Discovering Alarm Correlation Rules for
Network Fault Management

Philippe Fournier-Viger!0000-0002=7680-9899] " Ganghuan He!, Min Zhou?,
Mourad Nouioua'?, and Jiahong Liu'

! Harbin Institute of Technology (Shenzhen), Shenzhen, China
philfv8@yahoo.com, heganghuan@gmail.com, mouradnouioua@gmail.com,
550565776Qqq . com
2 Huawei Noah’s Ark Lab, Shenzhen, China
zhoumin27@huawei.com
3 University of Bordj Bou Arreridj, Algeria

Abstract. Fault management is critical to telecommunication networks.
It consists of detecting, diagnosing, isolating and fixing network prob-
lems, a task that is time-consuming. A promising approach to improve
fault management is to find patterns revealing the relationships between
network alarms, to then only show the most important alarms to net-
work operators. However, a limitation of current algorithms of this type
is that they ignore the network topology. But the network topology is
important to understand how alarms propagate on a network. This paper
addresses this issue by modeling a real-life telecommunication network
as a dynamic attributed graph and then extracting correlation patterns
between network alarms called Alarm Correlation Rules. Experiments
on a large telecommunication network show that interesting patterns
are found that can greatly compress the number of alarms presented to
network operators, which can reduce network maintenance costs.
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1 Introduction

In today’s society, telecommunication networks are key to support personal com-
munications as well as those of businesses and other organizations. To ensure
the proper operation of large telecommunication networks, a crucial task is fault
management, which consists of detecting, diagnosing, isolating and fixing net-
work problems. The purpose of fault management is to preserve network avail-
ability, security, reliability and optimize its performance [1]. However, a key issue
with fault management for large and heterogeneous telecommunication networks
(e.g. covering cities) is that millions of alarms may be generated by network de-
vices, and that the number of technicians or budget for maintaining a network
is limited [3]. Thus, it is easy for technicians to be overloaded with thousands of
alarms and being unable to investigate all of them. For example, the telecommu-
nication network of a medium-sized city typically contains multiple device types
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where some devices may produce more than 300 different alarms. The alarms
are recorded by each network device and can be stored centrally and analyzed to
support fault management. Moreover, data is also collected about QPIs (Quality
Performance Indicators) of each network device over time. For network experts,
understanding the relationships between alarms is not easy because faults are
often caused by complex interactions between network devices.

To improve fault management, some expert systems were designed that rely
on a knowledge base created by hand to find the causes of network problems [2].
But this approach is costly, time consuming, prone to errors and cannot adapt
to changes. As an alternative, an emerging approach is to rely on pattern mining
techniques to automatically discover relationships between alarms in alarm logs
and then to hide (compress) alarms that are correlated with previous alarms [3—-
7). It was shown that this can greatly reduce the number of alarms presented
to network operators and thus reduce maintenance costs. But such approaches
generally represent alarm log data as a sequence of alarms and the network
topology is ignored [3-7]. But the topology is important to understand how
alarms propagate on a network.

A promising research direction is thus to consider the network topology as a
dynamic graph and to extract richer and more complex patterns from it to reveal
complex temporal relationships between alarms. Though, several algorithms have
been proposed to mine patterns in dynamic graphs, none is specifically designs
for alarm analysis [16-19]. To find more complex relationships between alarms
based on the network topology, this paper models alarms data as a network (i.e.
a dynamic graph) where vertices are devices and edges are communication links.
Moreover, alarms are viewed as spreading following the information flow (which
depends on the topology) and where QPIs are represented as attributes of net-
work devices. From this representation, this paper proposes to extract a novel
type of patterns called Alarm Correlation Rules using a novel correlation mea-
sure named ACOR (Alarm CORrelation). An experimental evaluation with real
data from a large telecommunication network shows that the proposed rules can
provide greater alarm compression than the state-of-the-art AABD system [3].

The paper is organized as follows. Section 2 reviews related work. Section 3
presents the proposed framework. Then, Section 4 describes results obtained for
a large scale telecommunication network. Finally, Section 5 draws a conclusion.

