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Abstract

Automatic coding of short text responses opens new doors in assessment. We imple-
mented and integrated baseline methods of natural language processing and statistical
modelling by means of software components that are available under open licenses.
The accuracy of automatic text coding is demonstrated by using data collected in the
Programme for International Student Assessment (PISA) 2012 in Germany. Free text
responses of 10 items with n = 41, 990 responses in total were analyzed. We further
examined the effect of different methods, parameter values, and sample sizes on per-
formance of the implemented system. The system reached fair to good up to excel-
lent agreement with human codings (:458 � k � :959): Especially items that are
solved by naming specific semantic concepts appeared properly coded. The system
performed equally well with n � 1, 661 and somewhat poorer but still acceptable
down to n = 249: Based on our findings, we discuss potential innovations for assess-
ment that are enabled by automatic coding of short text responses.
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In automatic coding of short text responses (AC), a computer categorizes or scores

short text responses. Such open-ended response formats, as opposed to closed ones,

can improve an instrument’s construct validity (e.g., for mathematics: cf. Birenbaum

& Tatsuoka, 1987; Bridgeman,1991; for reading: cf. Millis, Magliano, Wiemer-

Hastings, Todaro, & McNamara, 2011; Rauch & Hartig, 2010; Rupp, Ferne, & Choi,

2006). Yet today, closed formats have become state of the art, because they allow

data to be easily processed and are more objective in nature. They do not require

human coders, who entail some disadvantages (cf. Bejar, 2012): their subjective per-

spectives, varying abilities (e.g., coding experience and stamina), the need for con-

sensus building measures, and, in turn, a high demand on resources. Taking a step

back and reconsidering the response format’s impact on construct validity, one rea-

lizes that these well-founded practical reasons in favor of closed formats might not

be the most important decision criteria. Construct validity is the very base of all sub-

sequent outcomes (e.g., analysis, conclusions, treatments) and, hence, can be claimed

to be the most important criterion. Closed response formats should be used when the

construct definition demands, or is supported by, closed response formats, and open-

ended formats should be used when the construct definition requires open-ended

ones.

One way to avoid or to compensate weaknesses of human coding is AC. Its

employment has several implications. First, it is internally more consistent, because

the final system is deterministic and always takes the same decision paths. This, in

turn, circumvents consensus building measures. Second, the computer has stamina

not to fatigue even at big data. Third, the coding of a new, unseen text response is

done instantly and, thus, opens new doors in assessment. For example, computer

adaptive testing (CAT) is constrained to the use of response formats that can be eval-

uated immediately. AC enlarges the scope of CAT to open-ended text responses. On

the other hand, fourth, an AC system has its own limitations, errors, and costs (e.g.,

software development, manual coding for training data, etc.). The reader might

notice that we use the term coding instead of the common scoring. That is because

we regard scoring as a special case of coding and do not want to restrict AC’s scope.

In coding, a nominal category is assigned to an element; for example, a response

could be categorized as either dealing with a financial or social aspect. On the other

hand, in scoring, the categories additionally have a natural order; in the example, the

social response could be favored over the financial one.

Since Carlson and Ward (1988), several research groups have been dealing with

natural language processing (NLP) striving to automatically code short text

responses. But in contrast to the strongly related field of essay grading, the respective

methods are not commonly used in practice. Reasons for this, among others, may be

proprietary licenses, under which most off-the-shelf software in this field is pub-

lished, as well as a general human skepticism toward machines processing natural

language (cf. Dennett, 1991).

In fact, a large number of open NLP libraries are available that can be combined

with statistical components. In this article, we propose a collection of baseline
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methods and related software components that can be used under open licenses. We

implemented and integrated these components and report analyses demonstrating the

method collection’s feasibility and accuracy by applying it to data assessed at the

Programme for International Student Assessment (PISA) 2012 in Germany. PISA is

initiated by the Organisation for Economic Cooperation and Development (OECD)

and assesses scientific, mathematical, and reading literacy in a large-scale context,

partly by administering open-ended items. Large-scale assessments, in particular,

typically require enormous effort and resources in terms of human coding of open-

ended responses. Naturally, they are a highly suitable field to apply AC. This seems

particularly true for international studies, since they inherently endeavor to maximize

consistency across different test languages (cf. OECD, 2013).

The three main constructs assessed in PISA exemplarily show the importance of

incorporating open-ended response formats. First, PISA defines mathematical lit-

eracy as ‘‘the capacity to formulate, employ, and interpret mathematics’’ (OECD,

2013, p. 25); particularly the first two elements can hardly be validly assessed in

closed formats. Second, scientific literacy is, among others, defined as ‘‘an individu-

al’s scientific knowledge and use of that knowledge . [as well as their] awareness

of how science and technology shape our material, intellectual and cultural environ-

ments’’ (OECD, 2013, p. 100). Particularly the latter clearly shows the requirement

for respondents to integrate individual knowledge, ideas, and values, which is best

assessed in open-ended formats; otherwise, the given response options would cru-

cially influence the respondents’ cognition. This is also true for, third, the construct

of reading literacy, defined as ‘‘understanding, using, reflecting on and engaging

with written texts . [which] requires some reflection, drawing on information from

outside the text’’ (OECD, 2013, p. 61).

It is beyond the scope of this article to provide an extensive overview about exist-

ing AC systems. Rather, we would like to refer to Burrows, Gurevych, and Stein

(2014) who give a comprehensive overview. The main differences of the approach

presented here and software opposed to existing systems are the following. On the

one hand, the approach does not yet include the most sophisticated machine learning

methods with the advantage of higher flexibility and transparency for researchers of

the social sciences by, among others, applying clustering. On the other hand, the soft-

ware will be made freely available with a graphical interface to encourage research-

ers to use AC.

