Receipt/Cascades Conference Cross-border climate impacts and systemic risks in Europe and beyond 16-18 October 2023 Potsdam, Germany

A Framework for Multi - and Systemic - Risk Analysis: Focusing on Indirect Risks Based on Dependencies

Stefan Hochrainer - Stigler, Robert Šakić Trogrlić, Karina Reiter

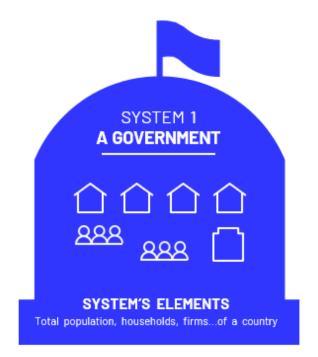
*hochrain@iiasa.ac.at

International Institute for Applied Systems Analysis (IIASA)

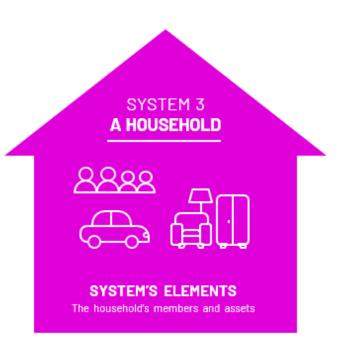
28 April 23

Background

- Importance of considering multiple hazards and their interactions (independent, triggering, amplifying, compound, consecutive):
 - Impacts greater than the sum of its parts
 - Distorted management priorities and options
- We live in an interconnected world with natural hazards having ripple effects across boundaries (e.g., 2011 Thailand floods, 2010 heatwave in Russia and floods in Pakistan) resulting in systemic risk
 - System as a set of (partly) interconnected elements with clear boundaries, and systemic risk as a risk emerging due to interdependencies between elements of the system
- Lack of clear framework for multi and systemic-risk assessment and management (Ward et al., 2022; UNDRR, 2021, Sillman et al. 2022)
- MYRIAD-EU proposes a framework for multi -hazard, multi -sectoral, systemic risk analysis and management to be implemented and co-developed in five pilots (Danube, North Sea, Scandinavia, Veneto, and Canary islands)

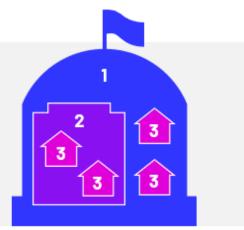

Identifying the system at hand, its components and **MYRIAD-EU** clear system boundaries. framework for individual, Determining the hazards threatening the system (in terms of single- and multi-hazard scenarios) and the system's exposed and vulnerable elements. multi-, and systemic risk analysis Characterizing the governance landscape, sustainability challenges, desired vision and initial and management risk management options for the system. 6 ACCOUNTING FOR **FUTURE SYSTEM STATE** Considering changes to the system state due to larger processes such as climate change, economic change, land use change etc. or due to planned risk management options. With this future system state in mind, reevaluating the previous steps and, if necessary, reconsidering decisions made. FINDING A SYSTEM DEFINITION STAKEHOLDER INVOLVEMENT Characterizing the direct risks Selecting risk management options resulting from physical contact that account for synergies and 2 with the single- or multi-hazard asynergies of risk management DEFINING as well as different time-horizons Defining and characterizing CHARACTERIZATION **RISK MANAGEMENT** (short-, middle- and long-term) direct risk metrics OF DIRECT RISK OPTIONS **EVALUATION** CHARACTERIZATION OF DIRECT AND OF INDIRECT RISK INDIRECT RISK Defining direct and indirect Identifying indirect risk due to risk evaluation criteria interdependencies in the systems Selecting direct and indirect Defining and characterizing indirect risk metrics risks to manage

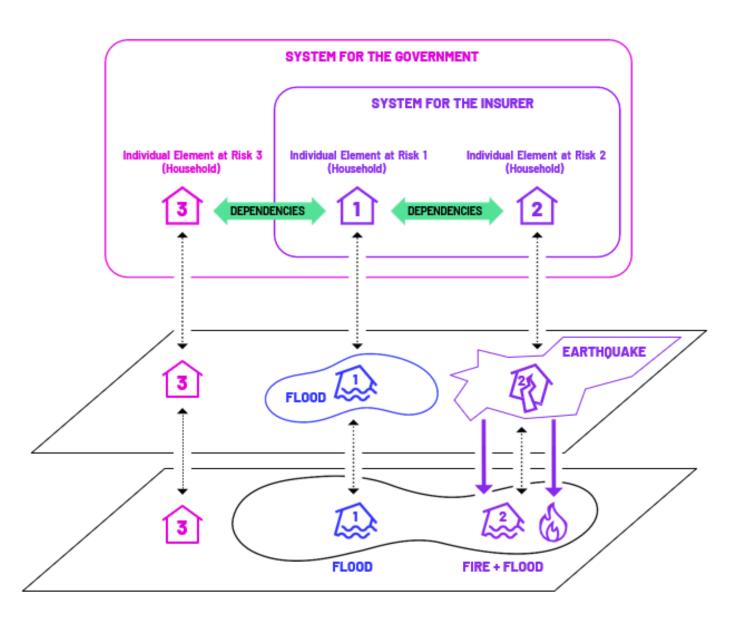
Hochrainer-Stigler et al. iScience 2023a



KEY CONCEPT

What is a system and what are system elements?

