
Mining Programming Language Vocabularies from Source Code

Daniel P. Delorey1, Charles D. Knutson2, and Mark Davies2

1 Google, Inc.
720 4th. Ave Ste 400
Kirkland, WA 98033
delorey@google.com

2 SEQuOIA Lab
Department of Computer Science

Brigham Young University
Provo, UT 84602

knutson@cs.byu.edu
3 Department of Linguistics
Brigham Young University

Provo, UT 84602
mark davies@byu.edu

Abstract. We can learn much from the artifacts produced as the by-products of software devel-
opment and stored in software repositories. Of all such potential data sources, one of the most
important from the perspective of program comprehension is the source code itself. While other
data sources give insight into what developers intend a program to do, the source code is the most
accurate human-accessible description of what it will do. However, the ability of an individual
developer to comprehend a particular source file depends directly on his or her familiarity with
the specific features of the programming language being used in the file. This is not unlike the
difficulties second-language learners may encounter when attempting to read a text written in a
new language. We propose that by applying the techniques used by corpus linguists in the study of
natural language texts to a corpus of programming language texts (i.e., source code repositories),
we can gain new insights into the communication medium that is programming language. In this
paper we lay the foundation for applying corpus linguistic methods to programming language by
1) defining the term “word” for programming language, 2) developing data collection tools and a
data storage schema for the Java programming language, and 3) presenting an initial analysis of
an example linguistic corpus based on version 1.5 of the Java Developers Kit.

1 Introduction

Vocabulary is a central focus of linguistics, the scientific study of language[2,8,17,18]. Vocabulary
knowledge is a critical factor in reading comprehension and writing quality [13,3]. Research has
also revealed thresholds of vocabulary size below which reading comprehension is impossible, as
well as thresholds above which reading becomes pleasurable [9]. Vocabulary provides linguists
one framework for discussing and assessing an individual’s knowledge of and ability with a
particular language.

However, linguists study natural language, and it is not yet clear that results based on the
study of natural language can be generalized to programming languages. Naur [14,15] articulate
the differences between natural language and programming language well. He argues that: 1)
natural languages are used [and studied] by linguists mostly in spoken form, 2) programming
languages are constrained to be precise and unambiguous so that they may be “understood” by
compilers and interpreters, and 3) in programming language, there is no equivalent of literature
available for study by researchers and language learners.

In recent years, however, shifts in both the study of linguistics and the use of programming
language have made it possible to apply linguistic techniques to the study of programming
language. We hypothesize that if it can be shown that the use of programming language mimics
the use of natural language, it would be possible to, to paraphrase Brooks, “appropriate for
[software engineering] the large body of knowledge as to how people acquire language” [5].



One important shift has been the emergence of corpus linguistics which emphasizes the
study of language use based on data from written language. Traditionally, linguists have focused
on the study of language structure relying primarily on data from spoken language [4]. The
rise in the importance of written language is a necessary precondition of the application of
linguistic techniques to the study of programming language which, of course, is presented almost
exclusively in written form.

Another important shift has been the surge in Open Source Software (OSS) activity which
has greatly increased the public availability of source code of widely varied origin and quality.
While clearly not exactly what Naur envisioned, this wealth of programming language text can
rightly be taken as the “body of literature” he references when he writes, “When a suitable
body of literature has become available, other forms of linguistic study will become pertinent”
[14].

A final important shift has been the advent of the software repository mining community
which has created tools, techniques, and justifications for empirical studies based on the ar-
tifacts of software development. Such studies allow researchers to observe developer behavior
retroactively without influencing it by imposing the burden of additional data collection.

In light of these changes, we believe the current environment is conducive to the expansion
our study of programming language to include not only its design and theory but also its use
by practitioners. Such study will allow us to answer basic questions such as:

– How many lexical items are used regularly by an average software developer or in an average
project?

– What are the most commonly used lexical items in a particular programming language?
– How do patterns of language use vary across application domains and across programming

languages?
– How has the use of programming languages evolved over time and does it in any way mimic

our use of natural language?

Once we can answer fundamental questions about the ways in which programming language
is used, we will be better able to understand how prior work by linguists can appropriately be ex-
tended to programming languages. Among the areas of prior work in linguistics we believe could
be extended to programming language are: 1) language learning where linguists have developed
methods for assigning grade levels to texts to assist students in choosing reading material, 2)
language teaching where linguists have developed curricula for second-language learning, and 3)
language assessment where linguists have developed tests to evaluate an individual’s vocabulary.

