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1 Introduction

1.1 Background

This guide provides a summary of current best practice in uncertainty evaluation for computationally expensive
models. Here, a computationally expensive model is such that the time to evaluate the model is too long
to permit a sufficient number of model evaluations to provide results to a required level of numerical accuracy
using a simple Monte Carlo approach to uncertainty evaluation. This guide assumes that the user has a (possibly
approximate) known upper limit on the number of model evaluations that it is feasible to make, and wishes to
learn about methods for uncertainty evaluation that could give better results than Monte Carlo sampling for that
number of model evaluations.

The guide is aimed at metrologists, scientists, and engineers who are familiar with the basic ideas of uncer-
tainty evaluation. It will be assumed that the reader understands:

• that all measurements are subject to uncertainty,

• that measurement uncertainties can be described using a probability density function (PDF) or a cumula-
tive distribution function (CDF),

• that the uncertainties associated with the input quantities of a model lead to uncertainties associated with
the model output quantities,

• that the uncertainties associated with the model output quantities can be evaluated by propagating the
uncertainties associated with the input quantities through the model.

A reader who is familiar with the Guide to the Expression of Uncertainty in Measurement [1] (GUM) and
its supplements [2, 3] or who is familiar with the Monte Carlo sampling method for uncertainty evaluation will
be able to understand, and hopefully benefit from, most of the material in this guide.

Some of the material in this guide involves quite high level mathematics. It is not expected that every
reader will understand everything in the guide, but it is hoped that the more challenging material will encourage
collaboration with mathematicians or statisticans to develop best practice solutions to problems of uncertainty
evaluation with computationally expensive models.

The guide is presented as a set of steps to be considered and decisions to be made when evaluating the
uncertainties associated with the outputs of a computationally expensive model. These steps are illustrated
by a set of case studies, presented as stand-alone chapters, and further information can be obtained from the
references given at the end of the guide. Not all the steps are necessary for all problems, but the steps listed
form a useful guide to points that should be considered, if not necessarily implemented. A flow chart presenting
the steps and indicating the section number that addresses each step is shown in figure 1.

It is assumed that the reader already has a well-defined problem. A well-defined problem in this case
consists of a set of input quantities with well-characterised associated uncertainties, a set of output quantities for
which the associated uncertainties are to be determined, and a model and software implementation that links the
input quantities and the output quantities. Advice on assigning distributions to input quantities, given various
knowledge about the inputs, can be found in the GUM and its supplements [1, 2, 3]. The errors and uncertainties
(e.g. rounding errors, discretisation errors, bugs, etc.) associated with the software implementation of the model
will not be considered as a source of uncertainty in this guide, but readers should be aware that they exist and
should be minimised through software verification and testing. Similarly the uncertainties associated with the
choice of model are not explored here, but should be considered and minimised through model validation.

1
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Figure 1: Flow chart illustrating the steps when evaluating the uncertainties associated with the results of a
computationally expensive model, addressed in this best practice guide.

2
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1.2 Case studies

The chosen case studies are all real metrological problems involving computationally expensive models that
will benefit from efficient uncertainty evaluation methods.

1.2.1 Case study 1: Scatterometry

Scatterometry is a surface measurement technique that evaluates the geometric parameters that define periodic
nanosurfaces. The surface is illuminated by monochromatic light and measurements are made of the intensity
of diffracted light at different scattering angles. A finite element model can be used to predict the scattered
intensities, and an inverse modelling approach used to evaluate the unknown geometric parameters. The uncer-
tain input quantities represent the noise terms associated with the measured light intensities: material properties,
geometric parameters not determined by the model, and optical parameters are assumed to have a negligible
effect on the uncertainty.

The model is computationally expensive both because the finite element model takes several minutes to
evaluate results, and because the use of an inverse modelling approach requires multiple evaluations of the
finite element model to determine a single set of geometric parameters.

1.2.2 Case Study 2: Fluid flow

Calibration of flow meters and characterisation of flow measurement devices usually requires the flow condi-
tions to be in a steady “plug flow” state to give good results. The state of a flow within a pipe is difficult to
obtain directly, so it is important to have an understanding of how upstream bends and constrictions can affect
the flow conditions to ensure that measurements are taken sufficiently far from such obstacles. Computational
fluid dynamics (CFD) models can be used to obtain this understanding, even for turbulent flow in rough pipes,
but such models are very computationally expensive.

The work reported in this case study has used a family of skew inflow profiles, where the position of the
maximum is assumed to be uncertain. The output quantities describe the flow profile at a series of points
downstream from the point at which the inflow profile is defined.

In a second part of the case study on fluid flow, a CFD model of a sonic nozzle is studied. This CFD model
may be used to improve the understanding of the physical conditions (i.e. temperature, pressure and flow speed
distribution) on the flow within sonic nozzles.

1.2.3 Case Study 3: Thermophysical properties

Thermal barrier coatings are multi-layer coatings that are used in turbines and engines to protect blades from
high temperature environments. The layered nature of the coatings and the method of their construction makes
creation of isolated samples of the individual layers challenging, and so some of the common techniques for
characterisation of thermal properties of materials cannot be applied to the component parts of such coatings.
Hence there has been interest in extending existing characterisation techniques to handle layered materials.

The work reported in this case study uses a finite volume model within an optimisation algorithm to obtain
estimates of the thermal conductivity of the components of a layered material by matching model predictions
to measured values, and evaluates the uncertainties associated with the estimates. The initial model uses nine
uncertain input quantities associated with various aspects of the experiment.
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1.3 Notation and vocabulary

Suppose we have a model
Y = F(X) (1)

where X = (X1, X2, . . . , XN )> is an input vector of quantities, described as random variables of known joint
probability distribution, and Y = (Y1, Y2, . . . , YM )> is a output vector of quantities for which it is required
to determine the joint distribution. It is assumed that the function F is a black box, so that evaluation of F is
possible but algebraic evaluation of its derivatives with respect to the inputs is not.

