
TKG: Efficient Mining of Top-K Frequent
Subgraphs

Philippe Fournier-Viger1, Chao Cheng2, Jerry Chun-Wei Lin3,
Unil Yun4, and R. Uday Kiran5,6

1 School of Natural Sciences and Humanities,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

2 School of Computer Sciences and Technology,
Harbin Institute of Technology (Shenzhen), Shenzhen, China

3 Department of Computing, Mathematics and Physics, Western Norway University
of Applied Sciences (HVL), Bergen, Norway

4 Department of Computer Engineering, Sejong University, Seoul, Republic of Korea.
5 The University of Tokyo, Tokyo, Japan.

6 National Institute of Information and Communications Technology, Tokyo, Japan.
philfv@hit.edu.cn, tidescheng@gmail.com,

jerrylin@ieee.org, yunei@sejong.ac.kr, uday rage@tkl.iis.u-tokyo.ac.jp

Abstract. Frequent subgraph mining is a popular data mining task,
which consists of finding all subgraphs that appear in at least minsup
graphs of a graph database. An important limitation of traditional fre-
quent subgraph mining algorithms is that the minsup parameter is hard
to set. If set too high, few patterns are found and useful information may
be missed. But if set too low, runtimes can become very long and a huge
number of patterns may be found. Finding an appropriate minsup value
to find just enough patterns can thus be very time-consuming. This pa-
per addresses this limitation by proposing an efficient algorithm named
TKG to find the top-k frequent subgraphs, where the only parameter is
k, the number of patterns to be found. The algorithm utilizes a dynamic
search procedure to always explore the most promising patterns first. An
extensive experimental evaluation shows that TKG has excellent perfor-
mance and that it provides a valuable alternative to traditional frequent
subgraph mining algorithms.

Keywords: Graph Mining · Frequent Subgraphs · Top-k Subgraphs.

1 Introduction

In the last decades, many studies have been carried out on designing efficient
algorithms to discover interesting patterns in different types of data such as
customer transactions [8] and sequences [6]. One of the most popular pattern
mining task is Frequent Subgraph Mining (FSM) [10, 14–16, 18, 20]. It consists of
finding all subgraphs that appear in at least minsup graphs of a graph database,
where minsup is a parameter set by the user. The number of graphs containing
a pattern is called its support. FSM has several applications such as to analyze

2 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

collections of chemical molecules to find common sub-molecules [10], and to
perform graph indexing [22].

But discovering all frequent subgraphs in a set of graphs is a difficult task. To
perform this task efficiently, various algorithms have been proposed using various
data structures and search strategies [10]. However, traditional FSM algorithms
have an important limitation, which is that it is often difficult for users to select
an appropriate value for the minsup threshold. On one hand, if the threshold is
set too low, few patterns are found, and the user may miss valuable information.
On the other hand, if the threshold is set too high, millions of patterns may be
found, and algorithms may have very long execution times, or even run out of
memory or storage space. Since users typically have limited time and storage
space to analyze patterns, they are generally interested in finding enough but
not too many patterns. Finding a suitable minsup value that will yield just
enough patterns is difficult because it depends on dataset characteristics that
are generally unknown to the user. Thus, many users will run an FSM algorithm
several times with different minsup values using a trial-and-error approach until
enough patterns are found, which is time-consuming.

To address this issue, Li et al. [13] proposed the TGP algorithm to directly
find the k most frequent closed subgraphs in a graph database, where k is set
by the user instead of the minsup threshold. This approach has the advantage
of being intuitive for the user as one can directly specify the number of patterns
to be found. However, a major issue is that TGP explicitly generates all pat-
terns to then find the top-k closed patterns. Since the number of patterns can
increase exponentially with the size of a graph, this approach is inefficient even
for moderately large graph databases. In fact, Li et al. [13] reported that the
TGP algorithm could not be applied on the Chemical340 dataset, although it
had been commonly used to evaluate prior FSM algorithms [20]. To cope with
the fact that top-k subgraph mining is more difficult than traditional FSM, re-
searchers have then developed approximate algorithms. The FS3 algorithm can
find an approximate solution to the top-k frequent subgraph mining problem
using sampling. Moreover, two approximate top-k frequent subgraph mining al-
gorithms based on sampling were proposed for mining a restricted type of graphs
called induced subgraphs [3, 4]. However, a major problem is that approximate
algorithms cannot guarantee finding all patterns, and may thus miss important
information.

To provide an efficient algorithm for top-k frequent subgraph mining that
can guarantee finding all frequent subgraphs, this paper proposes an algorithm
named TKG (Top-K Graph miner). It starts searching for patterns using an in-
ternal minsup threshold set to 0 and gradually raises the threshold as patterns
are found. To ensure that the threshold can be raised as quickly as possible
and efficiently reduce the search space, TKG relies on a search procedure that
dynamically selects the next promising patterns to be explored. As it will be
shown in the experimental evaluation of this paper, TKG has excellent perfor-
mance on standard benchmark datasets, including the Chemical340 dataset for
which the TGP algorithm could not run. Moreover, it was observed that the

TKG: Efficient Mining of Top-K Frequent Subgraphs 3

performance of TKG is close to that of the state-of-the-art gSpan algorithm for
FSM, even though top-k subgraph mining is a more difficult problem than FSM.
Hence, TKG provides a valuable and efficient alternative to traditional FSM
algorithms.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the problems of (top-k) frequent subgraph mining. Then,
Section 4 presents the proposed algorithm, Section 5 describes the experimental
evaluation, and Section 6 draws a conclusion.