2 Related Work

To discover relationships between alarms in telecommunication networks, several
studies have applied pattern mining techniques [3-7] such as association rule
mining [11] episode mining [8-10] and sequential pattern mining (SPM) [12,13].

The first system to discover alarm patterns is TASA (Telecommunication
Alarm Sequence Analyzer) [5,6]. It takes as input a sequence of alarms with
timestamps and applies an episode mining algorithm to find alarms that fre-
quently appear together within a sliding window. Moreover, TASA offers a sep-
arate module that applies association rule mining to find sets of properties that
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are common to alarm occurrences (while ignoring time). TASA was applied to
data from several telecommunication service providers.

Lozonavu et al. [7] proposed a system for mining alarm patterns that first
partitions the input alarm sequence into a set of sequences such that alarms hav-
ing close timestamps are grouped together. Then, a SPM algorithm is applied
to find all subsequences of alarms appearing in many of those sequences. Pat-
terns are then used to generate a graph indicating relationships between alarms,
where the confidence (conditional probability) that an alarm precedes another
is calculated. This visualization can help network operators to understand the
relationships between alarms. The system was applied to a 3G mobile network.

Wang et al. [3] proposed a system called AABD (Automatic Alarm Behavior
Discovery). This system first filters out invalid alarms (e.g. with missing times-
tamps) and transient alarms (that appear only for a short time) from the input
alarm sequence. Then, the most frequent alarms are identified and the input
sequence is partitioned based on these alarms. Then, a SPM [12, 13] algorithm is
applied to find frequent alarm sequences. These patterns are then used to gen-
erate rules indicating that an alarm may be caused by another alarm to perform
alarm compression (reduce the number of alarms presented to network opera-
tors). AABD achieved good compression for alarms of a real telecommunication
network where it was shown that this approach based on transient alarm detec-
tion can reduce the number of alarms presented to operators by more than 84%.
But the rule generation process of AABD relies on a knowledge base provided
by domain expert, which is time-consuming to create and maintain.

An alarm management system adopting a similar approach was designed by
Radl et al. [4]. Tt takes as input an alarm sequence with time where alarms
have attributes. A modified SPM algorithm was applied to extract sequences of
alarms frequently appearing in a sliding-window. Patterns are selected based on
three measures that are the support, confidence and lift. The system was applied
to data from a large Portugese telecommunication company and patterns were
used to reduce the number of alarms presented to the user by up to 70%.

The above pattern mining approaches to study network alarms are useful
but handle simple data types, that is mostly discrete sequences where alarms
are viewed as events that have some attribute values and timestamps. To ex-
tract patterns that consider the network topology and provide different insights,
this paper considers a more complex data representation by adding the spatial
dimension (the network topology) to the pattern mining process. The network is
viewed as a dynamic graph where alarms are spreading along edges (communica-
tion links) between vertices (network devices) to find spatio-temporal patterns.

3 The Proposed Framework

This section presents the proposed framework for discovering alarm correlation
rules and performing alarm compression. This framework is illustrated in Fig. 1.
It consists of three main steps: (1) obtaining and pre-processing alarm and net-
work topology data, (2) extracting alarm correlation rules from it, and (3) uti-
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lizing the rules to select alarms to be presented to the user. These three steps
are described in details in the next paragraphs.

1) Obtaining and preparing data 2) Extracting alarm 3) Alarm compression
correlation rules

mapping
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Fig. 1. The proposed alarm discovery and compression framework

Step 1. Obtaining and preparing the data. In previous studies, histor-
ical alarm logs were analyzed to find patterns involving multiple alarms. But
most studies represent alarms log data as a sequence of alarms ordered by time.
Because these studies ignore the network topology, it may lead to obtaining im-
precise results or ignoring some important underlying patterns. In this work,
we make the observation that telecommunication alarm data can be naturally
modeled as a network (a dynamic graph) in which alarms can spread following
the information flow. Thus, we not only consider the historical alarm log but
also the network topology. The following paragraphs describes how these two
types of data are obtained, pre-processed and then combined.