Values of an input or an output quantity are denoted in lower case, so that xn is a value of Xn the variable.
The use of this notation becomes important when distinguishing between a quantity that is a function of the
input quantities Xi, i = 1, 2, . . . , N, and a value that has been calculated using a set of sample values xi, i =
1, 2, . . . , N . The mean of the ith output quantity will be denoted by mi and the variance of the ith output
quantity will be denoted by s2i . If only one output quantity is present, these symbols will be used without
subscripts. The correlation between the ith and jth output quantities will be denoted cij .

The expectation of a quantity X is written as E(X) ad the variance as V (X). In some figures these
quantities are ddenoted as E(X) and V(X). Several different types of probability distribution are commonly
used in this report. The symbol T(a, b) is used to denote a symmetric triangular distribution on the interval
[a, b]. The symbol R(a, b) is used to denote a rectangular distribution on the interval [a, b]. The symbol N(µ,σ2)
is used to denote a normal distribution with mean µ and variance σ2.

1.4 Toy problem

A toy problem will be used to demonstrate the methods described in the guide. The toy problem has three
inputs:

• X1 is uniformly distributed on the interval [0, 1],

• X2 has a triangular distribution on the interval [0, 1], with a mode of 0.25,

• X3 is normally distributed with a mean of 0.5 and a standard deviation of 0.01.

The problem has a single output Y for which an uncertainty evaluation is required. The model linking
X = (X1, X2, X3)

> and Y is treated as a black box, so it is assumed that nothing is known about the model,
but the output is given by

Y = X1X2 +X2X3 +X3X1 + sin(2πX1). (2)

Large-scale random sampling shows that Y has a mean of 0.67 and a standard deviation of 0.57. It is assumed
that the user can afford 18 evaluations of this model.
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2 Sensitivity analysis and input screening

2.1 Background

The idea of sensitivity coefficients will be familiar to many from uncertainty budgets and the uncertainty eval-
uation method described in the GUM [1]. In that context, sensitivity coefficients are the partial derivatives of
the model with respect to the inputs, evaluated at the estimates (means) of the inputs. More generally, sen-
sitivity analysis provides a rigorous framework to support exploration of the relationship between the model
input quantities and the model output quantities. Input screening, discussed in the next section, is a simplified
form of sensitivity analysis that allows the user to identify the most important input quantities and potentially
to reformulate the model so that only the most important input quantities are treated as uncertain.

The input screening process has several benefits as a preparatory step for uncertainty evaluation. The
main benefit is a reduction in complexity of the problem, but the results of the process can also lead to a
clearer understanding of the links between the model input quantities and output quantities, particularly for
complicated models that use “black box” software.

Some uncertainty evaluation methods become difficult to use for a large number of input quantities, either
due to instability or high computational cost, so input screening can lead to a broader range of possible methods
being available.

Input screening involves evaluation of the model and thus has an associated computational cost. In some
cases this cost will be recouped by the ability to use a simpler model after the input quantities have been
screened. If the screening suggests that all the model input quantities are necessary, it may still be possible to
reuse the model evaluations made for input screening as part of the subsequent uncertainty evaluation process,
for instance as parts of a random sample or as training points for a surrogate model.

Input screening is illustrated in the thermophysical properties case study (see section 9).
It should be noted that the other sensitivity analysis methods discussed in this section require repeated

model evaluations and are therefore not always suitable for computationally expensive models. However, if
a simplified version of the model is available (for instance a linearised model or a model of reduced dimen-
sionality), these methods may be of help in identifying which input quantities are significant and which can be
neglected.

2.2 Full and fractional factorial designs

One of the most conceptually simple methods for input screening is the full factorial design. An n-level full
factorial design selects n values for each of the model inputs and evaluates the model using every possible
combination of these values of the inputs. For a model with N inputs, a full factorial design requires nN

model evaluations. It is common to set n = 2 and to refer to the higher value of each input quantity as the
positive value and the lower as the negative value. A two-level design assumes the output quantity behaves
approximately linearly in response to variations in the input quantities. It is common to test this assumption by
carrying out an extra model evaluation at a centre point, for instance using the mean value of each of the input
quantities. All of the subsequent material in this section, unless otherwise stated, discusses two-level designs,
but similar analysis techniques can be applied to the results of designs with more levels.

The full factorial design can be used to generate a model of the form

Y = β +

N∑
i=1

βiXi +

N∑
i=1

N∑
j=i+1

βijXiXj + . . .+ β123...NX1X2 . . . XN (3)
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Figure 2: Box plots showing positive and negative response of main effects for a model with seven input
quantities. Within each plot, the positive response is shown on the left and the negative is shown on the right.

for each output quantity Y , where the βi, i = 1, 2, . . . N are called the main effects associated with the in-
put quantities (i.e. the extent to which an input quantity affects the output quantity under the assumption of
approximate linearity), and the βij , i = 1, 2, . . . , N, j = i + 1, i + 2, . . . , N are the effects of the two-input
interactions.

After performing the model evaluations, each model input quantity is assessed by comparing the output
quantities from a positive input value to those from a negative input value. The main effects can be compared
visually using box plots of the output quantities, as in figure 2, which helps to identify which input quantities
may be important.

A box plot for a given input quantity shows the distribution of all output values obtained using the positive
value of a given input quantity separately from all those obtained using the negative value of that input quantity.
The box of the plot represents the interquartile range for each subset of the output values, with the median of
the full set of output values marked by a solid line. The length of the stems is a multiple of the interquartile
range (in the figures used in this guide the multiplier is 1.5). The points that lie beyond the length of the
stems are treated as outliers and are denoted with plus symbols (+). The importance of an input quantity
can be assessed qualitatively by looking at the differences between the levels of the centres of the two boxes.
Important quantities have a significant difference between the centres of the two boxes, such as the third box
on the top row and the second box on the bottom row in figure 2.