2 Related Work

The problem of frequent subgraph mining was introduced by Inokuchi et al. [9].
They proposed an algorithm named AGM that can discover all frequent con-
nected and disconnected sub-graphs. It utilizes a breadth-first search where pairs
of subgraphs of a size u are combined to generate candidate subgraphs of size
(u + 1). A similar breadth-first search is used by the FSG algorithm [11]. A
drawback of this approach is that it can generate numerous candidates that
are infrequent or do not exist in the database, and thus these algorithms may
waste a considerable time evaluating infrequent subgraphs. To address these is-
sues, the gSpan algorithm [20] was proposed. To avoid generating candidates,
gSpan adopts a pattern-growth approach, which recursively grows patterns by
scanning the graph database. Furthermore, to efficiently detect if a newly found
subgraph is isomorphic to an already found subgraph, a novel representation of
graphs called Depth-First-Search code (DFS code) was introduced. Though sev-
eral other FSM algorithms have then been proposed [16, 10], gSpan remains by
far the most popular due to its efficiency and because it can be easily extended
to handle other subgraph mining problems and constraints [10]. For example,
CloseGraph is a popular extension of gSpan [21] to mine a subset of frequent
subgraphs called closed patterns (subgraphs that have no supergraph having the
same support).

Although traditional FSM algorithms have many applications, how to set the
minsup threshold is not intuitive. To address, this issue, the TGP [13] algorithm
was designed to find the top-k closed subgraphs. For this problem, two key
challenges are how to find top-k patterns and how to determine if a pattern
is closed. The solution proposed in TGP is to initially scan the database to
calculate the DFS codes of all subgraphs of each input graph, and combine all
these DFS code in a huge structure called the Lexicographical pattern net. In this
structure each subgraph is linked to its immediate super-graphs, which allows
to quickly check if a subgraph is closed. Then, TGP starts to search for the
top-k closed subgraphs using that structure, while gradually raising an internal
minsup threshold initially set to 0. Though, this approach guarantees finding
the top-k closed subgraphs, it is inefficient in time and memory because the DFS
codes of all patterns must be calculated and stored in memory. This structure
is huge because the number of subgraphs can increase exponentially with graph
size. As a result, TKG is unable to run on moderately large datasets such as the

4 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

Chemical Compound benchmark dataset (also known as Chemical340), where
the largest graph has 214 edges and 214 vertices. But traditional FSM algorithms
relying on DFS codes such as gSpan and CloseGraph can run very efficiently on
this dataset.

Then, the FS3 (Fixed Sized Subgraph Sampler) algorithm was proposed to
find an approximate set of top-k frequent subgraphs [17]. This algorithm was
designed with the idea of trading result completeness and accuracy for efficiency.
To apply FS3, the user must specify a number of iterations, a fixed size p for
subgraphs to be found, and the number of patterns k to discover. To find frequent
patterns, FS3 performs two phase sampling: (1) it first samples a graph from
the database, and then (2) samples a p-size subgraph biased toward frequent
subgraphs in the whole database using the Markov Chain Monte Carlo method.
This process is repeated until the maximum number of iterations is reached, and
a priority queue structure is used to maintain a list of the k best (most frequent)
sampled subgraphs. An advantage of this approach is that it is very fast as it
avoids calculating subgraph isormorphisms, one of the costliest operations in
FSM that is NP-complete. But an important drawback is that the support of
patterns is approximately calculated. As a result, the FS3 algorithm can not only
miss frequent or top-k patterns due to sampling, but it may also return infrequent
patterns. Moreover, another serious limitation is that a fixed subgraph size must
be set by the user. Setting this parameter is not intuitive, and restricting the
search to a fixed size can result in missing several interesting patterns.

Then, another approximate algorithm for mining top-k fixed size frequent
subgraphs was proposed, named kFSIM [3]. It adopts a similar sampling ap-
proach as FS3, which also avoids subgraph isomorphism checks but may incor-
rectly calculate the support of patterns. kFSIM relies on a novel measure called
indFreq to accelerate support calculation and improves its accuracy. kFSIM is
designed for handling a restricted type of graphs called induced subgraphs [3,
4], and was shown to outperform FS3 in terms of accuracy and runtimes on
real datasets. Then, the authors of kFSIM proposed a similar algorithm named
kFSIM [3] for finding top-k frequent fixed size induced subgraphs in a stream
using sampling and a window [3]. However, it also an approximate algorithm
that cannot guarantee result completeness and accuracy.

To address the aforementioned drawbacks of previous algorithms, this paper
present an efficient algorithm named TKG that is exact (find all top-k frequent
subgraphs) and has runtimes that are close to those of the gSpan algorithm for
traditional frequent subgraph mining. As it will be shown in the experimental
evaluation section, TKG runs efficiently on the Chemical340 dataset, where TGP
could not run. The next section introduces preliminaries and formally defines the
problems of FSM and top-k FSM. Then, the next section presents the proposed
algorithm.

3 Preliminaries and Problem Definition

Frequent subgraph mining is applied on a database of labeled graphs [9, 10, 20].

TKG: Efficient Mining of Top-K Frequent Subgraphs 5

Definition 1 (Labeled graph). Formally, a labeled graph is defined as a tuple
G = (V,E,LV , LE , φV , φE) in which V , E, LV and LE are the sets of edges,
vertices, vertex labels and edge labels, respectively. Furthermore, φV and φE are
functions that map vertices and edges to their labels, respectively (φV :V → LV

and φE:E → LE).

Furthermore, it is assumed that graphs are connected (one can follows graph
edges to reach a vertex from any other vertex), do not contain self-loops (an
edge from a vertex to itself) and multiple edges between pairs of vertices.

Definition 2 (Graph database). A graph database GD = {G1, G2 . . . Gn} is
defined as a set of n labeled graphs.