Our study was led by three research questions that investigate, first, the perfor-

mance of the AC system; second, the need of single steps in the proposed collection

of methods as well as possible alternate configurations; and third, the required sam-

ple size for its employment. This article aims to demonstrate the performance of an

AC system for short text responses that relies solely on baseline methods. Thereby,

researchers shall be encouraged to design instruments with open-ended response for-

mat where appropriate and assessment practitioners to use them. The following sec-

tions present the collection of proposed methods for AC, how the empirical analysis

of these methods was conducted, and the obtained results. The results illustrate the
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overall performance of AC and how it depends on the item evoking the free text

response, the selection of a particular method, and its configuration as well as sample

size. The final discussion explicates exemplary ways in which AC could enhance

educational assessment.

Proposed Collection of Methods for Automatic Coding

The following subsections describe methods that step-by-step process a test taker’s

free text response represented as a character string. First, NLP methods are used to

transform each text response into a quantified representation of its semantics. Second,

clustering methods are used to build a clustering model by grouping similar responses

based on the numerical representations of the responses. Third, machine learning

methods are applied to assign an interpretable code to each of these groups. For easier

comprehensibility, an example response leads through the various steps: Let ‘‘A girl

falling into and wandering through a fantasy world’’ be a test taker’s response to an

item asking what the main plot of Lewis Carroll’s Alice in Wonderland is about.

Figure 1 illustrates the entire procedure using this example response.

Figure 1. Schematic figure of automatic coding (AC).
Note. First, the computer preprocesses the response (A) and extracts its semantics (B). These numerical

semantic representations are used for clustering (C) and machine learning in which a code is assigned to

each cluster (D). Finally, a new response receives the code of the cluster that is most similar to it (E).
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The method selection was led by two main paradigms that helpfully balance the

simplicity of assumptions and their effectiveness in practice. First, the so-called bag

of words–approach is chosen. This means, all terms given in a response are consid-

ered separately, irrespective of their order and references to each other. Second, the

co-occurrence paradigm serves as a tool for automatic extraction of semantic rela-

tionships between words. The idea is to use the phenomenon that semantically similar

terms occur in similar contexts—not necessarily in exactly the same context but at

least indirectly in similar ones (cf. Landauer, McNamara, Dennis, & Kintsch, 2011).

Making Sense of Responses via NLP Techniques

In a first step, the computer preprocesses the response. Therefore, NLP techniques

split the given text response into tokens (words) and transform these into more nor-

malized ones, that is, their variation is reduced. The preprocessing steps are described

in the following, and each step’s effect on the example response is visualized in Part

A of Figure 1.

(1) Punctuation removal omits punctuations, similar to (2) digit removal omitting

digits. Next, (3) decapitalization converts all chars to lowercase. For some languages,

language-specific techniques need to be added. For instance, in German (4) umlaut-

normalizing is used to change umlauts into their corresponding vowel (e.g., ä into a).

Splitting the response into tokens, meant to be the level of analysis, is called (5) toke-

nizing. Next, it is advisable to apply (6) spelling correction. Then, functional words

are omitted that do not carry crucial semantic information themselves. This is called

(7) stop word removal and typically applies to words such as articles and conjunc-

tions. As last very important variation reduction, (8) stemming is applied, which

means to cut off affixes. The example now reads: girl, fall, wander, fantasy, world.

These preprocessing techniques are typically useful. Nevertheless, in some cases,

it might be reasonable to adapt their assembly. If, for example, digits are important

in the item’s solution, they, of course, should not be omitted but considered.

Furthermore, it is possible to replace stemming by the more sophisticated lemmatiza-

tion (using the basic word form instead of just cutting off affixes), and dependent on

language and application, it can be useful to apply compound splitting (splitting

words that are made of more than one stem). The above listed eight techniques have

been used for analysis presented in this article.

Now, having reduced linguistic variation in responses, the computer needs some

kind of numerical representation of the remaining tokens’ semantics (ignoring order

information as a bag of words–approach is used). Therefore, a big text corpus is

automatically analyzed by a statistical method—using the co-occurrence paradigm—

to build the machine’s lexical knowledge. This is often called semantic space.

Wikipedia, for instance, can serve as an adequate corpus. If feasible, multiple sources

can lead to higher performance (Szarvas, Zesch, & Gurevych, 2011). The semantic

spaces used for analysis reported in this article were built on basis of a German

Wikipedia dump1 (from June 13, 2013) as German text responses were to be coded.
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Solely in cases of items that only evoke a strongly limited amount of different words

in the responses—for example, if test takers are required to repeat four terms expli-

citly given in the stimulus—it can be conceivable to disregard the words’ semantics.

In such cases, it is also possible to test the plain existence of words and to continue

with clustering (see next subsection). Nevertheless, in most cases considering the

semantics is worth the effort, and in the empirical part, we investigate whether the

usage of plain words can outperform the usage of semantics at all.

A common way to model semantics is through vector space models. These are

hyperdimensional spaces in which each term (e.g., fantasy) is represented by a vector.

Similar vectors (terms) are semantically similar (e.g., fantasy and imagination),

defined as two vectors having a small angle, or more precisely as a high cosine of

two vectors. Such semantic spaces can be computed by, for instance, Latent Semantic

Analysis (LSA; Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) or

Explicit Semantic Analysis (ESA; Gabrilovich & Markovitch, 2007). Both start with a

co-occurrence matrix, called ‘‘term 3 document-matrix,’’ carrying frequencies of

how often which term occurs in which context (i.e., document, paragraph, or sen-

tence). This matrix is weighted based on the idea of relevance feedback (Salton &

Buckley, 1990), giving more weight to terms occurring in rather few, specific con-

texts over those occurring diffusely across many contexts. This way, words that

adhere to a specific semantic context—which typically is rather true for autosemantic

opposed to function words—become important carriers of this context’s semantic

information. Typically, relevance feedback is applied using the log-Entropy function

(Dumais, 1991). Creating a semantic space by means of ESA includes several steps

(for details, see Gabrilovich & Markovitch, 2009) to finally gain a vector model

describing the semantic space. The ESA is based on a manually structured text cor-

pus, that is, documents (such as articles in Wikipedia) are included as intact entities.