To get a quantitative assessment of the main effects associated with each input quantity or of an interaction,
the mean response to an input quantity or interaction at its positive level minus the mean response at the negative
level is calculated. For a main effect, if we order the output quantity values yi such that y1, y2, . . . , yp, where
p = 2N−1, were obtained from the full model using the high (positive) value of Xj , and yp+1, yp+2, . . . , y2p
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were obtained using the low value of Xj , then the main effect associated with Xj is calculated from

Ej =
1

p

 p∑
i=1

yi −
2p∑

i=p+1

yi

 . (4)

The interaction effect associated with the interaction between Xj and Xi is calculated by ordering the model
outputs by the value of the interaction, so that y1, y2, . . . , yp were obtained from the full model when Xj and
Xi are either both high or both low and yp+1, yp+2, . . . , y2p were obtained when one of Xi and Xj is high and
the other is low, and calculating the quantity Eij using the expression for Ej above. Similar interaction effects
can be obtained for higher-order interactions in the same way.

In order to evaluate if these quantities are significant an estimate of the standard error is required, determined
by

sE =
s√
2N

, (5)

where s is the standard deviation of the 2N responses. Any effect greater in absolute value than the standard
error is deemed to be significant. It should be noted that it is possible for an input quantity to be significant in
its interactions but not as a main variable. As an example, consider the function X1X2−X1X3 and the choices
xp1 = xp2 = xp3 = 1, xm1 = xm2 = xm3 = −1. The calculated main effect for all of the quantities Xi is zero, but
it is obvious from the function that all of the input quantities are significant.

To carry out a full factorial analysis

• For each input quantity of interest assign a high value, xpj , and a low value, xmj . These values should
be the end points of a coverage interval of probability close to 1. For a quantity with a rectangular
distribution these values could be the limits of the interval over which the quantity is non-zero. For
quantities with a Gaussian distribution with mean µ and standard deviation σ, setting xpj = µ + 2σ and
xmj = µ− 2σ would mean the points were close to the end points of a 95 % coverage interval.

• Run the model with every possible combination of the chosen input quantities. There will be 2N such
combinations. It is often useful to generate these (and keep track of them) by writing the numbers
between 0 and 2N − 1 in binary form, replacing the 0 values with −1 values, and taking a −1 in the jth
column of the ith line to mean that xmj should be used in the ith model evaluation, and a 1 in the jth
position to mean that xpj should be used. An example for N = 4 is shown in table 1.

• Calculate the main effects and any interactions of interest using formulae of the form (4). The cor-
rect ordering for an interaction of mutiple variables can be found by multiplying the +1s and −1s for
the quantities of interest in each row of a form such as table 1 together, and ordering so that all the
products that are equal to −1 are the first p variables, and all the products that are equal to +1 are
the second p variables. So for instance if the interaction between variables 1, 2 and 4 was of inter-
est and the line ordering used in table 1 was used, then one possible ordering of the outputs would be
0, 2, 5, 7, 9, 11, 12, 14, 1, 3, 4, 6, 8, 10, 13, 15.

• Calculate the standard deviation of the yi, i = 1, 2, . . . , 2N , and hence the standard error sE as in equa-
tion (5) to decide whether an input quantity or an interaction is significant. As noted above, quantities
that are significant via interaction may have an insignificant main effect so it is worth calculating all
interaction effects if the results of a full factorial analysis are available.
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Trial number X1 X2 X3 X4

0 −1 −1 −1 −1

1 −1 −1 −1 +1

2 −1 −1 +1 −1

3 −1 −1 +1 +1

4 −1 +1 −1 −1

5 −1 +1 −1 +1

6 −1 +1 +1 −1

7 −1 +1 +1 +1

8 +1 −1 −1 −1

9 +1 −1 −1 +1

10 +1 −1 +1 −1

11 +1 −1 +1 +1

12 +1 +1 −1 −1

13 +1 +1 −1 +1

14 +1 +1 +1 −1

15 +1 +1 +1 +1

Table 1: Table showing one possible ordering of the input quantity values for a full fractorial input screening
design. Within the table, “+1” denotes that the higher value of the input value is to be used, and “−1” indicates
that the lower value is to be used.
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Trial number X1 X2 X4 X1X2X4

and hence X3

0 −1 −1 −1 −1

1 −1 −1 +1 +1

2 −1 +1 −1 +1

3 −1 +1 +1 −1

4 +1 −1 −1 +1

5 +1 −1 +1 −1

6 +1 +1 −1 −1

7 +1 +1 +1 +1

Table 2: Table showing one possible ordering of the input quantity values for a fractional fractorial input
screening design that confounds X3 with X1X2X4. Within the table, “+1” denotes that the higher value of the
input value is to be used, and “”−1” indicates that the lower value is to be used.

For a computationally expensive problem, a full factorial design may be too time-consuming to perform.
In such cases, the number of model evaluations can be reduced by using a fractional factorial design, which
requires 2N−m model evaluations where m is the level of reduction. A good general introduction to fractional
factorial designs is given on the NIST website [4], or in “Sensitivity Analysis” by Saltelli et al [5].

Fractional factorial designs are created by choosing a subset of the input quantities, defining a set of model
evaluations based on every combination of high and low values of those quantities, associating each of the
remaining input quantities with an interaction of some combination of the input quantities in the chosen subset,
and assigning high or low values for the remaining input quantities according to the value of the interaction.
So for instance, if it was decided to associate the interaction between variables 1, 2 and 4 with variable 3, then
table 1 would become table 2, with half the number of model evaluations required.

The drawback of a fractional design is the confounding effect: it becomes impossible to separate the contri-
butions of some combinations of effects and interactions, and in particular the input quantities not in the chosen
subset are confounded with interactions of the input quantities that are in the subset. Careful design can help
reduce the impact of confounding by ensuring as much as possible that main effects and low level interactions
do not confound with each other. Generally, it is likely that physical insight can help to identify the interactions
that are most important and hence should not be confounded.