For example, Fig. 1 shows a graph database containing three graphs denoted
as G1, G2 and G3. The graph G3 contains four vertices and four edges. The
edge labels are LE = {x, y, z, w} and the vertex labels are LV = {A,B}. This
database will be used as running example.

A

x
B

z

w

Graph G1 Graph G2

A

x

B

B

A A x B

zw

Graph G3

B

y

A

x

Ag1:

g2:

g3:

g4:

g5:

g6:

g7:

B

BA

BA
w

BB
z

BA
w z

B

BA Bx z

Patterns with support = 3 Patterns with support = 2 Fig. 1. A graph database containing three graphs

The goal of frequent subgraph mining is to find patterns having a high sup-
port (occurring in many graphs). The support is defined based on the concept
of graph isomorphism and subgraph isomorphism.

Definition 3 (Graph isomorphism). Let there be a labeled graph Gx = (Vx,
Ex, LxV , LxE , φxV , φxE) and another labeled graph Gy = (Vy, Ey, LyV , LyE , φyV ,
φyE). It is said that the graph Gx is isomorphic to Gy if there is a bijective
mapping f : Vx → Vy meeting two conditions. First, for any vertex v ∈ Vx, it
follows that LxV (v) = LyV (f(v)). Second, for any pair (u, v) ∈ Ex, it follows
that (f(u), f(v)) ∈ Ey and LxE(u, v) = LyE(f(u), f(v)).

Intuitively, if Gx is isormorphic to Gy, it means that the two graphs are
equivalent because labels from nodes and edges from one graph can be mapped
to the other while preserving the same graph structure. To check if a subgraph
appears in a graph, the relationship of subgraph isomorphism, and the concept
of support are defined as follows.

Definition 4 (Subgraph isomorphism). Let there be two graphs Gx = (Vx,
Ex, LxV , LxE , φxV , φxE) and Gz = (Vz, Ez, LzV , LzE , φzV , φzE). It is said that
Gx appears in the graph Gz, or equivalently that Gx is a subgraph isomorphism
of Gz, if Gx is isomorphic to a subgraph Gy ⊆ Gz.

6 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

Definition 5. Let there be a graph database GD. The support (occurrence fre-
quency) of a subgraph Gx in GD is defined as sup(Gx) = |{g|g ∈ GD∧Gx v g}|.

In other words, the support of a subgraph g in a database is the number
of graphs that contains g. For example, the graph A —x— B appears in the

graph G1, G2 and G3, and thus has a support of 3. The graph A —w— B only
appears in G1 and G3, and hence has a support of 2.

It is to be noted that the support of a subgraph remains the same if a
subgraph appears once or multiple times in the same graph. The problem of
frequent subgraph mining is defined as follows.

Definition 6 (Frequent Subgraph mining). Let there be a user-defined thresh-
old minsup > 0 and a graph database GD. The problem of frequent subgraph
mining consists of finding all subgraphs that have a support no less than minsup.

For example, Fig. 2 shows the seven frequent subgraphs found in the graph
database of Fig. 1 for minsup = 2, denoted as g1, g2, . . . , g7.A

x
B

z

w

Graph G1 Graph G2

A

x

B

B

A A x B

zw

Graph G3

B

y

A

x

Ag1:

g2:

g3:

g4:

g5:

g6:

g7:

B

BA

BA
w

BB
z

BA
w z

B

BA Bx z

Patterns with support = 3 Patterns with support = 2

Fig. 2. Frequent subgraphs for minsup = 2, i.e. top-k frequent subgraphs for k = 7

The problem of mining the top-k frequent subgraphs addressed in this paper
is a variation of the problem of frequent subgraph mining where minsup is
replaced by the parameter k.

Definition 7 (Top-k Frequent Subgraph mining). Let there be a user-
defined parameter k ≥ 1 and a graph database GD. The problem of top-k frequent
subgraph mining consists of finding a set T of k subgraphs such that their support
is greater or equal to that of any other subgraphs not in T .

For example, Fig. 2 shows the top-k frequent subgraphs found in the graph
database of Fig. 1 for k = 7. If k = 3, only the subgraphs g1, g2 and g3 are found.
These subgraphs are the top-3 frequent subgraphs because no other subgraphs
have a higher support.

It is important to note that in some cases, more than k patterns could be
included in the set T , and thus that there can be several good solutions to top-
k frequent subgraph mining problem. This is for example the case if m > k

TKG: Efficient Mining of Top-K Frequent Subgraphs 7

patterns have exactly the same support. Moreover, it is possible that T contains
less than k patterns for very small graph databases where the number of possible
patterns is less than k.

The problem of top-k frequent subgraph mining is more difficult than the
problem of frequent subgraph mining because the optimal minimum support
value to obtain the k most frequent patterns is not known beforehand. As a
consequence, all patterns having a support greater than zero may have to be
considered to find the top-k patterns. Thus, the search space of top-k frequent
subgraph mining is always greater or equal to that of frequent subgraph mining
when the minimum support threshold is set to the optimal value.

To find the top-k frequent subgraphs efficiently, the next section presents the
proposed TKG algorithm.

4 The TKG Algorithm

The designed TKG algorithm performs a search for frequent subgraphs while
keeping a list of the current best subgraphs found until now. TKG relies on an
internal minsup threshold initially set to 1, which is then gradually increased as
more patterns are found. Increasing the internal threshold allows to reduce the
search space.