Within this natural structure (e.g., composed of articles) each element corresponds to

one dimension in space, often leading to a very high number of dimensions. For

instance, a term such as fantasy is represented by a vector comprising over one mil-

lion (total number of articles) weights, each indicating the relatedness between an

article and the term. The second approach to create a semantic space is LSA, which

performs a singular value decomposition on the weighted term 3 document-matrix.

Then, as text corpora are samples of language containing noise, and as contexts are

assumed to be correlated, the decomposed matrix is reduced to less—often 300—

dimensions, comparable with factor analysis.2 For example, a term such as fantasy is

represented by a vector comprising 300 values, each indicating the relatedness

between a latent semantic concept and the term. For details of LSA, see Landauer

(2011) and Martin and Berry (2011).

An important matter in LSA is domain specificity of text corpora. When taking

Wikipedia as a basis, one can make use of its internal, explicitly connected structure.

One way to gain a domain-specific corpus is to start at an article that is strongly

related to the item’s topic (e.g., Alice’s Adventures in Wonderland) and crawl the

incoming and outgoing links, also called ‘‘children,’’ to related articles (e.g.,
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Fantasy). Dependent on the desired corpus size and the initial article’s connected-

ness, it is reasonable to do this within a degree of connectedness of 1 to 3 (e.g., 2

meaning to take articles’ children as well as children’s children into the corpus).

This procedure can easily be adapted. For example, more than one starting point can

be chosen to gather bigger corpora, or filters can be applied as to which kind of arti-

cles must not be included (e.g., articles only dealing with a specific date; for more

such considerations, see Gabrilovich & Markovitch, 2009).

Having provided the computer with semantic knowledge, the semantics of the

responses can be extracted by computing the centroid vector of all tokens in the pre-

processed response. At this stage, the example response comprises five tokens (cf.

Part B in Figure 1). Each is represented by, assuming LSA was used, a 300-dimen-

sional vector. Finally, the five vectors’ centroid is computed—that is one 300-dimen-

sional vector constituting the example response’s total, or average, semantics. In all

further analyses this centroid vector is the response’s representation.

Model Building via Clustering

Represented by their semantic centroid vector, all responses given in the data are

spread across the semantic space. If an appropriate semantic space has been built, the

responses now typically form groups (cf. Part C in Figure 1). This means that some

responses are more semantically similar to each other than to others—to put it more

precisely, responses in one group contain semantically similar words. This perspec-

tive on the data can easily be applied by conducting a cluster analysis. In case the

data are meant to be explored only, all responses are taken into account for model

building. Otherwise, if some sort of supervised learning takes place—which is going

to be explained in the next subsection—only a subset of responses (training data) is

considered for this model building step.

Here, an agglomerative hierarchical cluster analysis is used that comprises three

steps.3 First, the distance between every pair of responses is computed. Second, every

response is regarded as being its own cluster at the beginning. An agglomeration

method iteratively decides which two clusters are minimal distant from each other

and are to be merged to one cluster in the next iteration step. The agglomeration stops

when all responses are assigned to one single cluster. Third, the researcher needs to

decide which number of clusters is the best solution. This is an empirical matter and

can be determined by plotting the distances (‘‘rest’’-component) of clusters for each

solution and applying the elbow criterion. The respective number of clusters constitu-

tes the desired solution at which the rest-component decreases significantly higher,

relative to solutions with more clusters. See Rasch, Kubinger, and Yanagida (2011)

for a concise description how this is done using R or SPSS.

A cluster analysis has several adjustable parameters. One important decision is

how to define similarity, which can either be done by Euclidean distance or—

worthwhile although computationally more expensive—cosine. The latter means to

divide the vectors’ dot product (Martin & Berry, 2011) by the product of their vector
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lengths to apply an L2 norm, which is done to neutralize different document lengths

(Gabrilovich & Markovitch, 2009). Cosine’s advantage over Euclidean distance is to

take only the vector directions into account—and not their lengths—because in the

semantic space a vector’s length mainly depends on the term’s frequency, and as a

term’s frequency does not carry semantic information, the distance metric should

incorporate only the vector’s direction. Clustering algorithms base on dissimilarity,

and hence, the cosine’s inverse, called arccosine, should be used. Besides choosing a

measure of dissimilarity, the researcher needs to decide on the number of clusters as

well as on an agglomeration method, such as Ward’s method, which merges those

two clusters leading to the smallest increase of variance within clusters (Ward,

1963). Nevertheless, all these parameters’ optima are susceptible to the data’s nature

and, therefore, can be adapted with respect to theoretical or empirical knowledge

about the respective item.

Up to this point, it is possible to work with text response data only. This is reason-

able for data exploration and is called unsupervised learning; no further criterion is

available (e.g., a variable indicating whether a response is correct or incorrect) that

would allow model optimization with regard to this criterion. For example, the

researcher can choose the number of clusters in an unsupervised manner as described

above. But if the overall aim is to do some kind of supervised learning (e.g., scoring

responses), it is reasonable to vary the number of clusters and choose the best per-

forming one in terms of human–computer agreement. The following subsection

about supervised learning describes how an interpretation such as correct or incor-

rect can be assigned to every cluster.

Assigning Codes to Neutral Categories via Supervised Machine Learning

Where the overall goal is AC, meaning that one of a fixed range of values—called

class—needs to be assigned to a text response (e.g., correct), an external criterion is

used by which to learn the relationship between the semantic vectors and the intended

code. This kind of procedure is called supervised learning. Such an external criterion

can be judgments by trained human coders, also called classification. Ideally, the

whole data set is classified.

Supervised machine learning procedures are separated into two phases: training

and test. In each phase only a subset of data is used, while the rest is put aside to con-

trol overfitting. Overfitting is given if a model is optimized too thoroughly, because it

then performs very well on the data it was trained on but terribly poor on unseen data;

while to apply models on unseen data usually is the purpose of building them. Hence,

the data is split into 10 pieces, called folds. Nine folds are used together at a time to

train the model while its performance is tested on the remaining 10th fold afterward.