In this paper we present a framework for extending the techniques of corpus linguistics to
programming language. We propose corollaries for the relevant linguistic terms and present our
designs for data collection tools and a storage schema. As a proof of concept, we also present
preliminary results based on our analysis of version 1.5 of the Java Developers Kit (JDK 1.5).

2 Related Work

Empirical studies of vocabulary based on source code are not new. Reports of such studies
appear in the literature. These can loosely be categorized as either 1) studies that focus on
mappings from the identifiers used in programming language to words in some natural language
(almost always English) or 2) studies that focus on the size and composition of the set of natural
language words used by developers – the programmer lexicon, to borrow their term.

In the category of studies that map programming language vocabularies to natural language
vocabularies, Takang [19], studied the effect of “full” identifier names – that is, complete English
words rather than abbreviations – as well as the combined effect of identifiers and comments on
program comprehension. Using a controlled experiment of 89 undergraduate Computer Science
students and four versions of a small Modula-2 source file, he found that “full” identifiers had
a greater positive influence on comprehension than did comments.



Work on mapping programming language identifiers to natural language words has more
recently been extended by Lawrie [10,11] who uses a mapping to quantify the “quality” of
identifiers. She defines quality as “the possibility of constructing the identifier out of dictionary
words or known abbreviations.” Based on her analyses, she concludes “better programming
practices [produce] higher quality identifiers” and “proprietary code [has] more acronyms than
open source code.”

In the category of studies that attempt to catalog the programmer lexicon, Antoniol [1],
mined the set of natural language words used by developers on three OSS projects. The goal
of that research was to compare the vocabulary changes to structural changes during the same
time period (For example, do the words developers use to talk about a program evolve at the
same rate as the structures they use to represent it?). The three main findings of this research
are: 1) the lexicon is more stable than the structure, 2) changes to the lexicon are rare during
software evolution, and 3) as a system becomes more functionally stable, the structural and
lexical stabilities converge toward 1 (unchanging).

In contrast to these previous studies of vocabulary based on source code, our research focuses
exclusively on programming language. We do not deconstruct identifiers into natural language
components. Instead, we apply techniques developed for the study of natural language to pro-
gramming language directly. We believe that rather than superseding or competing with the
research cited above, our work is complementary and can give a richer understanding of the use
of programming language in practice.

3 Define “Word”. . .

Unlike prior studies which focused on natural language and could, therefore, use the linguists’
definitions of terms directly, our focus on programming language requires us to find suitable
corollaries to their terms in our own domain. We begin in this section by defining the semanti-
cally loaded term “word” for programming languages.

For our purposes, words are the atomic units from which vocabularies are composed1. While
it may initially seem trivial to define “word,” in practice the definition can be quite elusive.
In natural language, for example, a simple definition of “word” could be a string of contiguous
alphabetic characters (i.e., word form). This definition, however, ignores the fact that a word
form may have multiple meanings and the fact that groups of words (known as idiomatic
phrases) may have a meaning that is independent from the meanings of the individual words.
Similar problems exist in programming languages where a particular string of characters may
be reused to represent more than one function and/or object. For a more detailed discussion of
this difficulty as it applies to natural language, see [7].

3.1 Levels of Abstraction

There are, broadly speaking, four potential levels of abstraction at which to define “word” for
programming language vocabularies: 1) the lexicographic level, 2) the syntactic level, 3) the
semantic level, and 4) the conceptual/functional level. The specifics of each of these potential
definitions are provided below.

Defining “word” at the lexicographic level of abstraction means that identical strings of
contiguous non-white-space characters are counted as the same word. This is the simplest form
of word counting. Borrowing terminology from compiler design, a data gathering tool based
on a lexicographic definition of “word” requires only a general purpose lexical analyzer (lexer)
and need not recognize any of the syntactic rules of the underlying programming language.
This approach is the most broadly applicable and the most forgiving of errors in source code.
1 Linguists also define a semantic unit below word which is the morpheme. We will not consider the programming

language equivalent of morphemes in this paper.



These gains, however, come at the cost of accuracy. While such a tool can be applied without
modification to all written texts regardless of language, the word frequency counts it produces
are highly suspect. It is almost certain, for example, that the “most frequent” word forms it
identifies are also the most polysemous2 or homonymous3 words in the language.