2.3 Input screening for the toy problem

The high and low values assigned to the variables were:

• Xm
1 = 0, Xp

1 = 1,

• Xm
2 = 0, Xp

2 = 1,

• Xm
3 = 0.48, Xp

3 = 0.52.
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Trial number X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Value of Y

0 −1 −1 −1 +1 +1 +1 −1 0.0

1 −1 −1 +1 +1 −1 −1 +1 0.0

2 −1 +1 −1 −1 +1 −1 +1 0.48

3 −1 +1 +1 −1 −1 +1 −1 0.52

4 +1 −1 −1 −1 −1 +1 +1 0.48

5 +1 −1 +1 −1 +1 −1 −1 0.52

6 +1 +1 −1 +1 −1 −1 −1 1.96

7 +1 +1 +1 +1 +1 +1 +1 2.04

Effect 1.0 1.0 0.04 0.5 0.02 0.02 0

Table 3: Table showing the combinations of input values and the corresponding values of Y . The bottom row
shows the main effects and interactions calculated from the responses. The standard error is 0.28. Within the
central seven columns of the table, “+1” denotes that the higher value of the input value is to be used, and “−1”
indicates that the lower value is to be used.

Table 3 shows the full set of output values obtained, using the same format as table 1 for the inputs. The
standard error determined from the output quantity values is approximately equal to 0.28. The values of the
output quantities can be used to calculate the main effects and the interactions by adding and substracting
various combinations of the model outputs, as described in the section above.

It is worth noting that the results for X1 and X2 are identical, which illustrates that the nonlinearity in X1

has not been identified. The value of sin 2πX1 is zero at both of the values of X1 used in the factorial test,
meaning that if the only contribution of X1 was through the sinusoidal term, the variable would be considered
to be negligible. This example illustrates the limitations of input screening using a full factorial analysis without
an additional internal point to test the assumption of linearity.

These results suggest that the main effect of X3 and all of the interactions involving X3 are insignificant,
so the model can be simplified by fixing X3 at its mean value of 0.5. The model function then changes from
equation (2) to

Y = X1X2 + 0.5X2 + 0.5X1 + sin(2πX1). (6)

A plot of this function is shown in figure 3. The input screening has used eight model evaluations of the 18 the
user can afford, so all subsequent methods will be demonstrated using a sample size of 10.

2.4 Other sensitivity methods

During the evaluation of measurement uncertainty, it is common practice to provide an uncertainty budget
which is a summary of the contribution of each input quantity to the variance of an output quantity. More
generally, sensitivity methods can be used to provide a similar subdivision of the overall variance [5].

In the GUM, this subdivision is usually obtained using the sensitivity coefficients. These coefficients can
be estimated using a finite difference approach (perturbing one variable at a time by a small relative amount
and dividing the difference in output values by the perturbation), requiring only N + 1 model evaluations. This
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Figure 3: Plot of the toy problem model after input screening.

approach is adequate in many cases, but runs the risk of discarding variables that have no important first order
effect but are important nevertheless due to interactions or higher order effects.

However, a propagation of distributions according to the supplement 1 to the GUM does not involve partial
derivatives and makes it less straightforward to provide an uncertainty budget [6], although it is possible to
evaluate input quantity sensitivities using the Monte Carlo method [7] at a computational cost. Another popular
method to estimate conditional variances is the evaluation of Sobol’ indices [8]. The conditional variance of a
quantity is the variance obtained if only a subset of the input quantities are allowed to vary and the others are
held fixed at some value, and is a good measure for how sensitivie teh quantity is to the subset of teh inputs that
are allowed to vary. Such an estimation requires additional Monte Carlo simulations, and the number of extra
model evaluations increases rapidly as the number of considered input quantities increases. Good practice may
be to evaluate the Sobol’ indices only for a set of the most significant input quantities, and the Morris design
[9] is a quite efficient method to identify input quantities that have a significant effect (alone or through an
interaction with another input quantity).

These sensitivity methods have not been used in any of the case studies due to computational cost.

2.4.1 Morris designs

Morris designs are input screening designs. The principle is to define a base point and to successively perturb
each of the input quantities by a known amount in order to estimate the effect of the varied input quantity.
In order to evaluate potential interactions, this process is repeated R times, for example see figure 4 for two
input quantities with three repetitions. If an input quantity is involved in an interaction, then its effect will vary
according to the value taken by other input quantities so the effects at the three points shown in figure 4 would
be different.

For each run of the design, the effect for the ith input quantity evaluated at the jth repetition is denoted as
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Figure 4: Variation of two input quantities according to a Morris design, for two input quantities and R = 3
repetitions

Eij where

Eij =
F (x

(j)
1 , x

(j)
2 , . . . , x

(j)
i + ∆x

(j)
i , . . . , x

(j)
N )− F (x(j))

∆x
(j)
i

, (7)

where x(j) = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
N )> is the jth base point and ∆x

(j)
i is the size of the perturbation of the ith

variable. The mean effect for the ith input quantity and the standard deviation are then computed according to

mEi =
1

R

R∑
j=1

Eij , (8)

sEi =

√√√√ 1

R− 1

R∑
j=1

(Eij − µi)2 (9)

Input quantities with a high mean effect mEi in comparison with the mean error as defined in equation (5)
have a significant influence on the output quantity and those with a high effect standard deviation are likely to
be involved in a significant interaction and should not be neglected for the estimation of Sobol’ indices.

2.4.2 Sobol’ indices

The Sobol’ method is based on the estimation of conditional variances. The total variance decomposition
theorem yields that the variance of the output quantity may be written as

V (Y ) = V [E (Y |Xi)] + E [V (Y |Xi)] (10)

where V (Y ) denotes the variance of the quantity Y and E(Y ) is the expectation of Y , the first term Vi =
V [E (Y |Xi)] denotes the part of the variance of Y that is due to the variations of the input quantity Xi while
the second term denotes the part of the variance of Y that is due to all the input quantities apart from Xi. The
first and second order sensitivity indices are then defined, respectively, as
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Si =
Vi

V (Y )
, (11)

Si,j =
V [E (Y |Xi, Xj)]− Vi − Vj

V (Y )
. (12)

The effect of a given input quantity should be accounted for whether it comes from a first, second, or even
higher order effect. To include higher order effects, some methods use the total sensitivity index Ti for the input
quantity Xi, given by