To explore the search space of subgraphs, TKG reuses the concept of right-
most path extension and DFS code, introduced in the gSpan algorithm [20]. A
reason for using these concepts is that it allows to explore the search space while
avoiding generating candidates7. Moreover, it allows to avoid using a breadth-
first search, which is key to design an efficient top-k algorithm. The reason is that
if a top-k pattern has a very large size, a top-k algorithm based on a breadth-
first search could be forced to generate all patterns up to that size, which would
be inefficient. Using rightmost path extension and DFS codes allows to search
in different orders such as using a depth-first search. Moreover, these concepts
were shown to be one of the best way for tackling subgraph mining problems [10,
21, 24]. It is to be noted that while the gSpan algorithm utilizes a depth-first
search for frequent subgraph mining, the proposed algorithm utilizes a novel
search space traversal approach called dynamic search to always explore the
most promising patterns first. This allows to guide the search towards frequent
subgraphs, raise the internal minsup threshold more quickly, and thus reduce a
larger part of the search space. As it will be shown in the experimental evalu-
ation, the proposed dynamic search traversal greatly improves the efficiency of
top-k frequent subgraph mining compared to using a depth-first search.

Before presenting the details of the proposed algorithm, the next subsection
introduces key concepts related to rightmost path extension and DFS codes.

7 Here, generating a candidate means to combine two subgraphs to obtain another
subgraph that may or may not exist in the database [20]. This is done by algorithms
such as AGM [9] and FSG [11] to explore the search space.

8 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

4.1 Rightmost Path Extensions and DFS codes

A key challenge in frequent subgraph mining is to have a method that allows
to systematically enumerate all subgraphs appearing in a graph. A popular so-
lution to this problem is to use the concept of rightmost path extension [20],
which allows to consider all edges of a graph using a depth-first search, without
considering the same edge twice. In that context, an extension means an edge
of a graph that can extend a subgraph.

Definition 8 (Rightmost path extension). A depth-first search can be per-
formed over a graph using a recursive stack. Vertices in the recursive stack are
said to form the rightmost path in the graph, and the currently processed vertex is
called the rightmost vertex. Rightmost path extension consists of performing two
types of extensions: forward extensions and backward extensions. Backward ex-
tensions are performed before forward extensions and are used for visiting edges
that will form cycles (larger cycles are preferred). Forward extensions are used
for visiting edges that lead to new vertices. For forward extensions, extension of
the rightmost vertex is considered first, and then extensions of vertices on the
rightmost path (which makes it a depth-first search).

For instance, consider a depth-first search over the graph G3 of the running
example, where nodes are visited according to the order depicted on Fig. 3 (left),
where numbers ’1’, ’2’, ’3’ denote the visiting order of vertices. When the depth-
first search reaches node ’3’, vertex 3 is the rightmost vertex, A —x— B is a

backward edge and A —y— A is a forward edge. Thus, the edge A —x— B

will be considered next to pursue the search, and then A —y— A .
A

x
B

z

w

Graph G1 Graph G2

A

x

B

B

A A x B

zw

Graph G3

B

y

A

x

Ag1:

g2:

g3:

g4:

g5:

g6:

g7:

B

BA

BA
w

BB
z

BA
w z

B

BA Bx z

Patterns with support = 3 Patterns with support = 2

A A x B

zw

y

B

1

2

3

<1, 2, B, B, z>
<2, 3, B, A, w>
<3, 1, A, B, x>
<3, 4, A, A, y>

Fig. 3. (left) A rightmost path over the graph G3 of Fig. 1, where ’1’, ’2’ and ’3’ is
the vertex visiting order, 〈1, 2, 3〉 is a rightmost path and vertex 3 is the rightmost
vertex. (right) The DFS code obtained after extending that path with the backward
edge A—x—B and then the forward edge A—y—A.

For a subgraph g and a graph Gi of a graph database, the gSpan algo-
rithm [20] first finds an isomorphic mapping from g to Gi. Then, it applies the
concept of rightmost path extension to finds subgraphs that can extend g with
an additional edge, and at the same time calculates its support. Recursively
applying the concept of rightmost extension ensures that all subgraphs can be
eventually considered. However, two extensions may still yield two subgraphs
that are isomorphic (that are equivalent). It is thus important to identify all

TKG: Efficient Mining of Top-K Frequent Subgraphs 9

such duplicates during the mining process to avoid considering a same subgraph
multiple times. To solve this problem, a code called DFS code was proposed to
represent each subgraph [20], which allows to identify duplicates.

Definition 9 (Extended edges). Let there be an edge between two vertices vi
and vj and φ be the labeling function (φV or φE). A tuple 〈vi, vj , φ(vi), φ(vj),
φ(vi, vj)〉 representing the edge, its label and the vertex labels is called an extended
edge.

For example, in Fig. 3, 〈1, 2, B,B, z〉 and 〈2, 3, B,A,w〉 are extended edges.

Moreover, the edges A —x— B and A —y— A are represented by the ex-
tended edges 〈3, 1, A,B, x〉 and 〈3, 4, A,A, y〉, respectively.

Definition 10 (DFS code). The DFS code of a graph is a sequence of extended
edges, sorted in depth-first search order.

Continuing the previous example of Fig. 3 (left), if the backward edge A —

x— B and forward edge A —y— A are used as extension, the DFS code of
the resulting subgraph is the sequence of four extended edges, shown in Fig. 3
(right).

From a DFS code, one can recover the corresponding graph in the original
visiting order. A graph can have many different DFS codes. To consider a single
DFS code for each graph, a total order on extended edges is defined [20].

Definition 11 (Total order of extended edges). Let t1 and t2 be two ex-
tended edges:

t1 = 〈vi, vj , L(vi), L(vj), L(vi, vj)〉
t2 = 〈vx, vy, L(vx), L(vy), L(vx, vy)〉

The edge t1 is said to be smaller than t2 if and only if i) (vi, vj) <e (vx, vy)
ii) (vi, vj) =e (vx, vy) and 〈L(vi), L(vj), L(vi, vj)〉 <l 〈L(vx), L(vy), L(vx, vy).
Relationship <e is consistent with the rule for rightmost path extension, that is,
for eij = (vi, vj) and exy = (vx, vy), eij <e exy if and only if a) eij and exy
are both forward edges, then j < y or j = y and i > x; b) eij and exy are both
backward edges, then i < x or i = x and i > x; c) eij is a forward edge and exy
is a backward edge, then j ≤ x; d) eij is a backward edge and exy is a forward
edge, then i < y. <l is consistent with the lexicographic order.