If we instead define “word” at the syntactic level of abstraction, we group lexicographically
equivalent words only if they are used as the same part of speech. For example, a class name
and a function name that are lexicographically isomorphic are counted as separate words. Again
borrowing our terms from compilers, this is a more complex form of word counting that requires
not only a lexer, but a language-specific parser for each target programming language and a
mechanism for determining which parser to use on a given source file. The parsers can be made
resilient to syntactic errors, however, so that incomplete or partially incorrect source files can
still be processed. Also, by using syntactic knowledge intelligently, we are able to differentiate
the definition of a word from its use. This allows us to detect polysemy and make approximate
adjustments in our analyses.

A definition of “word” at the semantic level of abstraction allows the most complex form
of word counting that can be handled automatically for programming languages4. A semantic
definition of “word” groups syntactically equivalent words only if they refer to the same defini-
tion. In addition to a lexer and a parser, a symbol table is required to accommodate a semantic
definition of “word”. A data gathering tool that relies on a semantic definition of “word” is the
most language-specific and the least tolerant of errors. Further it requires that the definitions of
all words used in a source file, even those defined in external libraries and packages, be available
during processing. Data gathered using a semantic definition of “word” have the advantage of
allowing accurate identification of polysemy and homonomy.

The fourth potential level of abstraction at which “word” may be defined is included here
for analytical completeness although its implementation is infeasible in practice. When using
a conceptual/functional definition of “word”, the string of characters used to represent a word
are no longer relevant. Instead, two words are the same if they have the same “meaning.” Two
functions in a programming language, for example, may have the same meaning if they produce
identical results (including all outputs and side effects) for all inputs. Two variables may have
the same meaning if they always contain identical data values and exist in memory at the same
points in time. It should be clear to anyone familiar with the Halting Problem [6] that such
similarity comparisons are impossible in all but the most trivial cases.

For the preliminary tools and results we present in this paper, we have chosen to define
“word” at the syntactic level of abstraction although we have extended our data collection to
allow some simplistic approximations of the semantic level. This allows us to process incomplete
and “un-compilable” source files, an important consideration when gathering data from the
version control repositories of active software development projects. The source code in such
repositories tends to be in a perpetual state of flux with high levels of manual preparation
required to get the project into a “compilable” state.

Having determined the level of abstraction at which to categorize words, we next define
which tokens in a source file constitute a word.

3.2 Types of Words

Linguists recognize two types of words in natural language: function words and content words.
In addition, many written natural languages include punctuation which is usually uninteresting
from the perspective of vocabulary research.
2 Polysemes are words that have multiple related meanings.
3 Homonyms are words that have multiple unrelated meanings.
4 The syntactic level is currently the most complex form of word counting that can be consistently handled

automatically for natural languages.



Function words belong to the closed set of a language and carry little or no meaning on their
own. They are necessary to express the relationship between the content words in a sentence
and to identify for the reader the parts of speech represented by adjacent words. Conjunctions,
articles, and prepositions are examples of function words. The set of function words is always
smaller than the set of content words in natural language and it is common for fluent speakers
of a language to know most, if not all, the function words.

Content words belong to the open set of a language and carry the majority of the meaning in
a text. They represent the abstract ideas and the actions in a sentence. Nouns, verbs, adjective
and adverbs are examples of content words. Since the set of content words is open, new content
words are often created and it is rare for an individual speaker to employ most, or even a large
percentage, of all the content words in a language.

In programming language, keywords, like function words, belong to the closed set of the
language and are easily recognizable to a fluent user of the language. Keywords provide the
structure of the source code.

Identifiers belong to the open set of a programming language and carry much of the meaning
of a piece of source code. The percentage of identifiers in a specific piece of source code that
are recognizable and familiar to a developer depends largely on the developer’s past experience
with the particular file, with other files from the same project or application domain, and with
other files written by the original author of the source code.

In addition, many programming languages include operators whose form resembles natural
language punctuation but whose purpose is akin to that of function words. For example, math-
ematical operators and scoping blocks in Java serve to express relationships between identifiers.

The reader may rightly question our decision to include operators as “words” in a program-
ming language. Clearly there can be arguments made both for and against including them. Our
philosophy regarding data is that we must make every effort not to discard potentially useful
data during the data gathering phase of our research so that it will be available should we find
reason to use it in the analysis phase of our research. Put simply, we can exclude the data from
analysis once we have it, but we cannot include it in the analysis if we never collect it.