Ti = Si +
∑
j 6=i

Si,j + ...+ S1,2,...,N . (13)

Sobol’ estimation of the sensitivity indices relies on two samples of sizeM ; xi,j , i = 1, ..., N ; j = 1, ...,K,
and x′i,j , i = 1, ..., N ; j = 1, ...,K, that are mixed together in a deterministic way in order to obtain an estimate
of the sensitivity index. For the first order index associated with Xi, the model is evaluated for all of the xj
and for an altered version of the x′j where the value of xi,j replaces the value of x′i,j for all j. The first order
sensitivity index is estimated by the quantity

SSoboli =
D̂i

D̂
(14)

where

D̂i =
1

M

M∑
k=1

F (x1,k, . . . , xN,k)F
(
x′1,k, . . . , x

′
(i−1),k, xi,k, x

′
(i+1),k, . . . , x

′
N,k

)
− F̂ 2

0 (15)

is the estimator of the variance of the conditional expectation of Y given Xi,

D̂ =
1

M

M∑
k=1

F 2 (x1,k, ..., xN,k)− F̂ 2
0 (16)

is the estimator of the total variance of Y , and

F̂0 =
1

M

M∑
k=1

F (x1,k, ..., xN,k) (17)

is the empirical mean of y.
D̂ij may be defined in a similar manner with both xi,k and xj,k replacing x′i,k and x′j,k in x′k, leading to

estimates of the second order indices (or effect of the interaction between two input quantities) as

SSoboli,j =
D̂ij − D̂i − D̂j

D̂
. (18)

Higher order indices can be obtained in the same manner. As these indices are often null, it may be more
efficient to compute the total order sensitivity indices to establish whether any significant contributions exist
among higher order terms. The estimation of the total sensitivity indices relies on the estimation of the variance
of the output due to the variations of all input quantities other than Xi. Sobol’ proposes then the corresponding
estimate
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TSoboli = 1− D̂−i

D̂
, (19)

where

D̂−i =
1

M

M∑
k=1

F (x1,k, . . . , xN,k)F
(
x1,k, . . . , xi−1,k, x

′
i,k, xi+1,k, . . . , xN,k

)
− F̂ 2

0 . (20)

The estimation of Sobol’ indices is computationally expensive. For this reason, best practice is to evaluate
only the most significant effects, holding the input quantities with negligible influence at their best estimate,
in particular for computationally expensive systems. In order to improve the convergence of these sensitivity
estimates, smart sampling methods (such as Latin hypercube sampling) can also by used to generate the samples
xk and x′k.
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3 Method choice

Universal rules on choosing a method for uncertainty evaluation are impossible to develop. Each case
must be judged separately. This chapter provides a list of factors to be considered when making a choice,
and discusses the aspects of a problem that can limit the choice of method, and some ways of removing these
limitations. The main factors discussed here are:

• Number of input and output quantities;

• Computational and mathematical complexity and software availability;

• User knowledge of the model and the input quantities;

• Correlation between the input quantities;

• Existence of historical model evaluations and the need for sample size adaptivity.

It is assumed throughout this section that, as mentioned in the introduction, the user has a known upper bound
K on the number of model evaluations that can feasibly be made.

The following section mentions methods that have yet to be described. The reader is referred to the relevant
subsection of the report for further details.

3.1 Factors to consider

It should be noted that different methods are not necessarily mutually exclusive. In particular, the points that
are generated if a sampling method is chosen can often be used as training points for constructing a surrogate
model (see section 5.1). In some cases the fitting of a surrogate model to sampled results can identify regions
where more samples would improve the estimated uncertainties. However, it is not necessarily the case that
the surrogate model will give a more accurate estimate of the uncertainty than the direct analysis of the sample
results. This aspect is discussed in the case study on thermophysical properties (see section 9).

One of the most important factors affecting method choice is the number of input quantities. The average
distance between a fixed number of randomly chosen points increases as the dimensionality of the space in-
creases, so the sampling points will be distributed more sparsely as the number of input quantities increases.
This sparsity can mean that important areas of the input space might not be sampled.

The number of input quantities also strongly affects the performance of surrogate models. Construction of
many surrogate models requires the evaluation of parameters for the surrogate model and the number of param-
eters usually increases at least proportionally to the number of input quantities (see, for instance, sections 5.3
and 5.4). The unique determination of a set of P parameters requires at least P model evaluations, so some
methods may be ruled out if P > K. Parameter determination also adds computational cost to the method,
and some parameter determination methods suffer from instability as the number of input quantities increases.
These factors may also rule out some methods for models with a large number of input quantities. In some
cases, the number of input quantities can be reduced by using input screening (see section 2) to identify any
insignificant inputs.

Some methods may not be suitable for models with multiple output quantities. As an example, consider a
model with one input X1 with a rectangular distribution on [0, 1] and two outputs Y1 = 1/(0.001 + X1) and
Y2 = (10X1)

3, so that Y1 is sensitive to small values of X1 and Y2 is sensitive to large values of X1. The
different areas of sensitivity may make it difficult to use importance sampling (see section 4.2) or stratified
sampling (see section 4.3) for both output quantities at once.
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Computational complexity and software availability can limit the choice of method. The use of parameters
by surrogate models can add computational complexity. For instance, the parameter evaluation process for
Gaussian process models (see section 5.4) involves the solution of a complicated nonlinear inverse model
requiring the use of optimisation routines. This computational complexity may make a method too difficult to
use, and in particular if the user does not have access to suitable optimisation routines then the method may not
be usable. Similarly, the complexity of the mathematics that underpins the polynomial chaos method can deter
potential users. In some cases the complexity can be avoided by collaborating with an appropriate expert, or by
using a trusted software package (various automated uncertainty evaluation packages are available) to generate
samples and process the results.