This is repeated 10 times so that every fold serves as test data once. Yet two things

need to be considered. First, the data’s overall class distribution should be represented

in each fold; this is called stratification. Second, because still then chance highly

impacts performance while choosing the folds, the whole procedure is again repeated
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10 times, resulting in 100 performance estimates. This is called stratified, repeated

10-fold cross-validation; details can be found at Witten, Frank, and Hall (2011), and

for comparison with other methods, see Borra and Di Ciaccio (2010).

In the training phase, clusters are built as described in the previous subsection.

Then, to each cluster one code is assigned to (cf. Part D in Figure 1), determined by

the within-cluster class distribution. For example, while scoring, a cluster might

mainly comprise responses labelled as correct; hence, the cluster code is: correct.

The decision which code is assigned to a cluster is based on the highest conditional

probability using Bayes theorem,

P(cijgj)k, j =
P(gjjci)

�P(ci)

P(gj)
,

representing the probability that response k, belonging to the jth cluster g, has been

assigned to the ith class c by the external criterion (e.g., human coder). For example,

the probability of a response that is known to be member of Cluster 13, which is true

for P̂(gj) = 25% of all responses, that it had been assigned to the class correct by the

human coder, which is true for P̂(ci) = 76% of all responses, equals 96% if

P̂(gjjci) = 31% of all correct responses belong to Cluster 13.

In the test phase, the unseen responses are classified by using the cluster model

and the cluster codes. At first, the highest similarity, for instance, in terms of cosine,

between the unseen response and a cluster centroid determines to which cluster the

response is assigned to. Then, this cluster’s code is assumed to be the response’s code

(cf. Part E in Figure 1).

At the end of the day, the automatic classifier needs to be evaluated. Its perfor-

mance is often called accuracy. The simplest accuracy coefficient is percentage of

agreement between computer and human. Another important one is kappa, which

corrects for skewed class distribution.

Method

Measures of Coder Agreement

The Results section reports percentages of human–computer agreement (%h:c) as

well as Cohen’s kappa (kh:c) for data from PISA 2012. These statistics were com-

puted by averaging the results from repeated 10-fold cross-validation. The kappa

coefficient was transformed prior to averaging accordingly to Fisher (1915, 1921)

and retransformed for reporting, on which the definition of Fleiss (1981) is applied:

Values of :40 � k � :75 constitute fair to good, lower values poor, and higher ones

excellent agreement beyond chance. Moreover, a corrected coefficient of percentage

of agreement,

lh:c =
%h:ci

�%h:c1

100�%h:c1

,
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is reported, giving the proportion of the actual human–computer agreement’s increase

to the highest attainable increase; therefore, the percentage of agreement for the

model with only one cluster (%h:c1
) is subtracted from the percentage of agreement

for the final model with i clusters (%h:ci
), and this difference is divided by 100 minus

the percentage of agreement for the model with one cluster, constituting the highest

attainable increase. Unlike Kappa, this coefficient does not only correct for agree-

ment by chance based on the class distribution but also for the trivial coding of empty

responses. It further indicates how clustering affects performance in the data. Finally,

Fleiss’ kappa for multiple raters is used to report the system’s internal reliability

across repetitions (kc:c):

Materials

Items in PISA typically comprise a stimulus and a question referring to it. Responses

used for analysis stem from 10 dichotomous items; eight items assessing reading lit-

eracy as well as one assessing scientific and mathematical literacy each. That is,

there are items of three different constructs and specific coding guides for human

coders for every item guiding them to code responses as either correct or incorrect.

Although only items with dichotomous coding were used in this study, constituting

the vast majority in PISA, the chosen approach to AC is also applicable to polyto-

mously coded items. Because of repeated measurements, partly using the same items

across cycles, the item contents are confidential and cannot be described here. The

10 items are listed in Table 1, each given a name for better traceability in the follow-

ing. Prior to item selection, a theoretical framework had been developed as to which

item characteristics might potentially influence AC performance using the proposed

methods. According to this scheme, the selected items were intended to vary hetero-

geneously in their characteristics to test the AC method’s scope.

As presented in Table 1, the items ranged from difficult (10%) to easy (83%) with

the majority being medium difficult and a slightly skewed distribution toward easi-

ness. For the reading items, the assessed aspect according to the PISA framework

(OECD, 2013) mainly varied between the two of three aspects Integrate and

Interpret and Reflect and Evaluate that both typically evoke more complex answers

in linguistic terms than the third aspect does. The third aspect, Access and Retrieve,

was only represented by one item and is assigned to items asking the test taker to

find the relevant information given in the stimulus and repeat it, resulting in low lan-

guage diversity in the responses.

Analyses

According to the first research question, we report the measures of coder agreement

introduced above for all items to show the AC performance. For each item, we varied

the number of clusters from 1 to 1,000 and report the best performing solution using

cosine and Ward’s method for clustering. We cross-validated all measures by
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stratified, repeated (10 times) 10-fold cross-validation, which is also true for the anal-

yses described next.

Following the second research question, the relationship between performance

and different methods or their configurations were examined. Therefore, seven anal-

yses were carried out and are reported for single representative items. In Analysis I,

the need for semantic space building opposed to the use of plain words is demon-

strated. Analysis II illuminates the impact of spelling correction on AC performance

by comparing uncorrected, automatically corrected, and manually corrected responses.

The latter was possible by means of the transcription process (cf. next subsection).

Semantic space building was varied in Analysis III using ESA or LSA, in Analysis IV

by using different text corpora, and in Analysis V by varying the number of LSA

dimensions. In Analysis VI, various common distance metrics were applied (cosine,

Euclidean, Chebyshev, Manhattan, Canberra), and in Analysis VII, we studied the

impact of different agglomeration methods (Ward’s4 and McQuitty’s method; Single,

Complete, Average, Median, and Centroid Linkage). For each variation, all other para-

meters and methods were set constant to those from the analyses for the first research

question despite the number of clusters that was set with respect to the performance

optimum. Percentages of agreement served as dependent variable in these experiments.