This total order allows to order DFS codes. For example, in the simple graph
A —x— B —z— B , a DFS code begining with 〈0, 1, A,B, x〉 is smaller than

those beginning with 〈0, 1, B,A, x〉 or 〈0, 1, B,B, z〉.

Definition 12 (Canonical DFS code). A DFS code is called canonical if and
only if it has the least order among all DFS code corresponding to the same graph.

The property that each graph has only one canonical DFS code allows to effi-
ciently detect duplicate subgraphs. During the search for subgraphs, a graph can
be checked for canonicity and if it is non canonical, it can be ignored. This elim-
inates the need of comparing a subgraph with previously considered subgraphs
to determine if it is a duplicate [20].

10 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

4.2 The Algorithm

The proposed TKG algorithm takes as input a graph database and a parameter
k. It outputs the set T of the top-k frequent subgraphs. The pseudocode is shown
in Algortithm 1.

Algorithm 1: The TKG algorithm

input : GD: a graph database, k: a user-specified number of patterns
output: the top-k frequent subgraphs

1 Initialize a priority queue QK for storing the current top-k frequent
subgraphs, where subgraphs with smaller support have higher priority.

2 Initialize a priority queue Qc for storing candidate subgraphs for next
extension, where subgraphs with higher support have higher priority.
Initially, contains an empty graph.

3 minsup = 1
4 while Qc is not empty do
5 g ← pop highest priority subgraph from Qc

6 ε← rightMostPathExtensions(g,GD) // Finds edges that can extend g
and compute their support values.

7 foreach (t, sup(t)) ∈ ε do
8 g′ ← g ∪ {t} // Add the edge t to the DFS code of graph g
9 sup(g′)← sup(t)

10 if sup(g′) ≥ minsup and isCanonical(g′) then
11 // Save pattern g′ in list of current top-k patterns
12 Insert g′ into QK

13 if QK .size() ≥ k then
14 // Raise the internal threshold
15 if QK .size() > k then pop the highest priority (least support)

subgraph from QK ;
16 minsup = sup(QK .peek())

17 end
18 // Save g′ as a candidate for future extension instead of doing a

depth-first search
19 Insert g′ into Qc

20 end

21 end

22 end
23 Return QK

To dynamically search for top-k frequent subgraphs, the algorithm relies on
two priority queues. The first one, QK , is used for storing at any time the k
most frequent subgraphs found until now (Line 1). In that queue, subgraphs
with lower support have higher priority. The second queue, Qc stores subgraphs
that may be extended to find larger subgraphs (Line 2). In that queue, graphs
with higher support have higher priority. Initially, this queue contains only one

TKG: Efficient Mining of Top-K Frequent Subgraphs 11

element that is an empty graph (without edges and vertices). The algorithm
utilizes an internal minsup threshold, initially set to the lowest value (e.g. 1)
(Line 3). While Qc is not empty (Line 4), the algorithm considers extending the
most promising subgraph g (the one that has the largest support) in the queueQc

of subgraphs to be extended (Line 5). The assumption is that subgraphs having
a high support should be extended first because they are more likely to yield
subgraphs having a high support, and thus to help increase the internal minsup
threshold more quickly to reduce the search space. This graph g is popped from
Qc (Line 5). Then, the procedure rightMostPathExtensions() is called with g
to find all of its extensions (extended edges) and their supports (Line 6). For
each extension t, the algorithm combine the extension with the original subgraph
g to form a one edge larger subgraph g′ (Line 7-8). If the support of g′ is larger
than the current minsup threshold, and if the newly formed g′ is canonical
(tested by calling the isCanonical() procedure), g′ is inserted into QK as one
of the current k best frequent subgraphs (Line 9-12). Then, if the size of QK is
larger than k, the subgraph having the highest priority (lowest support) in QK

is popped from Qk (Line 13-15). Moreover, if the size of Qk is greater or equal
to k, the minsup threshold is set to the support of the subgraph having the
smallest support in QK (Line 16). Then, rather than immediately considering
extending g′, the algorithm stores g′ in Qc as a graph that may be eventually
extended (Line 19). Then, the algorithm processes other extensions of g (Line
7-20). Then, the algorithm continues the while loop (Line 4-22) such that the
graph having the highest priority in Qc will next be considered for extensions. We
name dynamic search this approach of extending subgraphs having the highest
support first. Note that using this approach, subgraphs are generated using a
different order than the depth-first search used by gSpan. In the experimental
evaluation the performance of the two search order will be compared. When the
algorithm terminates, the set Qk contains top-k frequent subgraphs.

In the proposed algorithm, the procedure rightMostPathExtension(g,GD)
finds all extensions of a graph g (represented by its DFS code). This is done
by finding all isomorphic mappings of that code to each graph Gi in the in-
put database, and then by finding the forward and backward extensions of each
mapping. The procedure isCanonical(g′) performs canonicality checking by re-
covering the graph corresponding to a DFS code g′, generating the canonical
DFS code g′′ and comparing g′ with g′′. If the two codes are same, then g′ is
canonical. These two procedures are implemented as in the gSpan algorithm [20],
and thus details about these procedure are omitted from this paper.