User knowledge about the input quantities and the nature of the model can strongly affect the choice of
method. A simple example is that if the user knows that the model exhibits strongly nonlinear or discontinous
behaviour, then a quadratic response surface, which assumes a degree of smoothness of the model, is unlikely
to give reliable results. Most methods assume that all parts of the input space are equally important. If the user
has knowledge that the model output quantities are particularly sensitive to a specific region of the input space
then a method such as importance sampling or stratified sampling can be used to ensure that this knowledge is
used to direct the sampling.

A lack of knowledge can make use of a particular method challenging. Some methods require the user to
make decisions that will strongly affect the results but that involve choices where the best choice is not obvious.
Examples include the best choice of subdivision of the input space for stratified sampling (see section 4.3)
and the best choice of proposal density for importance sampling (see section 4.2). In such cases it is useful to
test the sensitivity of the method to the choice being made, but this approach may not be possible due to the
constraints of computational expense.

The nature of the joint distribution associated with the input quantities affects the choice of methods. Sev-
eral methods, in particular polynomial chaos (see section 4.5) and Latin hypercube sampling (see section 4.4),
are difficult to use for correlated input quantities. Polynomial chaos also works best when the independent
input quantities have distributions that can be related to a family of orthogonal polynomials (see table 4 for a
list of distributions and related polynomials), so if the distributions do not have a known associated polynomial
family then the method will exhibit poor convergence.

Sometimes historical model evaluations may be available that could be used in addition to new model
evaluations, but some methods cannot easily include extra data. Similarly if the estimate of the number of
model evaluations that is feasible increases (for instance if a more powerful computer becomes available),
some methods struggle to alter the sample size adaptively. In particular, Latin hypercube sampling cannot
easily adjust its sample size without imposing correlation between the input quantities, and the use of sparse
grid sampling to evaluate the integrals required for the polynomial chaos method means that the model is
evaluated at specific values of the input quantities which may not be consistent with historical values.

3.2 Comparison of methods

The performance of methods can vary depending on the distributions assigned to the input quantities, the nature
of the model (linear, nonlinear, discontinuous, etc.), the sample size or training point set size, and the individual
values making up the sample or training point set. This variability makes choosing a method even more difficult,
since it is unlikely that an example that exactly matches a problem of interest can be found in the literature to
guide the choice.

The main criteria that are desirable in an uncertainty evaluation method are high accuracy, high repeatability,
low sensitivity, and high efficiency. Accuracy can be proven for some statistics and some methods [10] and is
often a result of the formulation used to estimate the value of the quantity of interest. If accuracy cannot be
proved, it can only be demonstrated by comparison to reference results.
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Ideally, the user would run tests and compare possible methods applied to the problem of interest to assess
the methods on these criteria, but clearly this is almost always not possible for a computationally expensive
model. However, it may be possible to identify a less computationally expensive version of a model (for
instance a one-dimensional model instead of a three-dimensional one, or a model that reduces the number of
unknowns by neglecting some aspects of the physics) but that still includes the aspects most likely to affect
the performance of the uncertainty evaluation method. If such a model is available, this model can be used to
compare methods and perhaps to generate reference results.

3.2.1 Reference results

Reference results should be generated using a large random sample because random sampling is unbiased and
its results will eventually converge to the true cumulative distribution function. An adaptive approach provides
a means to decide how many trials are needed to produce results with a required precision or to know the
precision for results generated using a fixed number of trials, which can be a more efficient approach. An
adaptive Monte Carlo method is described in supplement 1 of the GUM [2] for a single ouput quantity, the
main steps being:

1. Fix a sample size M = max(104, J) where J is an integer obtained by rounding 100/(1 − p) upwards
and p is a probability for which a coverage interval is required.

2. Fix a number of significant digits ndig that are required to be accurate.

3. Generate M random samples of the input quantities and evaluate the model to generate y1, y2, . . . , yM .

4. Repeat step 3 to generate yM+1, yM+2, . . . , y2M .

5. For each sample y(h−1)M+1, y(h−1)M+2, . . . , yhM of size M , calculate the mean m(h), the standard

deivation s(h), and the coverage interval endpoints y(h)low and y(h)high.

6. Calculate the average across the h samples of these quantities, e.g. yhigh =
∑h

r=1 y
(r)
high.

7. Calculate the sample to sample standard deviation for the mean, standard deviation, and coverage interval
endpoints, e.g. s2m = 1

h

∑h
r=1(m

(r) −m)2. Here, “sample to sample standard deviation” of a quantity is
the standard deviation of the values of the quantity calculated for each sample.

8. Calculate the standard deviation ŝ of the whole sample, express the value in the form ŝ = c× 10` where
c is an integer with ndig digits, and define a tolerance δ = 0.5× 10`.

9. If any of the sample to sample standard deviations are greater than δ/2, go back to step 4 and repeat.

If an adaptive approach is not feasible, the user can still subdivide the full sample into subsamples and use
the subsample to subsample standard deviations as an indication of the extent to which the estimators have
converged for a given total sample size. It is also useful to plot the estimator against sample size to assess
convergence.

3.2.2 Repeatability, sensitivity and efficiency

For some sampling methods and some classes of model, statements about repeatability of estimators can be
made [10]. If no such statements can be made, the easiest way to test repeatability is to generate multiple
samples of a fixed size using the method of interest, to evaluate the estimator of interest for each sample,
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and to evaluate the sample-to-sample standard deviation of the estimator. This approach has been used in the
thermophysical properties and scatterometry case studies.

Methods that are deterministic may be sensitive to the choices made in their implementation, for instance
choice of training points for the response surface methodology or for Gaussian process emulation or the max-
imum polynomial order used for polynomial chaos. In some cases it may be possible to derive analytical
expressions that put bounds on the effects of the decisions, for instance it may be possible to estimate the size
of the next term in a truncated series.

The sensitivity of a surrogate model to its training points can be tested at low computational cost by taking
one training point out of the set, fitting a new model to the reduced training point set, evaluating the new model
at the point taken out of the original training set, and comparing the result of the surrogate model to the (known)
value of the full model at the training point. This procedure has a low computational cost because it does not
require any further evaluations of the main model. To ensure robustness of the conclusions, this “leave one out”
procedure should be repeated with each training point in turn. A surrogate model that gives small differences
for all points can be regarded as stable and hence more likely to be reliable.