The runs within one experiment were compared by considering the difference of

means and the dispersions, for which percentage of agreement is the optimal measure.

Finally, in the third research question, we went about the relationship between

performance and sample size, investigating to which extent the methods were appli-

cable to studies with less data by conducting a simulation. To reduce random errors,

we designed the simulation similar to repeated 10-fold cross-validation, in that, we

first split the data into 10 stratified parts (called metafolds in the following) and sub-

sequently excluded one metafold at a time until only one was left. At each of these

Table 1. Item Characteristics.

Item Domaina Aspectb Correct n Wordsc

1. Explain protagonist’s feeling read B 83% 4,152 12:3 (4:6)
2. Evaluate statement read C 43% 4,234 15:6 (9:0)
3. Interpret the author’s intention read B 10% 4,234 12:5 (6:3)
4. List recall read A 59% 4,223 5:6 (3:0)
5. Evaluate stylistic element read C 56% 4,234 14:7 (6:2)
6. Verbal production read B 80% 4,152 12:4 (6:9)
7. Select and judge read C 68% 4,152 13:6 (7:0)
8. Explain story element read B 69% 4,223 14:4 (5:5)
9. Math math M 35% 4,205 14:0 (6:8)

10. Science scie S 58% 4,181 11:1 (5:2)
Total 56% 41,990 12:6 (6:1)

aOne of reading, mathematics, science. bAccording to PISA framework (OECD, 2013), A = Access &

Retrieve; B = Integrate & Interpret; C = Reflect & Evaluate; M = Uncertainty & Data; S = Explain

Phenomena Scientifically. cWord count in nonempty responses on average (with SD).
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reduction steps, all left metafolds were merged and an independent stratified,

repeated (10 times) 10-fold cross-validation was run on them, disregarding the previ-

ous metafold assignments. For example, after the first reduction n = 4,152� 415 =

3,737 responses contributed to the analysis, in the next step only n = 3,737� 415 =

3,322 did. Next, when only 415 responses were left, the last remaining metafold was

split into another 10 smaller metafolds to gain more fine-grained reduction steps

within the last 10th; and again, we subsequently excluded these smaller metafolds

until only one was left and ran independent repeated 10-fold cross-validations on the

remaining data at each step. This procedure was repeated 10 times, each time shifting

the order of metafold exclusion to reduce the impact of the metafold sampling itself.

Figure 2 visualizes this design. The simulation used the data of Item 7, Select and

judge, which turned out to be representative regarding the obtained results in various

analyses and was automatically coded medium well—with that, being sensible to

improvements and worsening caused by sample size variation. Again, all parameters

and methods were set constant to those from the analyses for the first research ques-

tion despite the number of clusters that was set with respect to the performance

optimum.

Participants and Procedure

The responses we analyzed come from the German PISA 2012 sample. This includes

a representative sample of 15-year-old students as well as a representative sample of

ninth graders in Germany. A detailed sample description can be found at Prenzel,

Sälzer, Klieme, and Köller (2013) and OECD (2014). Due to a booklet design, the

numbers of test takers varied for each item (4,152 � n � 4,234; cf. Table 1).

In PISA 2012, reading, maths, and science were assessed paper based. Hence,

booklets needed to be scanned and responses were transcribed by six persons. To

reduce typos, an additional mechanism was employed. Misspelled terms were anno-

tated with their correct spelling, which additionally served as upper bound of achiev-

able improvement by spelling correction in Analysis II (cf. subsection Relationship

Between Performance and Alternation of Parameter Values or Methods). Only for

the additional typo reduction mechanism, the misspelled terms were replaced by their

annotation and these manually corrected data were put into Microsoft Word 2013

and checked for left misspellings (that now could only stem from transcription typos)

using spelling correction. In total, 0.2% of all words were revealed to contain a typo

this way, which were corrected in the data. In the analyses, the original responses

were used disregarding the manual correction but applying an automatic spelling cor-

rection on students’ misspellings.

Software

The software programmed for the aforementioned procedure implements open soft-

ware, libraries, and packages. First, a database storing the downloaded Wikipedia
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dump (cf. subsection Making Sense of Responses via NLP Techniques) is built by

using JWPL (Zesch, Müller, & Gurevych, 2008), which also comes with an applica-

tion programming interface to access the corpus data. DKPro Similarity (Bär, Zesch,

& Gurevych, 2013), which in turn primarily utilizes S-Space (Jurgens & Stevens,

2010), is used to build a vector space model. The response processing makes use of

components offered in DKPro Core (Gurevych et al., 2007), which fit into the

Apache UIMA Framework (Ferrucci & Lally, 2004). For stemming, Snowball

(Porter, 2001) is used. For statistical matters, such as clustering, the software evokes

R (R Core Team, 2014).

Results

Overall Performance and Its Relationship to Item Characteristics

As indicated in Table 2, the AC can lead to good up to excellent human–computer

agreement; still, its performance varied by item remarkably. Across all items, the sys-

tem reached high percentages of agreement from 76% to 98%, whereas the kappa

values ranged from fair to good—Item 3, Interpret the author’s intention

(kh:c = :458)—up to excellent agreement beyond chance—Items 10, Science

(kh:c = :761), and Item 4, List recall (kh:c = :955). Besides Item 3, Item 1, Explain pro-

tagonist’s feeling (kh:c = :533), and Item 5, Evaluate stylistic-element (kh:c = :503),

attained the poorest agreement beyond chance, and the five other items reached good

agreement beyond chance (:669 � kh:c � :729). Whereas the kappa coefficient iden-

tifies the just named three items as performing poorest but still to a fair to good

extent, the coefficient lh:c underlines that their AC performance did not crucially

improve by clustering (9:6 � lh:c � 16:5). A detailed analysis showed that the

responses’ correctness to items 3 and 5 could partially be affected by other linguistic

Table 2. Accuracy and Reliability.