Together keywords, operators, and identifiers constitute the set of tokens which may be
considered “words” in a programming language vocabulary. Having defined the term “word” for
programming languages, we now use our definition to discuss the creation of a linguistic corpus
of programming language.

4 Linguistic Corpora from Source Code

In order to perform corpus-linguistic analyses, we must first construct a corpus. A corpus is a
collection of texts selected to be broadly representative of the language being studied and is
machine-readable [12]. A discussion of the guiding principles for selecting a representative set
of texts for a linguistic corpus is beyond the scope of this paper (we direct the interested reader
to [20]). In this section we discuss a method for creating a linguistic corpus from source code
repositories and present a preliminary analysis of an example corpus.

In order to make a corpus machine-readable, the individual tokens of each text in the corpus
must be tagged with some level of meta-data. The amount of detail and the level of abstraction
required in the meta-data depends on the analyses the researcher intend to perform on the
corpus. In the case of natural language, the process of rendering texts machine-readable may
require a high level of human involvement, especially if semantic meta-data is required. However,
syntactic tagging (for example, part-of-speech tagging) and some limited semantic tagging (for
example, lemmatization) can often be handled automatically.

Programming language, on the other hand, is intended to be machine readable by design.
Of course, individual programming language texts may not be machine readable due to either
syntactic errors (for example, forgotten closing braces) or semantic omissions (for example,



Fig. 1. Example ANTLR Rules

missing libraries). In general, though, the process of using a computer to parse and analyze
source code is well understood and can be readily employed to tag individual tokens in a source
file with both the syntactic and the semantic meta-data necessary in a linguistic corpus.

As a proof of concept of our methodology, we collected a small example corpus of the Java
programming language based on the JDK 1.5. The reasons we chose Java include: 1) Java is
widely popular and there is a large amount of Java source code publicly available for analysis,
and 2) Java offers an appropriate level of syntactic complexity for our prototype development
– neither too complex nor too simple.

4.1 Data Collection

We used ANTLR [16] to develop a Java-specific lexer and parser. ANTLR is a tool which gener-
ates language recognizers from grammars. Grammars are expressed as a set of rules composed
of combinations of regular expressions, lexical tokens, and references to other rules. Two simple
example ANTLR rules are shown in Figure 1.

In order to extract vocabulary data from Java source files, we produced two ANTLR gram-
mars. The first, which consists of 139 parser rules and 21 lexer rules, takes source code as input
and produces an abstract syntax tree (AST) as output. The second, which consists of 80 tree
parser rules, takes an AST as input and use a data access object to output vocabulary data to
a database.

We used the source code from the JDK 1.5 to validate these parsers. We briefly discuss these
efforts in Section 4.3

4.2 Data Storage

The data extracted from source code is stored in a relational database. The schema for this data
store is shown in Figure 2. This schema is specific to Java and tailored to our current definition
of the term “word” as discussed in Sections 3 and 3.2. The schema contains six tables, each of
which is described below.

The records in the file collection table can be used to partition the data from individual
runs of the data gathering tool. Each record consists of an automatically generated primary key
identifier, an arbitrary name assigned by the user, and an automatically generated time stamp.
This allows us to compare groups of files, such as in time-based analyses on multiple revisions
of the same project.

Records in the file table each contain the data needed to describe an individual file within a
file collection. The first two fields are the automatically generated primary key and the foreign



Fig. 2. ER Diagram of the Storage Schema

key to the file collection table. The package field stores the Java package to which this
file belongs. This value can be used to group and separate files by package within and across
file collections. The relative path and name fields locate a file within its file collection. They
can also be used, for example, in comparisons of multiple revisions of a single file across file
collections. The source field contains the original source code of the file which allows future
analyses to be performed directly from the database instead of requiring researchers to maintain
both the database and a collection of source files. This also simplifies the distribution of the
data to other researchers.

The remaining four tables in the schema store data that deal directly with the words them-
selves. Each of the two main tables, word definition and word use, has an ancillary table,
word context and word use qualifier respectively.

