### Assessing crop-specific climate risks

A cross-border case study of agri-food trade between Türkiye and NL



**Tijmen Schults**Potsdam Institute for Climate Impact Research, 17-10-2023



## 1. Introduction

#### Context

- > FutureWater
- CREATE: Cross-Border Climate Vulnerabilities and Remote Impacts of Food Systems of the EU, Türkiye and Africa
- Ministry of Agriculture, Nature and Food Quality of The Netherlands
- Collaboration with Ankara University and R2Water
- > Unsubmitted, work in progress







#### Introduction

- > Climate change impacts on agriculture
- > Regions are interconnected through global trade
- > Climate impact in one country presents cross-border risk
- > Dependency on agri-food trade
  - Import / Export

> Cross-border vulnerability



#### Introduction

- > A crop-specific cross-border climate risk framework that integrates:
  - Crop-specific climate risk on food production
  - Climate suitability mapping
  - Import-export dependency
- > Case study between Türkiye and The Netherlands
  - Extend to include EU
- > Key crops: apricot, figs, grape, and hazelnut
- > Define priorities and develop adaptation strategies

## 2. Methods and Data

#### Climate Risk Framework

> Risk = "The potential loss of assets that could occur to a system, society, or a community in a specific period, determined probabilistically as a function of **hazard**, **exposure**, and **vulnerability**" (UNDRP 2020)

- > Climate Risk Framework:
  - Hazard
  - Vulnerability
  - Exposure
- Risk of climate change on reductions of key crop production
- > Crop-specific climate risk!



#### Crop-specific climate risks

- Crop-specific indicators of potential climate change impact
  - CMIP6 model ensemble
    - SSP2-4.5
    - SSP5-8.5
  - Reference period (1990-2019)
  - Future time horizon 2050 (2035-2064)



- > Socio-economic datasets
- Physico-geographic datasets
- > Global water resources model output







#### Crop-specific climate hazard





- > Indicators of potential climate change impacts:
  - $\Delta$  Heat stress [days]
  - ∆ Air humidity stress [days]
  - ∆ Frost [days]
  - Δ Total precipitation [mm]
  - ∆ Chilling requirements [CU]
- Relative or absolute change in indicators scaled between 0 and 1
- Different stress thresholds for each crop
- > Fine-tuned with stakeholders

### Crop-specific climate hazard

Phenological stages of key crops in Türkiye: stress threshold + temporal window



# 3. Results

#### **Climate Hazard - Apricot Production**



### **Climate Vulnerability - Apricot Production**



## Climate Hazard x Vulnerability - Apricot Production



#### Share of national apricot production per risk class



## **Apricot trade flow - Export from Turkey**



## Apricot trade flow - Import to The Netherlands





## Export / Import Vulnerabilities between NL and Türkye

| Crop     | Export | Export<br>Vulnerability | Import | Import<br>Vulnerability |
|----------|--------|-------------------------|--------|-------------------------|
| Grapes   | 8%     | Low                     | 9%     | Low                     |
| Apricot  | 4%     | Low                     | 82%    | Very High               |
| Hazelnut | 2%     | Low                     | 70%    | High                    |
| Figs     | 4%     | Low                     | 46%    |                         |

> When incorporating rest of EU, the export dependency is very likely to increase!

#### Export / Import Vulnerabilities + Production Risk

#### **Apricot**



- > Netherlands is import dependent
- SSP2-4.5: 72% of imported apricots are likely to come from medium risk areas
- SSP5-8.5: 60% of imported apricots are likely to come from high-risk areas

# 4. Conclusion

#### Conclusion

- > Netherlands depends heavily on Türkiye for imports of selected crops
- > Climate change is likely to disrupt agri-food trade between Türkiye and NL
- > Varying degrees of climate risk for production of different key crops
- > Crop-specific climate risk varies in space
- > Adaptation strategies and policies should be focused on specific crops
- > Collaborative efforts, innovation, and sustainable practices will be crucial to maintaining stable trade relations and ensuring food security

## Thank you!

> Q & A

Tijmen Schults t.schults@futurewater.nl

www.futurewater.eu