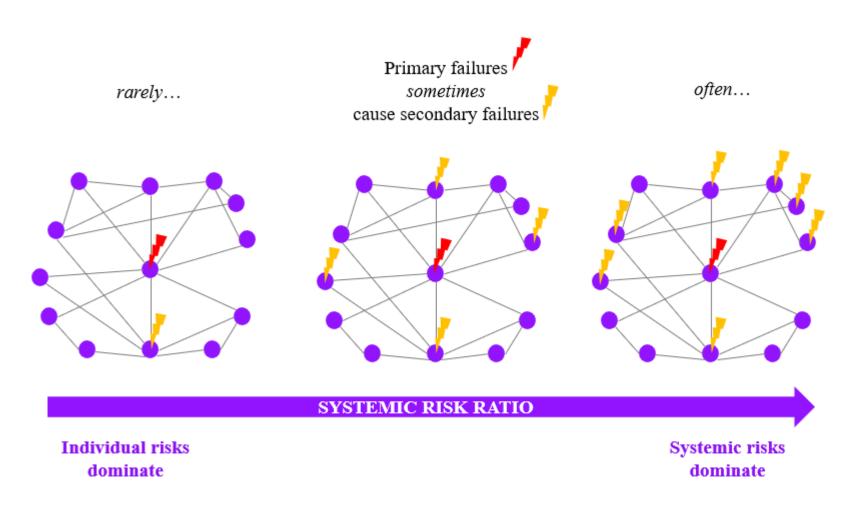



What are systems of systems?

The Government is a system (1) which includes all households (system 3) as well as the insurance company (system 2) which, in turn, includes a part of all households (system 3)

What do we mean by dependencies?

- In the example, Household 3 not directly affected by natural hazards
- However, due to dependencies (e.g., economic dependencies) to Household 1, indirect impact occurs
- Indirect risk arises due to dependencies between system elements


System of Systems

System 2 System Level System 1 System 2 Global Level System boundary 1 Supranational Institutions, World Bank **Country Level** Sub-System / Sub-System Sub-System 1.3 Country officials, 1.2 1.1 Governments, NGOs Regional Level Local private entities, regional public entities Sub Systems 1.1.1-1.1.6 Sub Systems 1.2.1-1.1.10 Sub Systems 1.3.1-1.3.4 Individual Level Households, Firms, Banks, Businesses

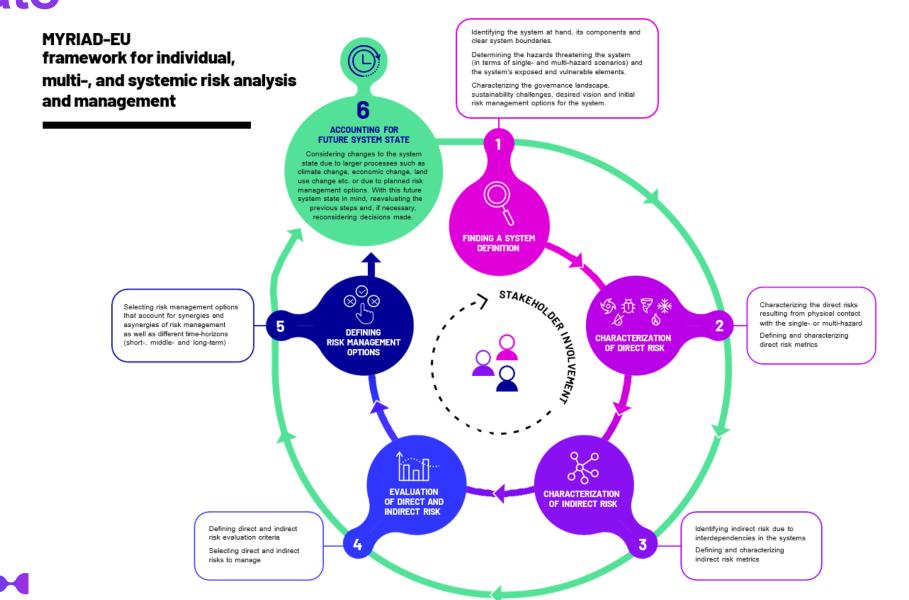
What do we mean by dependencies?

- Without any dependencies between hazards or system elements, a multihazard and multi-risk perspective can be handled by single hazards and single risk assessment frameworks.
- In case of dependencies, a multi-risk framework is needed, and options can be considered based on the systemic perspective.

