放射光施設ニュースバルの新入射加速器の タイミング・低電力高周波制御システム

> 大島隆^{#, A,B)}, 細田直康^{A,B)}, 前坂比呂和^{B)}, 岩井瑛人^{A,B)}, 出羽英紀^{A)}, 松原伸一^{A)}, 吉岡正倫^{C)}, 皆川康幸^{C)}, 稲垣隆宏^{A,B)}, 上島 考太^{D)} ^{A)}JASRI ^{B)}RIKEN ^{C)}SPring 8 service ^{D)}QST

第18回加速器学会年会

- ・はじめに
- LLRFシステムへの要求項目と方針
- •マスタユニット (Li-SR同期)
- マスタトリガ・マスタクロックの伝送
- サブユニット (空洞位相・振幅制御)
- 空洞ピックアップ信号の安定度
- ・まとめ

はじめに

- New SUBARU (NS)
 - 兵庫県立大が運用する放射光施設
 - 1GeV/350mAのTopUp 運転, 1.5GeV decay運転
 - ・主に軟X線放射光の産業利用に向けた研究
 - SPring-8の入射器からビーム供給していた
- •1GeV線型加速器のシャットダウン
 - SPring-8へSACLAから入射開始(SP8 upgradeを見据えて)
 - このままではNSの入射器が無くなる
- •新入射器の建設
 - •1GeVのエネルギー 0.3nCの電荷 1ppsの繰り返し
 - ・ グリッド付き熱電子銃, 238MHz, 476MHz 空洞,
 2856MHz(SB), 5712MHz(CB) 加速管の構成

Low Level RF システムへの要求項目と方針

- 要求
 - リングへの入射効率90%以上
 - 振幅安定度 8E-4以下 位相安定度0.2以下
 - SRとLinacとのタイミング同期 <~5ps rms
 - •高信頼性 低コスト
- MTCA.4規格のモジュールを中心に構成
 - 高集積、高速データ転送、省配線、
 モジュールのマネジメント機能
 - 市販品で賄える機能はそのモジュールを使用
 - 16bit 250Ms/sデジタイザ
 - CB, SB, 476MHzダウンコンバータRTM
 - crate, MCH, CPU, Power Supply
 - 市販品に無いものは新規開発
 - タイミング同期用RTM
 - トリガ伝送用AMC

マスターユニットとサブユニット

19"ラックに LLRFモジュールを実装 マスターユニット:クロック生成・タイミング同期 サブユニット :加速空洞のパルス成形、位相振幅安定化

マスタユニット

SRの狙ったバケットと同期したlinacマスタ トリガの生成

- linacのマスタ クロック
 - linacの基準238MHzクロック信号を storage ringの基準500MHzクロック信号からつくる。

$$f_{li} = \frac{m}{n} \times f_{sr} = \frac{308}{647} \times 499.9555 \text{ MHz} \cong 238 \text{ MHz} \times (1 + 1.2 \times 10^{-6})$$

- linacのマスタ トリガ
 - 次の信号の同期
 - AC60Hz
 - SRの狙ったバケットアドレスM
 - 238MHz
 - 500MHzと238MHzが同期するタイミング

$$f_{syncli} = \frac{f_{sr}}{n} = \frac{f_{li}}{m} \cong 0.77 \text{ MHz} \cong \frac{1}{1.3 \ \mu s}$$

 これをL回だけ待つ $_{2}/_{2} = mod(M \times 71, 198)$

mod(*a.b*) は*a*を*b*で割ったときの剰余 71は mod(kx53,198)=美となる最初的表生会 198はリングのハーモニク数

İsr

トリガ・クロック伝送

linacマスタトリガと基準RF信号を低ジッタで伝送

Linacマスタトリガ:RTM-sync (新規開発) トリガの伝送:AMC-trig (新規開発) SFPコネクタの光送信器でサブユニットに伝送 サブユニットのAMC-trigで238MHzに再同期 Linacマスタクロック

m/n信号発生器にて生成
 位相安定化ファイバ経由(~200m)
 238MHz信号をサブユニットに伝送
 サブユニットのクロック発生器で
 必要な信号をVOC/PLLを使って発生

master triggerと238MHz clock とのジッタ ~6ps rms

各サブユニットで	
測定した位相雑音 < ~1ps	rms

		-
frequency	integral of phase	
[MHz]	noise [fs rms]	_
500	70	SRて
238	288	タイ
476	1062	
2856	第18回加速	器学会年会
5712	248	

• IQ 励振・検出 SBの例

LLRF (パルス成形・検出)

CB [deg]

100

200

300

100

200

300

サブユニット(励振信号のひずみ補正) 空洞励振信号の制御性向上

- Vector ModulatorとしてIQミキサと2chのDACを使用
- ・位相・振幅にひずみが見られた 振幅 ~ ±20% 位相 ~ ± 20deg
- I,Qのオフセット、ゲイン誤差、軸の直交 からのズレ をパラメータとして補正
- 振幅±1% 位相±0.5deg に収まった

サブユニット (RTM内蔵アッテネータの補正)

空洞位相・振幅検出の精度向上

- RF信号入力部アッテネータの機能
 0.5dBステップで 0dB~31.5dB
- 設定を変えた際の誤差を減らしたい
 - [例] 23dB: クライストロン励振時
 - OdB:ビーム誘起信号の位相測定
- 誤差測定方法

2021/

- Pin =+0dBm, Att= 0dB :A[0dB], P[0dB]
- Pin =+0dBm, Att=-6dB :A[-6dB], P[-5dB]
- dA/A[-5dB]=A[-6dB]*10^(6/20)/A[0dB]
- dP =P[-6dB]-P[0dB]

─®─沪inの大きさは適宜変更

CBのRTMの例

空洞ピックアップ信号の位相・振幅

1時間の測定から求めた電圧・位相変動 (rms)

238 MHzピックアップ信号の例

	dV/V	required	dp [deg]	required
238	7.0E-04	8.0E-04	0.098	0.5
476	2.9E-04	1.5E-03	0.170	0.2
sb	6.4E-04	3.0E-03	0.107	0.5
cb1	6.7E-04	3.0E-03	0.064	2.5
cb2	5.3E-04		0.068	
cb3	8.9E-04		0.088	
cb4	5.3E-04		0.090	

- •結果
 - 位相振幅の安定度は要求値を満足している

RF 制御GUI 画面の例

RF Control CB

_ 🗆 X

- ・兵庫県立大学の放射光施設NewSUBARUの入射器のタイミング・LLRFシステムをMTCA.4規格のモジュールで構築した
- 達成した加速空洞の振幅・位相安定度は要求を満たしていた
- 安定したビーム運転が継続されている
- 同様のシステムを 仙台に建設中の3GeV次世代放射光施設に 導入予定である