The word definition and word context tables store data about words that are defined in
a file. Each word definition record has a foreign key to the file table indicating the file in
which the word is defined. Each record also has a self-referential foreign key, context word id,
to the context word that provides the scope in which the current word is defined. For example,
a class method would have a foreign key to the definition of the class to which it belongs; a local
variable would have a foreign key to the definition of the method in which it is defined. The
top-level class in each file has a null value for the context word id field since it is not defined
in the context of any other word.

Since context relationships between word definitions can be many layers deep (e.g., a vari-
able may be defined inside a method which is defined inside an internal class which is defined
inside another class, etc.) the word context table is used to directly link a definition to all
the words defined within its scope regardless of their depth. This allows us to avoid running
computationally expensive recursive queries to rebuild these relationships.

The word use and word use qualifier tables store data about the words that occur in a
file. Each word use record has one foreign key to the file where the word occurs and one foreign
key to the scope in which the word occurs. Each word used in a definition is counted as having
occurred inside the scope of that definition even if it occurs before the identifier being defined.
For example, the keyword class is counted as part of the definition of a class even though it
occurs before the class name.

For programming languages that allow identifiers to be reused, compilers require explicit
disambiguation. The Java programming language provides a disambiguation mechanism known



Table 1. Possible values of the word type field of the word definition and word use tables

In In
Value Description word definition? word use?
annotation An annotation class Yes Yes
label The label of a labeled statement Yes Yes
method A standard method Yes Yes

annotation method An annotation method Yes No
class A standard class Yes No
constructor A constructor method Yes No
enhanced for element The control element of a for-each loop Yes No
enum An enumeration class Yes No
enum constant A constant element of an enumeration class Yes No
initilializer A class initializer block Yes No
interface An interface class Yes No
parameter A standard parameter Yes No
static initializer A static class initializer block Yes No
type parameter The type parameter of a generic method or class Yes No
var arg parameter A variable argument parameter Yes No
variable A variable definition Yes No

binary operator Any operator with two operands No Yes
cast operator The cast operator No Yes
condition operator The ternary conditional operator No Yes
exception An exception object No Yes
field A data member of a non-primitive type No Yes
keyword A Java keyword No Yes
label operator The label operator No Yes
package A package name No Yes
primitive type A Java primitive type No Yes
scoping block A scoping block No Yes
type A non-primitive or class type No Yes
unary operator Any operator with one operand No Yes

as a qualifier. These strings of period-separated tokens direct the Java compiler as it attempts to
locate the correct definition of an identifier in its symbol table. For example, when we write the
statement System.out.println(“Hello World!”);, we are calling the method println with
the parameter “Hello World!” and we are directing the compiler that the println method we
intend is the one that is a member of the PrintStream object name out which is a data field
of the System object.

While this is a simple example, Java qualifiers can become arbitrarily complex and a com-
plete symbol table is required for their accurate interpretation. As a rudimentary approximation,
we separate any qualifiers we encounter from the words they are being used to disambiguate
and store them in the word use qualifier table. We use a secondary table rather than storing
the qualifier as a field in the word use table because it is far more common for a word not to
have a qualifier and the secondary table allows us to avoid having a large number of null fields
in the word use table.

As shown in the schema diagram, both the word definition and the word use tables have a
word type field. These are similar to the part-of-speech attribute of a natural language word and
constitute the essential bit of information that separates the lexicographic level of abstraction
from the syntactic level of abstraction. The possible values these fields may contain are listed
in Table 1.

Word types that can be used only in the word definition table are those which can be
identified at the syntactic level from a word definition, but not from a word use. For example,
when a class is defined, syntactically we know it is a class because the keyword class precedes
the identifier. When a class is used, however, syntactically we know only that a non-primitive
type is being used. We do not know, at the syntactic level, whether that non-primitive type is
a class, an interface, or an enumeration.

Word types that can be used only in the word use table include those which cannot be
redefined in the Java programming language, such as operators and keywords. In addition,



there are word types in the word use table which provide the information about a word that
is available at the syntactic level when it is used. For example, when the package keyword is
used, we know the subsequent word must be a package name.

4.3 Preliminary Results

We validated our data collection and storage proposals by constructing an example corpus from
the 10,947 Java source files that comprise version 1.5 of the Java Developers Kit (JDK 1.5).
The JDK is the standard set of libraries provided by Sun Microsystems, the creators of the
Java language. These libraries are widely used among Java developers and together employ all
features of the Java grammar specification. Collectively these files contain 3,148,796 lines of
source code. On a MacBook Pro laptop computer with a 2.33 GHz Intel Core 2 Duo processor
and 3 GB of RAM, our tools can process these files in approximately two and a half minutes.