In terms of implementation, the TKG algorithm represents all graphs as DFS
codes. In other words, g, g′, and subgraphs in QK and QC are internally stored
as DFS codes. And when the algorithm terminates, the DFS codes of the top-k
subgraphs can be saved as graphs in an output file. In terms of data structures,
priority queues can be implemented using heaps or other structures such as
red-black trees. Such structures provide low complexity for inserting, deleting
elements, and obtaining the element having the highest priority.

12 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

The proposed TKG algorithm is correct and complete since it relies on the
concepts of DFS code and rightmost path extension introduced in gSpan to
ensure that all patterns can be visited, to detect duplicates, and to calculate
their support. Then, to ensure that top-k patterns are found, the algorithm
starts from minsup = 1 and raises the minimum support threshold when at all
least k patterns have been found, using the least support among the current
top-k patterns. By doing so, a set of top-k most frequent subgraphs is found.

It is to be noted that a top-k problem may have more than one good solution
(as explained in previous section). For example, if there is more than k patterns
that have exactly the same support, more than k patterns may be considered as
top-k patterns. In that case, TKG will return k of those subgraphs because the
user wants k patterns. And this satisfies the problem definition. However, if one
wants to keep more than k patterns, it is easy to modify Line 13 to 17 of TKG
to keep more than k patterns.

Lastly, note that using the dynamic search instead of a depth-first search
does not influence TKG’s correctness and completeness since subgraphs are just
visited in a different order. However, the dynamic search is useful to improve
performance as it can help raising the internal minsup threshold more quickly.

4.3 Additional optimizations

Besides using a dynamic search to explore the search space of frequent subgraphs,
two other optimizations are also proposed in the designed TKG algorithm for
speeding up the pattern mining process.

The first optimization is called the skip strategy. Recall that for a candidate
graph g for extension, the procedure rightMostPathExtensions(g,GD) finds
all extensions from each graph Gi in the input database. After processing a
graph Gj , let hsup be the highest support among the found extensions and rn
be the number of remaining graphs. If hsup + rn < minsup, it indicates that
the subgraph g cannot be used to find any frequent extensions. Therefore, the
procedure rightMostPathExtensions(g,GD) can stop processing the remaining
graphs of the database and empty the current extension list to avoid further
checking. This strategy can decrease runtimes.

The second optimization is to initially scan the database to calculate the
support of all single edge graphs and then to use this information to update Qk,
minsup and Qc, before performing the dynamic search. Doing so decreases the
processing time for single edge graphs.

5 Experimental Evaluation

To evaluate the performance of the proposed algorithm, extensive experiments
have been done. The testing environment is a workstation running Ubuntu 16.04,
equipped with an Intel(R) Xeon(R) CPU E3-1270 3.60GHz, and 64 GB of RAM.
The TKG and gSpan algorithms were implemented in Java. Both algorithm
implementations use the same code for loading datasets, outputting patterns,

TKG: Efficient Mining of Top-K Frequent Subgraphs 13

performing canonical testing and generating DFS codes. In the experiments,
runtime and memory usage were measured using the standard Java API. Four
standard benchmark datasets have been used, which have varied characteristics.
They are described in Table 1 in terms of number of input graphs, average
number of nodes per graph, average number of edges per graph, total number
of vertices and total number of edges.

The four datasets are all bio- or chemo-informatics datasets. The protein
dataset [1] contains 1113 graphs, each representing information about the struc-
tures of proteins. The nci1 dataset [19] contains 4110 graphs representing chem-
ical compounds related to cancer research. The enzymes datasets [1] contains
600 graphs representing enzymes from a database called BRENDA. Lastly, the
Chemical340 dataset contains 340 graphs [20], where each vertex represents an
atom, and its label provides information about the atom element and type. Fur-
thermore, each edge represents the bond between two atoms and the edge label
indicates bond types. In that dataset, the largest graph contains 214 vertices
and 214 edges.

Table 1. Dataset characteristics

Dataset |GD| Avg. nodes Avg. edges |LV | |LE |
protein 1113 39.05 72.82 3 1

nci1 4110 29.87 32.3 37 3

enzymes 600 32.63 62.13 3 1

Chemical340 340 27.02 27.40 66 4

5.1 Influence of k on the performance of TKG

In a first experiment, the parameter k was varied to evaluate its influence on the
performance of TKG in terms of runtime and memory usage. Three versions of
TKG are compared: (1) TKG (with all optimizations), (2) TKG without dynamic
search (using the depth-first search of gSpan), and (3) TKG without the skip
strategy. Results for runtime are shown in Fig. 4 for the four datasets. Results
for memory usage are shown in Fig. 5.

It is first observed that as k is increased runtime and memory usage increase.
This is reasonable since as k is increased, more patterns must be found. As a
result, TKG may need to consider more patterns to fill Qk and be able to raise
the internal minsup threshold to reduce the search space.

It is also observed that the dynamic search strategy generally greatly de-
creases runtime, and considerably decrease memory usage on the protein and
enzymes datasets. For example, on the protein dataset, when k = 200, TKG
with dynamic search is up to 100 times faster than TKG using a depth-first
search and consumes up to 8 times less memory. On the enzymes dataset, when
k = 1000, TKG with dynamic search is up to 40 times faster than TKG using
a depth-first search and consumes up to 4 times less memory. On the ncil and

14 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

0

200

400

600

0 5000 10000 15000

ru
n

ti
m

e
 (

s)

k

nci1 dataset

0

2000

4000

6000

0 2000 4000 6000 8000 10000

ru
n

ti
m

e
 (

s)

k

enzymes dataset

0

5

10

15

0 1000 2000 3000 4000 5000
ru

n
ti

m
e

 (
s)

k

Chemical340 dataset

0

1000

2000

3000

4000

0 1000 2000 3000 4000 5000

ru
n

ti
m

e
 (

s)

k

protein dataset

TKG TKG without dynamic search TKG without skip strategy

Fig. 4. Influence of k on runtime for different datasets.