System scales	System actors (examples)	System boundaries and system interactions	Systemic risks (examples)	Options for systemic risk governance (examples)
Global level	Supranational institutions	System 2 System 1 System 3	Global system crash	Global pool for transformation
National level	Governments, NGOs, country officials	Subsystem 1.1 Subsystem 1.2 Subsystem 1.3	Country default	National socio-economic transformation
Regional level	Regional private entities, regional public entities		Regional ruin, community desolation	Regional socio-economic transformation
Individual level	Households, firms, banks	Subsystems 1.1.1-1.1.6 Subsystems 1.3.1-1.3.4 Subsystems 1.3.1-1.3.4	Household, firm, or bank collapse	Managed retreat and livelihood transformation
		Forced transformation risking system collapse Horizontally cascading transformation risking system collapse Vertically cascading transformation risking system collapse Deliberate transformation building resilience through system	2	

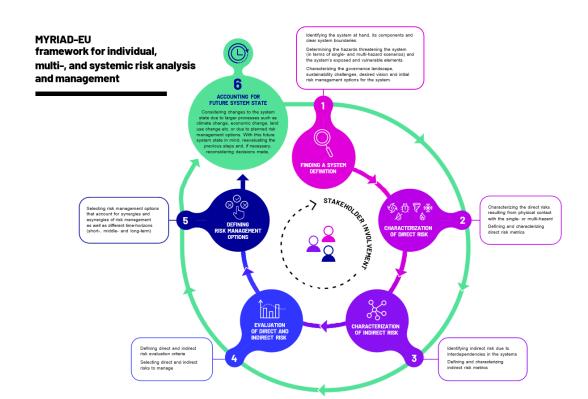
Multiple Dividends

Flood Hazard Prone Area


Multiple Dividends System I Perspective System II Perspective Multiple Dividends Analysis Dependency between Elements/Systems Socio-economic system System III Perspective Disaster related system Multi Cost-Benefit Analysis Country System and Elements Single Cost-Benefit Analysis

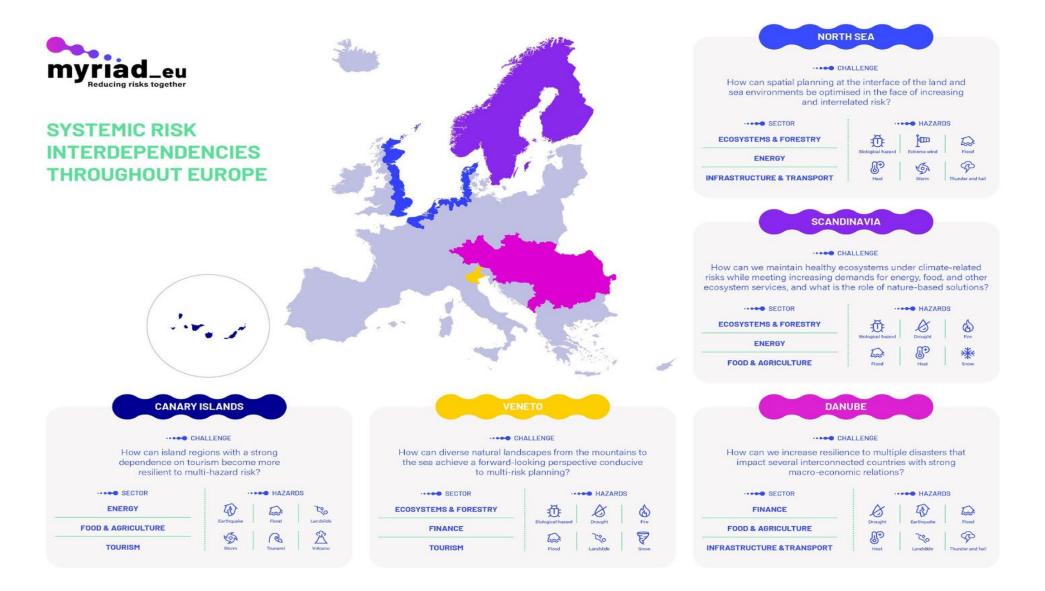
Flood

Links to Storylines: Future System State


Framework benefits and limitations

Benefits

- Flexibility to address single to multi and systemic risks
- Accounts for risk dynamics
- Explicit focus on indirect risk
- Multiple lines of evidence approach
- System of systems perspective allowing for risk analysis and management across scales
- Strong emphasis on stakeholder engagement and co-production
- Forward -looking and embedded in larger sustainability issues


Limitations

- Framework complex
- Data requirements

Framework implementation in practice

Concluding remarks on six steps

- We propose a framework for multi -hazard, multi -risk, systemic risk assessment and management
- The framework is iterative, and flexible to operate across single to multi -risk spectrum
- The framework is based on two core aspects: system boundaries and dependencies between elements of the system
- We will develop a set of guidance protocols for the implementation of the framework and a wide range of tools for the implementation of various steps of the framework

End of Presentation Discussion