We first consider the words that are defined in our corpus. In total, there are 503,619 word
definitions. However, only 111,819 of these are unique. The counts of total word definitions and
unique word definitions grouped by word type are shown in Table 2.

From these counts in Table 2 we can see, for example, that unique names are much more
common for classes, interfaces, and enumerations than they are for parameters, especially type
parameters. Such a result confirms what a seasoned Java programmer already knows — there
are conventions that govern the naming of parameters and particularly the naming of type
parameters in Java. The fact that this knowledge is had among experienced programmers does
not discount the importance of developing methods that can detect it automatically.

By being able to detect conventions in programming language use with automated tools we
make them more accessible to novices and thus lower the barrier to entry into a new program-
ming language and into individual projects. Also, by recognizing such conventions automatically,
we can, for example, develop style checking tools that adjust themselves to local conventions and
style changes overtime thereby making themselves more useful and acceptable to developers.

Table 2. Definition Counts by Word Type

Word Type Total Definitions Unique Definitions
annotation 7 7
annotation method 3 1
class 13,143 11,480
constructor 14,204 8,653
enhanced for element 460 151
enum 30 26
enum constant 233 197
interface 1,854 1,738
label 173 97
method 119,294 36,381
parameter 159,342 11,812
type parameter 477 11
var arg parameter 65 15
variable 193,526 60,234

We next consider the words that occur in our corpus and, in particular, the frequency with
which each word occurs. Frequency is a common metric used in corpus linguistics as a proxy for
the importance of a word. It has been shown that word use follows Zipf’s law which predicts
that the frequency of any word in a corpus is inversely proportional to it frequency-ordered rank
within the corpus [21]. That is, the first most common word is expected to occur approximately
twice as often as the next most common word and approximately three times as often as the
third most common word, etc. Thus, graphs of word frequency versus rank are expected to
exhibit an exponential decay.



Fig. 3. Word Frequency vs Rank

There are 3,895,485 occurrences of 98,879 unique words in the JDK 1.5. The rank versus
frequency graph for the 200 most frequent of these words is shown in Figure 3. This graph
clearly follows Zipf’s law adding support to our claim that the use of programming language
follows the patterns of natural language.

As with natural language where the function words are the most frequent, the most common
words in our corpus all belong to the closed set of the language. The most commonly occurring
word is the + operator (305,685) followed by the scoping block (295,726) and the = operator
(124,813). If we exclude operators and scoping blocks from our analysis, the most frequent words
are public (124,399), if (119,787), and int (108,709).

The most common identifier (the programming language equivalent of a lexical word in
natural language as discussed in Section 3.2), is String. It is the ninth most frequently occurring
word overall with 71,504 occurrences. This pseudo-primitive type in Java is a special case of a
non-primitive that has nearly achieved primitive status in the language and may well do so in
either a future version of Java or a derivative language it spawns. The next three most frequent
lexical words are length (19,312), Object (18,506), and IOException (11,322).

Of course, the analyses we have presented here are cursory and inconclusive. However, they
each give a small glimpse of the insight that could be gained from a more complete linguistic
analysis of a representative programming language corpus and they begin to build support for
our claim that the use of programming language mimics that of natural language.

5 Conclusion

In this paper we have presented a methodology for applying the techniques which are tradi-
tionally used by corpus linguists in the study of natural language to the study of programming
language. We have defined the term “word” in the context of programming languages, dis-
cussed our data collection and storage implementations, and validated our proposals with an
preliminary study.

Our initial results indicate that the use of programming language does indeed follow the
same patterns as that of natural language. In particular, a few words occur with a very high
frequency while many words occur with very low frequency.



Using our example corpus and a simple analysis, we are able to identify important behavioral
patterns which may be taken for granted by fluent users of a programming language but remain
hidden to novice users.

The preliminary results in this paper are just a few examples of the insights we may gain
about programming language by learning from linguists. There are many more linguistic results
that we can reasonably expect will extend to programming language. For instance:

– Language Acquisition – Linguists have developed criteria, based on analyses of word fre-
quency in natural language corpus, for assigning levels to texts. Using these assigned levels
as a guide, language learners (whether they be students learning a first language or those
learning a second language) can progress from simpler texts to more complex texts as their
ability with the language increases, thus easing their acquisition of the language. Similar
criteria for programming language texts could be used to select source files to help teach
students in various stages of a Computer Science curriculum or to include in various sections
of a programming language’s documentation.