0

5000

10000

15000

20000

0 1000 2000 3000 4000 5000

m
em

o
ry

 (
M

B
)

k

protein dataset

0

1000

2000

3000

0 2000 4000 6000 8000 10000

m
e

m
o

ry
 (

M
B

)

k

enzymes dataset

TKG TKG without dynamic search TKG without skip strategy

0

2000

4000

6000

0 5000 10000 15000

m
e

m
o

ry
 (

M
B

)

k

nci1 dataset

0

1000

2000

3000

0 1000 2000 3000 4000 5000 6000

m
e

m
o

ry
 (

M
B

)

k

Chemical340 dataset

Fig. 5. Influence of k on peak memory usage for different datasets.

TKG: Efficient Mining of Top-K Frequent Subgraphs 15

Chemical340 datasets, not much memory reduction is achieved because although
the dynamic search can help raise the internal minsup threshold more quickly
and thus reduce the number of subgraphs considered, the queue Qc must be
maintained in memory, which offsets those benefits.

It is also found that using the skip strategy is useful to reduce runtime, and
can slightly reduce memory usage on some datasets. For example, on the protein
dataset, when k = 1000, it can reduce runtime by up to 50 percent and memory
by up to 25 percent. The skip counting strategy reduces runtime because when
the strategy is applicable, less comparisons are made and less extensions are
stored in memory.

It is also interesting to observe that the proposed TKG algorithm has a small
runtime (less than 15 seconds) for k values of up to 5000 on the Chemical340
dataset, while the TGP algorithm for top-k closed subgraph mining was reported
to be unable to terminate on that dataset [13]. The main reason, discussed in
the related work section, is that TGP must calculate and store the DFS codes
of all patterns in memory to then find the top-k patterns, which is inefficient
for moderately large graphs. The TKG algorithm does not use this approach.
It instead explores the search space using a dynamic search to guide the search
toward the most promising patterns, and TKG reduces the search space using
the internal minsup threshold to avoid generating the DFS codes of all patterns.
Moreover, TKG does not need to keep all patterns in memory.

5.2 Performance comparison with gSpan set with an optimal
minsup threshold

In another experiment, the performance of TKG was compared with that of
gSpan. The goal of this experiment is to assess if top-k frequent subgraph min-
ing using TKG can have similar performance to that of the traditional task of
frequent subgraph mining. This question is interesting because top-k frequent
subgraph mining is a more difficult problem than frequent subgraph mining.
The reason is that in top-k frequent subgraph mining, the search for patterns
must start from minsup = 1, while in frequent subgraph mining the minsup
threshold is fixed beforehand by the user. The comparison of TKG with gSpan
is also interesting because TKG reuses some techniques from gSpan.

TKG was run with k values from 1 to 5000 on each dataset. Then, the gSpan
algorithm was run with the optimal minsup value to obtain the same number
of patterns. The runtime and peak memory usage was measured. Tables 2 and 3
show results for the protein and enzymes datasets, respectively. Results for the
other two datasets are not shown but similar trends were observed.

From these results, it is found that TKG and gSpan have very similar run-
times. This is a good result since the problem of top-k subgraph mining is more
difficult than the traditional problem of frequent subgraph mining.

In terms of memory, TKG generally consumes more memory than gSpan (up
to twice more). This is reasonable since TKG needs to keep a priority queue
Qk to store the current top-k patterns, and another priority queue Qc to store
patterns to be extended by the dynamic search.

16 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

It is important to note that this experiment was done by setting an optimal
minsup value for gSpan to obtain the same number of patterns as TKG. But in
real-life, the user typically don’t know how to set the minsup threshold. Setting
k is more intuitive than setting minsup because the former represents the num-
ber of patterns that the user wants to analyze. For example, consider that a user
wants to find 200 to 1000 patterns in the protein dataset. According to Table 2,
the range of minsup values that would satisfy the user is [0.5247, 0.6289], which
has a length of 0.6289 - 0.5247 = 0.1042. Thus, the user has about 10.4% chance
of setting correctly the minsup threshold of gSpan. Now consider the same sce-
nario for the enzymes datasets. In that case, the range of suitable minsup values
is [0.6650, 0.7817] according to Table 3. Hence, the user has about 11.7% chance
of correctly setting the minsup threshold of gSpan. If the user sets the minsup
threshold too low, gSpan may find too many patterns and may become very
slow, while if the threshold is set too high, the user may need to run the algo-
rithm again until a suitable value is found, which is time-consuming. To avoid
such trial-and-error approach to find a suitable minsup value, this paper has
proposed the TKG algorithm, which let the user directly specify the number of
patterns to be found. Because the runtime of TKG is close to that of gSpan,
TKG can be considered a valuable alternative to gSpan.

Table 2. Comparison of TKG and gSpan with optimal minsup threshold on the protein
dataset

k minsup TKG gSpan TKG gSpan
runtime (s) runtime (s) memory (MB) memory (MB)

1 0.9227 1 1 85 85

100 0.6720 14 13 1020 507

200 0.6289 31 31 1019 976

1000 0.5247 321 275 4583 3503

3000 0.4618 1205 1198 4583 3503

5000 0.4367 2673 2650 8310 6182

Table 3. Comparison of TKG and gSpan with optimal minsup threshold on the en-
zymes dataset

k minsup TKG gSpan TKG gSpan
runtime (s) runtime (s) memory (MB) memory (MB)

1 0.9767 1 1 46 46

100 0.8067 12 8 527 276

200 0.7817 19 15 462 252

1000 0.6650 151 134 469 296

3000 0.600 625 612 1016 902

5000 0.5700 1280 1249 1113 1060

TKG: Efficient Mining of Top-K Frequent Subgraphs 17

6 Conclusion

This paper has presented a novel algorithm named TKG to find the top-k fre-
quent subgraphs in a graph database. The user only needs to set a parameter k,
which controls the number of patterns to be found. To quickly raise the inter-
nal minsup threshold, the algorithm utilizes a dynamic search procedure that
explores the most promising patterns first. Moreover, a skip strategy has been
integrated in the algorithm to improve its performance. An extensive experimen-
tal evaluation has shown that TKG has excellent performance. In particular, the
dynamic search and optimizations can decrease the runtime of TKG by up to
about 100 times and its memory by up to 8 times. It was also found that TKG
has similar runtimes to gSpan and thus that it provides a valuable alternative
to traditional frequent subgraph mining algorithms.