Efficiency is a comparative measure of the sample size required to achieve a given performance. An efficient
estimator gets close to the minimum possible variance acheivable by an unbiased estimator. A more efficient
estimator needs fewer samples to achieve the required performance than a less efficient one. The statistical
efficiency e(T ) of an unbiased estimator T of a parameter θ is formally defined as

e(T ) =
1/I(θ)

s2T
(21)

where s2T is the variance of T and

I(θ) =

∫ (
∂

∂θ
[log g(x; θ)]

)2

g(x; θ)dx (22)

is the Fisher information of the sample from a distribution with PDF g and 1/I(θ) is the minimum possible
variance for an unbiassed estimator. Here it is required that the estimator is defined by the method used to
generate the sample from which it is calculated as well as the calculation itself.

Evaluation of the efficiency either requires knowledge of the distribution from which the samples are drawn
(in this case, the distribution of the output quantities), or multiple samples from which the estimator variance
and Fisher information can be estimated. If analytical information is not available, it is easier to compare the
sample to sample variance of two methods directly rather than attempting to approximate the Fisher information
using discrete values.
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4 Sampling methods

4.1 Background

A sampling method consists of a method for generating samples xk, k = 1, 2, . . . ,K, from the space of input
variables (the input space), and a method for post-processing the resulting output values yk = F(xk) to obtain
estimates of some properties of the desired distribution.

The simplest possible sampling method is random sampling, also known as Monte Carlo sampling. This
method, described in full in supplement 1 to the GUM [2] using slightly different notation, consists of the
following steps for a sample size K:

• Generate K random samples x(1),x(2), . . . ,x(K) from the joint input distribution for X1, X2, . . . XN . If
the input quantities are independent, this can be accomplished by

– For each quantity Xj , generate K random samples ξ(1)j , ξ
(2)
j , . . . , ξ

(K)
j of a variable with a rectan-

gular distribution on the interval [0,1].

– For each input quantity Xj , evaluate the inverse of the cumulative distribution function fj(Xj) at
each value ξ(i)j , i = 1, 2, . . . ,K, so that x(i)j = f−1j (ξ

(i)
j ).

– Form the samples as x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
N )>, x(2) = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
N )>, and so on up to

x(K) = (x
(K)
1 , x

(K)
2 , . . . , x

(K)
N )>.

• Evaluate the model function F(X) at each of the sampled values to obtain K sets of output quantities, so
that y(1) = F(x(1)),y(2) = F(x(2)), . . . ,y(K) = F(x(K)).

These results y(1),y(2), . . . ,y(K) where y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
M )> can then be processed to obtain esti-

mates of various statistical quantities, including:

• Mean values for each quantity: mi = 1
K

∑K
k=1 y

(k)
i .

• Standard deviation for each quantity: si =
√

1
K−1

∑K
k=1(y

(k)
i −mi)2.

• Correlation coefficients cij = 1
(K−1)sisj

∑K
k=1(y

(k)
i −mi)(y

(k)
j −mj).

• If the samples are ordered based on the calculated values for a single output quantity Yi such that y(1)i ≤
y
(2)
i ≤ . . . ≤ y

(K)
i , then the pairs (y

(k)
i , k−0.5K ), k = 1, 2, . . . ,K form an estimate of the marginal

cumulative distribution function for Yi. The estimated CDF can be used to obtain coverage intervals for
Yi.

• If the sample size is sufficiently large, it may be possible to sort the results into “bins” and thus estimate
the marginal probability density function for Yi.

It is stated in clause 7 of the first supplement to the GUM [2] (note that the supplement uses M for the
number of samples, but this has been changed to K below for consistency with the rest of this document) that
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7.2.1 A value of K, the number of Monte Carlo trials, i.e. the number of model evaluations
to be made, needs to be selected. It can be chosen a priori, in which case there will be no direct
control over the quality of the numerical results provided by the Monte Carlo method. The reason
is that the number of trials needed to provide these results to a prescribed numerical tolerance will
depend on the shape of the PDF for the output quantity and on the coverage probability required.
Also, the calculations are stochastic in nature, being based on random sampling. NOTE A value
of K = 106 can often be expected to deliver a 95 % coverage interval for the output quantity such
that this length is correct to one or two significant decimal digits.

7.2.2 The choice of a value ofK that is large compared with 1/(1−p), e.g. K at least 104 times
greater than 1/(1− p), should be made. It can then be expected that the discrete approximation to
the CDF of Y determined from the results of the Monte Carlo method will provide a reasonable
discrete representation of GY (η) (the CDF of Y ) in the regions near the endpoints of a 100p%
coverage interval for Y .

There are many applications, within metrology and beyond, that require models that take upwards of several
minutes to run. The computational expense of such models, which is the prime motivation for this guide,
renders random sampling computationally intractable. However, other sampling methods exist that produce
better repeatability for small sample sizes.

Random sampling does not guarantee that a given region of the input space will include a sample point,
and it does not exclude the possibility of one or more points being very close together. These features mean
that it is not an efficient sampling method because some areas of the input space that may be related to critical
values of the output quantities may not be sampled, whilst other less critical areas are sampled repeatedly.
For small sample sizes, the estimates of the joint distribution of the output variables are strongly affected by
every sampled point, and so since the samples are not guaranteed to cover evenly the whole of the input space,
estimates of the joint distribution of the output variables obtained using different random samples of the same
small size K can exhibit a large sample-to-sample variance.

4.2 Importance sampling

Importance sampling was developed as a variance reduction technique to improve on random sampling.
Suppose we wish to evaluate an integral I of the form

I =

∫
D
G(X)q(X)dV, (23)

where G(X) is some function of the input variables X, D is the domain spanned by the input variables,
dV =dX1 dX2 . . . dXN and q(X) is their joint PDF, using a numerical quadrature method which requires
function evaluation at a set of (possibly randomly chosen) values of X.