a) Preparing the historical alarm log. The alarm log format considered
in this study is presented in Table 1, and is more or less the same as in prior
studies [3]. Each alarm has a name, a source (the device where the alarm was
triggered), the domain of the device, an occurrence time and a clear time. For this
study, five days of data was obtained from a large telecommunication network
in Indonesia, from the 12t" to 16" April, 2019. This dataset contains more than
six million alarms, categorized into 300 types, triggered by different devices. To
ensure privacy, alarm names and sources are not shown in Table 1.

Table 1. Part of an alarm log from an Indonesian telecommunication network

Alarm Name‘ Domain ‘Alarm Source‘ Occurrence Time ‘ Clear Time

Alarm 1 ran-4g Source 1 [2019-04-12 10:40:23|2019-04-12 10:40:29
Alarm 2 |microwave| Source 2 |2019-04-12 10:40:24|2019-04-12 11:30:44
Alarm 3 ran-2g Source 3 [2019-04-12 10:40:26|2019-04-12 10:40:36
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After obtaining the alarm log, the proposed framework pre-processes the data
to filter out some spurious alarms. This is done based on the recommendation
of telecommunication network experts and allows to perform a more precise
analysis of alarm correlation and to reduce the time required for calculations.
First, all alarms that repeatedly appear in a device during a short period of
time (five minutes as per the recommendation of domain experts) are combined.
Second, some repeatedly occurring alarms whose duration time is very short
are filtered out as they are considered uninteresting. Third, alarms that have
incomplete information (e.g. an empty alarm source field) are discarded.

b) Building a static heterogeneous graph. After preparing the alarm
log, the framework obtains data about the network topology. This data is rep-
resented as a connected directed graph where devices are vertices and edges
indicate the directions that information flows between devices.

In this study, the network topology was unavailable. Hence, a procedure was
designed to extract the topology from logs indicating how information transited
through the network. Table 2 depicts part of such log, where the basic component
is paths. A path is an ordered list of devices through which some messages have
transited. Note that a device may appear in multiple paths.

Table 2. Part of an information flow log

Path Id|Device Name‘Device Type‘Path Hop

1 Device 1 Router 0
1 Device 2 Microwave 1
1 Device 3 RAN 2
2 Device 1 Router 0
2 Device 4 Microwave 1
2 Device 5 RAN 2

By combining paths, a static heterogeneous graph is obtained representing
the network topology such as the one shown in Fig. 2 (left). The constructed
graph is hierarchical where each node represents a network device. Three types
of devices are considered, namely routers, microwave devices and RAN (Radio
Access Network) devices (also called NodeB). The information generally flows
from routers to microwave devices, and then to RAN devices. The graph gen-
erated using the collected data contains 41,143 distinct vertices (devices) and
nodes appears to be hierarchically organized into three layers (called domains)
as a tree-like structure. However, it should be noted that some nodes are in-
terconnected with others in the Microwave layer. Hence, there are some cycles
between microwave nodes and the network must be represented as a graph rather
than a tree.

c) Mapping alarms to the network. After obtaining the graph represent-
ing the network topology, the proposed framework maps each alarm from the
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Fig. 2. The recovered network topology (left) with alarm attributes (right)

alarm log to devices of the graph. This is done by matching values for the Device
Name field from information flow paths (as in Table 2) to values in the Alarm
Source field of the alarm log (as in Table 1). The result is a graph-based data
representation where all triggered alarms are encoded in vertex attributes on the
topology and where the topology remains fixed. Such structure is depicted in Fig-
ure. 2. For a given node, each attribute represents an alarm type and contains the
list of alarm occurrences of that type, sorted by time. This graph-based struc-
ture indicates how alarms change over time and is a type of dynamic attributed
graph. Note that during the mapping process, alarms that are not mapped to
any device of the topology are discarded. The next paragraphs explains how
interesting correlation patterns are extracted from this data representation.

