Uは10¹⁵Ω・cmとあった 差異は別日に測定したことが影響している可能性がある

以上より、AO479Uは現行材料AO479Bと同等の特性が得られたため、 高周波窓、特に大型品において、AO479Uの使用が可能と考える。

- TiNコーティングは施工メーカーによってコーティングの組成や厚みが異なる
- コーティングはTi厚みが厚いほど二次電子放出係数が下がる結果となった
- 今後の方針

熱処理による二次電子放出係数の上昇の原因調査と、安価なコーティング手法 についてKEKと共同研究を進めてまいります。

京セラ株式会社

PASJ2021 WEOA02, Y. YAMAMOTO - 14/14