– Language Assessment – Standardized language assessment tests such as the TOFEL are
common for natural languages. Similar tests predicated on word frequency counts for pro-
gramming languages could be used as part of a course evaluation or interview process.

– Language Reference – Corpus linguists create frequency dictionaries of natural language to
allow readers to quickly determine not only the meanings of a word, but also the relative
frequency with which each meaning occurs. Similar reference materials for a programming
language or for an individual project could help new developers better target their searches
as they become familiar with a new code base.

The necessary first step in extending these or other linguistic results to programming lan-
guage is a demonstration that there are clear parallels between the use of programming language
and the use of natural language. To accomplish this, we must create corpora of programming
languages as described here and analyze those corpora using the techniques of corpus linguistics.

References

1. Giuliano Antoniol, Yann-Gael Gueheneuc, Ettore Merlo, and Paolo Tonella. Mining the lexicon used by
programmers during sofware evolution. In Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on, pages 14–23, 2007.

2. Pierre Arnaud and Henri Bjoint. Vocabulary and applied linguistics. Macmillan, Houndmills, Basingstoke,
Hampshire, 1992.

3. Gusti Astika. Analytical assessments of foreign students’ writing. RELC Journal, 24(1):61–70, June 1993.
4. Douglas Biber, Susan Conrad, and Randi Reppen. Corpus linguistics: Investigating language structure and

use. Cambridge University Press, Cambridge, UK, 1998.
5. Fredrick Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison Wesley, Boston, MA,

1995.
6. M. Davis. The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable

functions. Dover Publications, Mineola, N.Y., 2004.
7. Dee Gardner. Validating the construct of word in applied corpus-based vocabulary research: A critical survey.

Applied Linguistics, 28(2):241–265, June 2007.
8. Evelyn Hatch and Cheryl Brown. Vocabulary, semantics, and language education. Cambridge language

teaching library. Cambridge University Press, Cambridge; New York, 1995.
9. Batia Laufer. The development of passive and active vocabulary in a second language: Same or different?

Applied Linguistics, 19(2):255–271, June 1998.
10. Dawn Lawrie, Henry Feild, and David Binkley. An empirical study of rules for well-formed identifiers. Journal

of Software Maintenance and Evolution: Research and Practice, 19(4):205–229, 2007.
11. Dawn Lawrie, Henry Feild, and David Binkley. Quantifying identifier quality: an analysis of trends. Empirical

Software Engineering, 12(4):359–388, 2007.
12. Tony McEnery and Andrew Wilson. Corpus linguistics. Edinburgh University Press, Edinburgh, 1996.
13. K Mezynski. Issues concerning the acquisition of knowledge: Effects of vocabulary training on reading

comprehension. Review of Educational Research, 1983.



14. Peter Naur. Programming languages, natural languages, and mathematics. Communications of the ACM,
18(12):676–683, 1975.

15. Peter Naur. Programming Languages are not Languages: Why ’Programming Language’ is a Misleading
Designation. Addison-Wesley, Reading, MA, 1991.

16. T. Parr. The definitive ANTLR reference: Building domain-specific languages. Pragmatic Bookshelf, Raleigh,
N.C., 2007.

17. David Qian. Depth of vocabulary knowledge : Assessing its role in adults’ reading comprehension in English
as a second language. Department of Curriculum, Teaching and Learning, Ontario Institute for Studies in
Education of the University of Toronto, Toronto, 1998.

18. Norbert Schmitt. Vocabulary in language teaching. Cambridge language education. Cambridge University
Press, Cambridge; New York, 2000.

19. A. Takang, P. Grubb, and R. Macredie. The effects of comments and identifier names on program compre-
hensibility: an experimental investigation. Journal of Programming Languages, 4(143):167, 1996.

20. Martin Wynne. Developing Linguistic Corpora: A Guide to Good Practice. Oxford: Oxbow Books, Oxford,
UK, 2005.

21. G. Zipf. Selective Studies and the Principle of Relative Frequency in Language. MIT Press, Cambridge, MA,
1932.


	Mining Programming Language Vocabularies from Source Code