Item %h:c
a lh:c

b kh:c
c kc:c

d

1. Explain protagonist’s feeling 91:2½60:2� 16:5 :533½:519; :547� :814
2. Evaluate statement 86:5½60:3� 63:8 :729½:723; :735� :910
3. Interpret the author’s intention 90:4½60:2� 9:6 :458½:444; :472� :738
4. List recall 98:4½60:1� 84:2 :955½:952; :959� :983
5. Evaluate stylistic element 76:2½60:4� 12:4 :503½:495; :511� :771
6. Verbal production 92:7½60:2� 39:7 :704½:695; :713� :925
7. Select and judge 86:6½60:3� 39:2 :679½:672; :686� :875
8. Explain story element 86:7½60:3� 41:5 :676½:668; :683� :886
9. Math 85:0½60:3� 56:6 :669½:661; :676� :822

10. Science 88:4½60:3� 45:4 :761½:754; :767� :918

Note. 95% confidence intervals given in brackets. aPercentage of human–computer agreement. bRelative

accuracy increase by clustering; lh:c =
%h:ci�%h:c1

100�%h:c1
(for details cf. Methods section). cCohen’s kappa for

human–computer agreement. dFleiss’ kappa for within-computer reliability across repetitions.
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elements than pure semantics, while the reasons for items’ rather poor AC were not

obvious. On the other hand, especially for Item 4, List recall, the human–computer

agreement was excellent and it increased remarkably by clustering (lh:c = 84:2) as it

also did for Item 2, Evaluate statement (lh:c = 63:8), and Item 9, Math (lh:c = 56:6).

These items share one important characteristic, namely, the evoked response’s cor-

rectness is determined by the test taker expressing specific semantic concepts. In

Item 4, List recall, this is done in a very simple way by just listing terms while in the

other items the verbal constructions need to be more complex to be able to express

the required semantics. Finally, the system’s reliability mainly attained excellent

agreement with :771 � kc:c � :983, except of the AC of the already discussed Item

3 (kc:c = :738).

Relationship Between Performance and Alternation of Parameter Values or
Methods

Competing methods and parameter values were compared in seven analyses with

regard to percentage of human–computer agreement (%h:c) whereas the sets of 100

percentage values from stratified, repeated 10-fold cross-validation served as sample

for the respective experimental conditions. Most analyses were conducted using the

data of Item 7, Select and judge, constituting a medium well working item for AC.

This way, the measure of agreement could optimally be affected by the experimental

variation, which would not have been the case for an item performing perfectly or

not at all. Only in the first analysis, the data of another item were used.

To take a conservative approach, we based Analysis I on Item 4, List recall,

which asked test takers to simply name four terms that are explicitly given in the sti-

mulus text. In such a case, one could assume that testing for the bare presence of

terms might be sufficient. The analysis showed that using a semantic space opposed

to simply using the presence of words results in significantly better AC,

t(197) = 3:34, p\:001, d ¼ 0:94( =̂ 0:3%)—although with small effect due to the

conservative approach. Whereas the semantic space needed 65 clusters to reach its

optimal performance, the usage of raw words already required 500 clusters for this

simple item to do so.

Analysis II studied the impact of spelling correction on performance comparing

three conditions: no, automatic, and manual spelling correction. The latter consti-

tuted an upper bound for the possible effect of spelling correction on performance of

how much an almost perfect spelling correction could improve the AC. Using an

ANOVA, the analysis revealed that the automatic spelling correction neither

improved performance significantly opposed to dispensing with it nor did the perfor-

mance with manual spelling correction differ significantly, F(297, 2) = 2:1, p = :130:
To further investigate if this finding can be generalized across items for the PISA

data, cross-checks on other items were run. These showed the necessity of spelling

correction depends on the item’s nature—the same analysis with the data of Item 10,

Science, yielded in similarly insignificant results, F(297, 2) = 2:4, p = :089, whereas
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performance with and without spelling correction for Item 6, Verbal production, dif-

fered significantly with relevant effect size, t(197) = 5:81, p\:001, d = 0:82( =̂ 0:9%).

In Analysis III, the semantic space building was varied between the two methods

ESA and LSA. Results showed that ESA performs poorer in comparison with LSA,

t(196) = 3:32, p = :001, d = 0:47( =̂ 0:8%).

Analysis IV varied the text corpus on which the semantic space was based on.

Five different text corpora were compared of which three closely dealt with the item

contents and two did not. Additionally, they varied in size. Results showed that the

selection of a text corpus affects AC-performance significantly, according to a one-

way ANOVA, F(4, 495) = 580:20, p\:001, and a Newman Keuls procedure (SNK)

revealed significant differences between every pair of corpora except for one pair

that was equal in size but with one corpus having contents close to the item contents

and the other one not, SNK = � 0:4%, p = :094. However, another corpus, which also

closely dealt with the item contents but was bigger in size, gained a significantly

higher performance level, SNK = 0:9%, p\:001. The smallest corpus, not dealing

with the item contents, performed poorest, SNK = � 7:7%, p\:001 (compared with

the next better performing one). Disregarding this exceptionally poor performing cor-

pus, the performances differed in a range of 1.8%. Thus, primarily, corpus size seems

to matter, and content similarity only matters secondarily, as long as the corpus is

big enough still to deal with the most important terms of the item contents.

Analysis V compared different numbers of extracted dimensions in LSA (50, 100,

200, 300, 400, 500, and 550). Results of an overall significant ANOVA, F(6, 693) =

4:48, p\:001, indicated that the number of dimensions only matter inasmuch as they

should not decline below 100. The only significant differences stemmed from com-

parisons with 50 dimensions, SNK = � 0:5%, p = :03 (compared with next better per-

forming one).

In Analysis VI, we studied the impact of different clustering distance metrics on

performance. Results demonstrated significant differences between distance metrics

in an ANOVA, which were also remarkable in effect size, F(4, 495) = 121:30,

p\:001. Three groups crystallized, in that cosine, Euclidean distance, and Manhattan

distance performed equally well while Chebyshev performed significantly poorer,

SNK = � 2:2%, p\:001 (compared with Euclidean distance), and Canberra per-

formed worse still, SNK = � 1:0%, p\:001 (compared with Chebyshev).