Step 2. Extracting alarm correlation rules. After the data has been
prepared, the proposed framework extracts patterns indicating strong temporal
relationships between pairs of alarm types. A natural representation for such
relationships is rules of the form A — B indicating that if some alarm of type
A appears, an alarm of type B is also likely to appear. But finding interesting
rules requires to define a measure of the correlation of A and B.

In association rule mining [11, 14], several measures have been proposed to
find strong rules such as the support (occurrence count of A with B) and the
confidence (occurrence count of A with B divided by the occurrence count of
A). But the support measure is not very suitable for alarm correlation analysis
because very frequent alarms are generally unimportant and may even be consid-
ered as noise. The confidence measure has the drawback that it is very sensitive
to the frequency of a rule’s consequent (B) in the database. Another traditional
measure is the Lift measure [14], which is less influenced by the presence of rare
items but it is symmetric. In this study, we want an asymmetric measure to help
us judge how an alarm influences the other. The lift does not allow to distinguish
between the correlation of A with B and that of B with A.

To address the above limitations of the above measures, this paper presents
a novel correlation measure named ACOR (Alarm CORrelation) specifically de-
signed for evaluating the correlation between two alarms A and B. Some advan-
tages are that it consider the occurrence frequencies of A and B so that it can
minimize the impact of noisy data (some alarms always appear or only appear
once or twice). And ACOR amplifies the difference between the associated val-
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ues. It is worth noticing that it is an asymmetric measure, i.e, acor g4op does not
equal acorpsa. The measure is given as:

ABcount )

acorA2B = (2 _Aiggrétount )’ (1)

Bcount

where ABcount is the number of time windows where A and B appeared together
(e.g. within 5 minutes) which can be interpreted as indicating that A and B may
have the same cause and Acount (resp. Bcount) is the number of occurrences
of alarm A (resp. alarm B) in the log data. The closer a acor 425 value is to the
maximum of 1, the higher the correlation between the two alarms is.

Besides, it can be observed that the correlation measure is designed to not
be strict about the order of occurrences between two alarms A and B, as long as
they occur together closely enough (whithin a time window). The reason for not
requiring a strict order between A and B is that clocks of network devices are
not perfectly synchronized. As a result, some event may appear before another
event in the alarm log although it actually appeared after.

Another contribution of this work is to not only find rules about alarms within
a single device (single device rules) but also between devices from the same do-
main (cross device rules) and between devices of different domains (cross domain
rules). This is useful because a telecommunication network is typically hierar-
chical, and devices within each layer (domain) behave quite differently. Nodes
from different domains also have completely different types of alarms and com-
munication link between nodes are also determined by the domains containing
these nodes. Discovering cross device and cross domain rules allows to go beyond
simple correlations occurring within a single device to find patterns applicable in
other scenarios. This was not done in previous studies as the network topology
was ignored.

To find correlation rules between alarms, a data mining algorithm is applied
to the previous graph structure. As mentioned, this paper considers three sce-
narios for alarm correlation analysis: single device rules, cross device rules and
cross domain rules. To find these rules, the correlation between all pairs of alarms
is calculated according to the acorasp formula. Algorithm 1 shows the pseudo
code for calculating the correlation of a single device rule. It takes as input the
graph data structure previously built, two alarm types A and B, and returns
the correlation of A — B. In the pseudocode, the notation len(node.alarm_A)
represents the number of alarms of type A that have occurred in a given device
called node, and node.alarm_A[i] refers to the i-th alarm occurrence of type A
occurring in the device node. The algorithm can be easily extended to identify
strongly correlated cross device and cross domain rules. The only difference be-
tween these different scenarios is that alarms must be in different positions in
the network when calculating the correlation. Finally, the rules are ranked by
decreasing order of correlation. The assumption is that rules having a high cor-
relation are more interesting. The rules can be analyzed by an expert or used
for alarm compression as it will be explained in the next subsection.
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Algorithm 1: Calculating the correlation of a single device rule

input : a dynamic attributed graph G,
two alarm types A and B
output: Correlation value of A to B