The source code of the TKG and gSpan algorithms, as well as the datasets
can be downloaded from http://www.philippe-fournier-viger.com/spmf/tkgtkg/,
and will also be integrated into the next release of the open-source SPMF data
mining software [5].

For future work, designing efficient algorithms for other graph pattern mining
tasks will be considered such as for discovering significant trend sequences in
dynamic attributed graphs [2], subgraphs in graphs [12], high utility patterns [7]
and rare subgraphs [23].

Acknowledgements. The work presented in this paper has been partly
funded by the National Science Foundation of China.

References

1. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21
Suppl 1, 47–56 (2005)

2. Cheng, Z., Flouvat, F., Selmaoui-Folcher, N.: Mining recurrent patterns in a dy-
namic attributed graph. In: Proc. of 21st Pacific-Asia Conf. on Knowledge Discov-
ery and Data Mining. pp. 631–643. Springer (2017)

3. Duong, V.T.T., Khan, K.U., Jeong, B.S., Lee, Y.K.: Top-k frequent induced sub-
graph mining using sampling. In: Proc. 6th Intern. Conf. on Emerging Databases:
Technologies, Applications, and Theory (2016)

4. Duong, V.T.T., Khan, K.U., Lee, Y.K.: Top-k frequent induced subgraph mining
on a sliding window using sampling. In: Proc. 11th Intern. Conf. on Ubiquitous
Information Management and Communication (2017)

5. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z.,
Lam, H.T.: The spmf open-source data mining library version 2. In: Proc. 20th
European conference on machine learning and knowledge discovery in databases.
pp. 36–40. Springer (2016)

6. Fournier-Viger, P., Lin, J.C.W., Kiran, U.R., Koh, Y.S.: A survey of sequential
pattern mining. Data Science and Pattern Recognition 1(1), 54–77 (2017)

7. Fournier-Viger, P., Lin, J.C.W., Truong-Chi, T., Nkambou, R.: A survey of high
utility itemset mining. In: High-Utility Pattern Mining, pp. 1–45. Springer (2019)

18 Fournier-Viger, P., Cheng, C., Lin, J. C.-W., Yun, U., Kiran, R. U.

8. Fournier-Viger, P., Lin, J.C.W., Vo, B., Chi, T.T., Zhang, J., Le, B.: A survey of
itemset mining. WIREs Data Mining and Knowledge Discovery (2017)

9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-
quent substructures from graph data. In: Proc. 4th European Conference on Prin-
ciples of Data Mining and Knowledge Discovery (2000)

10. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
Knowledge Engineering Review 28, 75–105 (2013)

11. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. 1st IEEE
Intern. Conf. on Data Mining (2001)

12. Lee, G., Yun, U., Kim, D.: A weight-based approach: frequent graph pattern mining
with length-decreasing support constraints using weighted smallest valid extension.
Advanced Science Letters 22(9), 2480–2484 (2016)

13. Li, Y., Lin, Q., Li, R., Duan, D.: Tgp: Mining top-k frequent closed graph pattern
without minimum support. In: Proc. 6th Intern. Conf. on Advanced Data Mining
and Applications (2010)

14. Mrzic, A., Meysman, P., Bittremieux, W., Moris, P., Cule, B., Goethals, B.,
Laukens, K.: Grasping frequent subgraph mining for bioinformatics applications.
In: BioData Mining (2018)

15. Nguyen, D., Luo, W., Nguyen, T.D., Venkatesh, S., Phung, D.Q.: Learning graph
representation via frequent subgraphs. In: Proc. 2018 SIAM International Confer-
ence on Data Mining. pp. 306–314 (2018)

16. Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electronic
Notes in Theoretical Computer Science 127, 77–87 (2005)

17. Saha, T.K., Hasan, M.A.: Fs3: A sampling based method for top-k frequent sub-
graph mining. Proc. 2014 IEEE Intern. Conf. on Big Data pp. 72–79 (2014)

18. Sankar, A., Ranu, S., Raman, K.: Predicting novel metabolic pathways through
subgraph mining. Bioinformatics 33 24, 3955–3963 (2017)

19. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Proc. 6th International Conference on Data
Mining pp. 678–689 (2006)

20. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. 2nd
IEEE Intern. Conf. on Data Mining (2002)

21. Yan, X., Han, J.: Closegraph: mining closed frequent graph patterns. In: Proc. of
the 9th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining
(2003)

22. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach.
In: Proc. of the 2004 SIGMOD Conference (2004)

23. Yun, U., Lee, G., Kim, C.H.: The smallest valid extension-based efficient, rare graph
pattern mining, considering length-decreasing support constraints and symmetry
characteristics of graphs. Symmetry 8(5), 32 (2016)

24. Zhu, F., Yan, X., Han, J., Yu, P.S.: gprune: A constraint pushing framework for
graph pattern mining. In: Proc. of the 11st Pacific-Asia Conf. on Knowledge Dis-
covery and Data Mining (2007)