Finally in Analysis VII different agglomeration methods for clustering were com-

pared. A similar pattern like in the previous analysis showed up as the agglomeration

methods also formed three groups of performance levels with significant deviation in

an ANOVA, F(7, 792) = 125:60, p\:001. No difference in performance could be

found between Ward’s method, Ward.D2, Complete Linkage, and McQuitty’s

method, SNK = � 0:5%, p = :116 (comparing the best with the poorest performer in

this group). Another group was formed by Single, Median, and Centroid linkage that

performed poorest. In between these two groups, Average linkage performed inter-

mediately well; SNK = � 1:3%, p\:001 (compared with the poorest method of the

Zehner et al. 295



well performing group), SNK = 2:1%, p\:001 (compared with the best method of the

poorly performing group).

Relationship Between Performance and Sample Size

In the sample size simulation, sample sizes were varied to study the performance’s

dependency on sample size. As results showed, AC performance was affected by

sample size both significantly and relevant in effect size—F(18,18081) =

82:1, p\:001 (ANOVA); SNK = 6:3%, p\:001, comparing the best with the poorest

performance (n = 3, 322 and 84). Applying an SNK procedure, five homogeneous

groups with respect to performance were built. It appeared that the proposed AC

methods can be applied with three different sample size ranges (I) to (III) down to

n = 249 that result in slightly different but acceptable performance levels (cf. Figure

3). As illustrated in the figure, performance started to decline crucially with a smaller

sample size than 249. In the first range of n = ½1661, 4152� (I), AC performed best

and without significant within-differences. Second, n = 1,246 (II) performed signifi-

cantly poorer compared to the second poorest performance of the top performers,

SNK = � 1:1%, p = :009. Third, opposed to this intermediately performing n = 1, 246,

a last range of sample sizes (III) with reduced but acceptable performance comprised

the range of n = ½249, 831�, SNK = � 0:9%, p = :022. Still further reducing the sample

size to n = 207 (IV) again led to a significant decline, SNK = 0:9%, p = :015, and

finally, the range of poorest performance with n = ½42, 166� (V) lost another

SNK = 0:8%, p = :040. While for Range I clustering highly improved AC perfor-

mance (lh:c = 29:2 for poorest performance), it still did so to a lesser extent for

Range III (lh:c = 13:7 for poorest performance), but the performance increase by

clustering was not significantly different from 0 at all when using data with n � 125.

Discussion

In terms of agreement with human coders, the implemented AC-system performed

fair to good up to excellently on all 10 items. This suggests that AC is ready for a

broader application in the field, bearing the potential for new opportunities in assess-

ment. With regard to the accuracy increase by clustering as well as the poorest per-

formances in terms of Kappa agreement (cf. Table 2), three items stuck out as being

partially inadequate for the conducted AC: Item 3, Interpret the author’s intention,

Item 5, Evaluate stylistic element, and Item 1, Explain protagonist’s feeling. While

for the latter the reasons for AC failures were not obvious, responses on the first two

of these items were partially coded improperly by AC because their correctness is

crucially determined by other linguistic elements than just naming specific semantic

concepts. In Item 3, Interpret the author’s intention, the fact whether a response is

correct or incorrect can be reliant on word order and relations, which is not detected

by our approach to AC due to the use of the bag of words–paradigm, stemming, and

stop word removal that often result in neglecting such information. This was also
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similarly true for Item 5, Evaluate stylistic element, in which responses’ correctness

is sometimes determined by synsemantic words (i.e., words that are not meaningful

without other [autosemantic] words or a context). In this item, words such as

‘‘how,’’‘‘what,’’ and ‘‘why,’’ as well as which sentence subject they refer to carry

important information. In contrast to that, most of the analyzed items were coded

properly by AC mainly taking the responses’ semantics into account. Not only Item

4, List recall, was automatically coded excellently, being an extreme case of demand-

ing isolated semantic concepts but also other items, such as Item 10, Science, and

Item 6, Verbal production, which require a complex response for solving it, were

coded satisfactorily by AC. Beside the reading items and the just mentioned item

assessing scientific literacy this was also true for Item 9, Math. Hence, this kind of

AC is not limited to reading as a construct heavily based on natural language but it is

also adequate to more formal domains when using verbalizable contents.

Furthermore, we showed that some methods and parameter values can be used

interchangeably (e.g., number of LSA dimensions) whereas others significantly affect

performance (e.g., LSA outperformed ESA, which we believe appears because spaces

built via LSA are optimized for a single item and in turn are experts of the item con-

tent, whereas an ESA space is based on a universal corpus such as the whole

Wikipedia and, thus, carries a lot of irrelevant information for one specific item so

that it is less sensitive for the relevant information). Importantly, we also showed that

the optimal performance is not attained by a fixed set of methods and parameter val-

ues but by finding the most appropriate ones for the data. As a rule of thumb, those

described in the section Proposed Collection of Methods for Automatic Coding were

always within the best performing ones in our analyses: LSA for semantic space

building (with at least 100 but mostly used 300 dimensions), cosine as distance metric

and Ward (.D2) as agglomeration method. Spelling correction was shown not to be

necessary for all of the 10 PISA items, which of course again vastly varies by the test

takers’ average spelling skills and words the item content evokes. Experience shows

that only a thoroughly developed and adapted spelling correction component should

be applied; otherwise performance might even decrease by wrong ‘‘corrections.’’

While improving with more data in general, AC can also be applied in studies with

smaller data than large-scale assessment data. There was a nonlinear relationship with

an exponential performance increase in the range of typical sample sizes of social sci-

ence studies, at about n = 250, and an asymptotic development toward optimal perfor-

mance starting at about n = 1,700, which is about the typical sample size of studies

for psychological instrument development. The item we used for this simulation was

a medium complex one in terms of evoked language diversity and, thus, should be

representative. For items with less or more diversity, this curve will be compressed or

stretched, respectively.