1 Initialize A_count < 0, B_count < 0, AB_count < 0

2 foreach node € G do

3 A_count < A_count + len(node.alarm_A)

4 B_count < B_count + len(node.alarm_B)

5 Initialize 4 <— 0,7 < 0

6 while i < len(node.alarm_A) and j < len(node.alarm_B do
7
8
9

if node.alarm_A[i], node.alarm_B[j] appear together then
AB_count < AB_count + 1
1+ 1+1
10 jg+1
11 end
12 if node.alarm_A[i] appears before node.alarm_B[j] then
13 | ii+1
14 end
15 if node.alarm_B[j] appears before node.alarm_A[i] then
16 | j+i+1
17 end
18 end
19 end

20 acor < (AB_count/A_count)/(2 — (AB_count/B_count))
21 return cor

Step 3. Compressing alarms using the alarm correlation rules. After
extracting alarm correlation rules, the framework utilizes the discovered alarm
correlation rules for alarm compression. This is done in two steps.

a) Aggregating rules and inferring the cause of an alarm. First, the
top-k alarm correlation rules are selected where k is a parameter that is set by
the user. This is to avoid having to process a very large number of rules in the
subsequent step.

For single device correlation analysis, if a more compact representation is
required, an inference graph can be created between alarms of different domains.
There will be a small connected subgraph in the inference graph where vertices
are alarms and edges are the relations between alarms. Then we can get a number
of connected subgraphs that is independent alarm sets. Note that the proposed
method uses the property that the value of the correlation is not symmetric to
delete edges in the inference graph, and simply obtain each P alarm through the
inference graph. For cross device and domain correlation analysis, we directly
infer the direction of the information flow in the network to get P alarms.

b) Filtering alarms in real-time. Then, the framework applies alarm cor-
relation rules selected in the previous step to filter alarms. But a challenge is
that the network center in charge of the telecommunication network receive a
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constant flow of alarms. To be able to filter alarms in real-time, the proposed
framework is adapted to uses a sliding window. For each window, alarms of that
window are mapped to the graph representing the network topology to create
an attributed graph. Then, the framework respectively performs pre-processing
filtering, cross domain compression, cross device compression and single device
compression using the rules obtained by the knowledge discovery process. Lastly,
the remaining alarms from the network are reported to the network management
center and some technicians will be dispatched to check and fix the nodes (de-
vices) having alarms.

4 Experimental Evaluation

To evaluate the proposed framework, two experiments were done using real
alarm data collected from an Indonesian telecommunication network (described
in Section 3). Results where compared with rules found by the state-of-the-art
AABD |[3] system, obtained from its authors.

Rule quality. The first experiment was carried out to verify the quality of
the alarm correlation rules extracted by the proposed framework. For this pur-
pose a comparison was made with the 135 rules found by the AABD system [3]
to see if rules found by AABD could be rediscovered and if many other rules
with a similar or higher correlation could be found. The rules found by AABD
are used as baseline as they have been verified as valid by domain experts. Both
approaches were applied using the same time window of 5 minutes, suggested
by domain experts. Let A and B denote the sets of rules found by AABD and
the proposed framework, respectively. The coverage ratio was calculated, which
is defined as coverage = |AN B|/|B|. A high coverage ratio indicates that many
rules of the proposed framework are valid (as A was validated by experts). How-
ever, it should be noted that this measure does not give a full picture as there
may exist valid rules not found by AABD.

To select good rules, a minimum correlation threshold was applied in the pro-
posed framework. As this parameter is set lower, more rules may be found, and
then the coverage ratio may increase but the accuracy of rules may decrease. It is
thus important to choose a suitable value for this parameter that is not too low
to avoid finding many spurious rules. To choose a suitable value, we applied the
empirical ”elbow method” approach for setting a parameter, which is commonly
used in data mining and machine learning [15]. It consists of drawing a chart
representing the impact of a parameter on a measure to find the point where
further increasing or decreasing the parameter would result in a huge change for
that measure. In this study, we varied the minimum correlation threshold and
noted the number of rules found for each value to draw a chart representing the
frequency distribution of rules w.r.t correlation (shown in Fig. [15]). We then ob-
served that a large increase in the number of rules occurs for correlation values
below 0.135. Assuming that those could be spurious rules, we set the minimum
correlation to 0.135. For this parameter value, about 500 alarm correlation rules
were discovered including 113 found by AABD. Thus, in this case, the coverage
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ratio is 113/135 = 84%. It was observed that many rules not found by the AABD
system were discovered that have similar or higher correlation values than rules
found by AABD. This is interesting as they are new rules exclusively discovered
by the proposed framework that may be valid rules. Rules were presented to a
domain expert who found that the majority of the new rules are interesting.
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Fig. 3. The correlation distribution of rules

Alarm compression rate. The second experiment aimed at evaluating the
number of alarms that could be compressed (removed) using the discovered alarm
correlation rules. The original number of alarms and the number of remaining
alarms after applying each compression procedure is shown in Table 3. After
keeping only the alarms triggered by devices from the reconstructed topology,
4,481,273 alarms were kept from the original 6,199,650 ones. Then, preprocessing
was applied, which further reduced that number to 992,966. Then, alarms were
compressed using cross domain, cross device, and single device alarm correlation
rules, respectively. In the end, 590,307 alarms remained, that is 9.5% of the
original alarms. The final compression rate obtained by the system is thus

290307 _ 87.9%. This is a big reduction that can greatly reduce the work of

4,481,273
network operators.

Table 3. Remaining alarms count after applying each compression procedure

Compression procedure Remaining alarms count

Original alarms count 6,199,650 (100%)

Available alarms on topology 4,481,273 (72.2%)

After pre-processing 992,966 (16.0%)

After cross domain compression 874,770 (14.1%)

After cross device compression 756,316 (12.2%)

After single device compression of microwave domain 634,855 (10.2%)

After single device compression of ran domain compression 590,307 (9.5 %)




Discovering Alarm Correlation Rules 11

To put this into perspective, the compression obtained using the alarm corre-
lation rules was compared with that obtained using rules found by AABD. While
the proposed framework can find three main types of rules (cross domain, cross
device and single device), AABD only finds single devices rules in the RAN do-
main. Thus, a comparison of the obtained compression was made using only this
type of rules. Using rules found by AABD, 39,603 alarms were removed, while
44,548 were removed using the proposed framework. Thus, the proposed method
allowed to remove 12.5% more rules than AABD for the scenario of single device
compression. If the other types of rules found by the proposed framework are also
used, a much greater compression can be obtained. For example, if cross domain
rules are also used, 162,744 alarms are removed by the proposed framework, that
is 123,141 more than AABD. And if both cross domain and cross device rules are
utilized as well as single device rules from all domains (not just RAN), 284,463
more alarms are removed compared to AABD. Note that AABD could also be
used to find rules in other domains but such rules were not provided.

5 Conclusion

To find interesting correlations between triggered alarms in telecommunication
networks, we modeled a network as a dynamic attributed graph where alarms
are viewed as device (node) attributes. A framework was designed to extract cor-
relation rules for a single device, between different devices and across different
domains. For this, a novel correlation measure named ACOR (Alarm CORre-
lation) was designed. By considering the network topology, the rules can reveal
interesting relationships between alarms not found by prior approaches. The so-
lution was applied to data from a large telecommunication network. Interesting
patterns were discovered and it was found that the patterns can provide greater
alarm compression than the state-of-the-art AABD system [3]. This reduces the
number of alarms to be analysed by network operators and thus the costs of net-
work maintenance. In future work, we plan to extract more complex graph-based
patterns to reveal other types of interesting information from network alarm logs
and designing distributed algorithms for processing very large alarm logs.
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