The proposed methods should be seen as a baseline still to be improved in the

future. The unsupervised clustering approach is very conservative because during

clustering, the responses’ classes are not considered at all. Yet this is advantageous

as completely unsupervised applications of AC is conceivable (e.g., if textual data
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are only meant to be categorized for analytical purposes; for more potential applica-

tions see the following list). In other contexts, so-called Support Vector Machines

(e.g., see Theodoridis & Koutroumbas, 2009) constitute another machine learning

method that will mostly outperform the proposed clustering approach. In the future,

we intend to study the gain of semisupervised clustering in AC (e.g., see Witten et

al., 2011).

The computational costs of the proposed AC are very low as soon as the model

has been built once, and it should easily be possible to incorporate AC into existing

procedures of large-scale assessments as well as into smaller studies. As the proposed

methods appear to perform well, we want to encourage researchers as well as practi-

tioners to use open-ended response format where it is appropriate and point out the

following eight ways of using AC as examples that might improve existing and open

doors to new assessment methods:

1. Exploration. Efficient exploration of textual data by automatic categorization

is possible (e.g., for data sifting or to set up coding guidelines).

2. Automatic Coding/Scoring. By means of classified training data, codes can be

assigned to each category (e.g., category of correct responses).

3. More Differentiating Assessment. Responses of different clusters may carry

different information about the test taker. For instance, different clusters

labeled all as correct may contain responses with different lines of reasoning.

This might also lead to the possibility to synchronously assess a second con-

struct enriching the principal construct (e.g., personality traits in a test which

actually tests skills).

4. Coding Guidelines Validity Check. Multiple choice distractors are typically

checked for their correlation to the construct. Now, for example, response

clusters can be checked analogically for an unexpected high number of

highly able test takers in a cluster that is interpreted as comprising incorrect

responses. Such a case might reveal invalid coding guidelines.

5. Control Loop for Human Coding. If sticking to human coding, responses that

are coded differently by human and computer can be revisited by a human

(reducing errors from exhaustion, etc.).

6. Reduced Human Coding. Humans could only code, for example, 7 to 8 proto-

typical responses per cluster, which are defined as the most similar to the

cluster centroid. In large-scale assessments, such as the presented PISA data,

it then would not be necessary anymore to code more than 4,100 responses

(per item!), but only, for instance, 30 clusters times 8 prototypical responses,

resulting in 240 responses (an effort reduction of about 94%).

7. Computer Adaptive Testing. Adaptive testing requires to instantly code test

taker responses. Therefore, usually closed response formats are used. Using

AC expands Computer Adaptive Testing’s scope to open-ended response

format.
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8. Improving Assessment While Assessing. Some test taker responses lack one

single bit of information to exceed the threshold from incorrect to correct.

But does this mean the test taker is not able to access this last bit? Since we

are typically interested in the latent construct we indeed should distinguish

between those test takers who are able to give us the missing bit and those

who are not. It might turn out that a cluster contains such kind of responses;

that means, there could be a cluster of responses that are almost correct but

miss the last important bit of information. Automatic coding employed in

computer-based assessment would then give the opportunity to probe the test

taker for the missing bit. Of course, the implications of adding such a

mechanism would need to be thoroughly studied. Nevertheless, it might be

one more way to improve measures.

Limitations and Future Directions

We used German data only, but it should entail only a small to medium effort to

apply the methods to further languages, since we utilized only baseline NLP methods

that are available off-the-shelf for many different languages; as a showcase, being

one implementation of one of many stemming algorithms, Snowball is available for

six Germanic, six Italic, two Slavic, and two Uralic languages as well as for Turkish,

Irish, Armenian, and Basque (cf. Porter, 2001). This is very interesting for interna-

tional (large-scale) studies as using one coding system for multiple languages proba-

bly would strongly increase coding consistency between test languages, although the

feasibility for all participating test languages would need to be examined.

Moreover, we only analyzed dichotomously coded items, whereas the used AC is

also applicable to polytomous ones. For polytomously coded items it will be interest-

ing to investigate the relationship between AC performance and sample size again

with respect to the number of coding levels. For PISA 2012, only paper-based data

were available that needed to be transcribed and, thus, is a possible source of noise

due to typos. Also, computer-based assessed responses typically differ from paper-

based assessed ones on the language level. We will soon be able to study the differ-

ences to computer-based data with the upcoming PISA cycle 2015. Furthermore, sub-

group analyses like those of Bridgeman, Trapani, and Attali (2012) are needed to find

whether this kind of AC performs equally for different test taker groups (native and

nonnative speakers, high and low performers, different countries, etc.). Finally, it is

worthwhile to study the possibility of using other external criteria for learning than

human codings. Especially in the context of semisupervised learning it might be pos-

sible to use existing coding guidelines as learning criterion.

The newly implemented software used for analyses still lacks an interface that will

be developed shortly in the context of an associated research group. As soon as ready,

the software will be made freely and openly available and will enable researchers

and practitioners to conduct AC on their data.5 The software will not only contain the

methods described here but also a more sophisticated NLP method called Textual
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Entailment (cf. Androutsopoulos & Malakasiotis, 2010), which overcomes shortcom-

ings of the bag of words–approach by performing inferences.
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Notes

1. Wikipedia dumps are available at http://dumps.wikimedia.org/

2. Building an analogy to factor analysis, the extracted semantic concepts would correspond

to the factors in factor analysis, contexts (documents) would represent variables, and terms

would stand for persons. The resulting matrix could be interpreted accordingly in that a

single value of a term’s vector would be the variable’s factor loading, carrying the infor-

mation of how semantically important the term (variable) reveals to be for the semantic

concept (factor).

3. Cluster analyses comprise a large method family with several adaptations. Only one com-

monly used is described here.

4. As implemented in R’s hclust-function, the analysis distinguishes Ward.D2, which squares

cluster distances before updating, and Ward.D, which does not.

5. If interested, you can check the corresponding author’s website (http://zib.education/en/

pisa/mitarbeiter-pisa/fabian-zehner.html) for reference to the upcoming software’s website.
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