Integrals of this form are of interest because most quantities of interest related to the model results as
described in section 1.1 can be expressed in this form, for example the mean of a model result Yi = Fi(X) is
given by

mi =

∫
D
Fi(X)q(X)dV, (24)

the variance is

s2i =

∫
D

(Fi(X)−mi)
2q(X)dV, (25)
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and the cumulative probability is given by

P (Y ≤ Y ∗) =

∫
D
H(Y ∗ − F (X))q(X)dV, (26)

where H is the Heaviside step function. If an estimate Ī of I is determined in terms of K random samples
drawn from q, the variance of Ī can be written as

1

K

[∫
D
G2(X)q(X)dV − I2

]
. (27)

If the function G is only non-zero for a small subset of the input space D, then the variance will be particularly
large because the estimate of I obtained will be determined by how many samples lie within the subset of D
where G is non-zero. The most common example is the case when a particularly low cumulative probability
is to be determined so that the Heaviside function in the expression (26) is zero within most of D. Importance
sampling aims to reduce this variance by rewriting the integral I as

I =

∫
D

G(X)q(X)

p(X)
p(X)dV, (28)

where p is a function of the input variables such that
∫
D p(X)dV = 1 and p(X) ≥ 0 ∀X ∈ D, generating input

values x̃k, k = 1, 2, . . . ,K, by sampling from p as the joint distribution of X, and estimating I as

Ĩ =
1

K

K∑
k=1

G(x̃k)q(x̃k)

p(x̃k)
. (29)

The estimate Ĩ has variance
1

K

[∫
D

G2(X)q2(X)

p(X)
dV − I2

]
. (30)

The aim of importance sampling is to reduce the variance of Ĩ by an appropriate choice of p. The density p
is known as the importance sampling density function, proposal density, or instrumental density in the literature.

The main strength of the importance sampling method is that it can produce a significant reduction in the
variance of the estimate of I , thus improving the accuracy of the estimate beyond that of random sampling. The
reduction of the variance is particularly high if the quantity of interest is a low quantile or a low probability
because importance sampling ensures that the regions of the input space that lead to these low probability events
are sampled.

The main difficulty in implementing the method is that the choice of importance sampling density function
p is not obvious. Various references [11, 12, 13] point out that choosing p(X) = αG(X)q(X), where α is
some constant, minimises the variance in theory, but is impossible in practice because if the knowledge of G
was sufficiently complete to define p in that way then the integral I could be evaluated more efficiently without
using sampling methods (in our case G is insufficiently known because it is a black box).

Anderson [11] supplies four criteria that a good choice of p should meet, and gives a warning about distri-
bution tails. The criteria are:

• p(X) > 0 whenever G(X)q(X) 6= 0,

• p(X) should be close to proportional to G(X)q(X),

• it should be simple to sample values from p(X), and
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• it should be easy to evaluate p(X) for any X ∈ D.

The determination of a good importance sampling density function is even more difficult in high dimen-
sions [11]. For a model with multiple output quantities a suitable importance sampling density function for one
output quantity may be incompatible with the other output quantities. A compromise may be difficult to find in
such a case.

To carry out an importance sampling calculation for a single ouput quantity, take the following steps:

• Select an importance sampling density function p that satisfies the criteria listed above.

• Generate a sample of size K using p as the joint distribution of X.

• Evaluate the model at the sampled points to generate output quantities y1, y2, . . . yK .

• Evaluate the importance sampling density function p and the true density function q at the sampled points.

• Calculate the estimate of the mean from

m =
1

K

K∑
k=1

ykq(xk)

p(xk)
, (31)

the estimate of the variance from

s2 =
1

K

K∑
k=1

(yk − ȳ)2q(xk)

p(xk)
, (32)

and the cumulative probability that Y ≤ y∗ from

P (ỹ ≤ y∗) =
1

K

K∑
k=1

H(y∗ − yk)q(xk)
p(xk)

. (33)

Consider the toy example (2), and suppose that the user knows that the model output quantity is sensitive
to the parts of the input space where X1 ≈ 0.25 and X1 ≈ 0.75. Then the user could decide to define p(X1)
as shown in figure 5, leaving the distribution of X2 as it is. Evaluating a single sample of size 10 using this
distribution gives a mean value of 0.62 and a standard deviation of 0.19, whereas using the same random
numbers as a sample of X1 without the importance sampling distribution gave a mean value of 0.49 and a
standard deviation of 0.28. Repeated evaluation using a sample size of 10 suggested that importance sampling
gives a better estimate of the mean than random sampling, but does not improve the estimate of the standard
deviation. A better choice of importance sampling distribuition may improve results further.

The difficulties associated with importance sampling have meant it has not been used in any of the case
studies.

4.3 Stratified sampling

Stratified sampling is a technique that has lower sample-to-sample variance than random sampling and was
developed in an effort to address some of the shortcomings of random sampling. Some references (e.g., [14])
appear to use the names “stratified sampling” and “importance sampling” interchangeably. They are considered
as separate here, as importance sampling uses a distinctly different approach to sample selection from that used
in stratified sampling.
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Figure 5: Possible importance sampling distribution for X1 that ensures that regions around 0.25 and 0.75 are
sampled.

Stratified sampling divides the complete input space into a number of distinct non-overlapping regions
Si, i = 1, 2, . . . , nS , and takes Ii, i = 1, 2, . . . , nS , samples within the ith region, such that

∑nS
i=1 Ii = K. The

regions need not be of equal probability, and it is useful to define the probability of a sample occuring within
the ith region as pi.

The estimates of the mean and covariance matrix of the output variables are determined from

mk =

nS∑
i=1

Ii∑
j=1

wiFk(xi,j) (34)

ckn =

nS∑
i=1

Ii∑
j=1

wi(Fk(xi,j)−mk)(Fn(xi,j)−mn)> (35)

where xi,j , i = 1, 2, . . . , nS , j = 1, 2, . . . , Ii, is the jth sample in the ith subregion and wi = pi/Ii is a weight
dependent on the “size” of the subregion (measured in terms of probability pi) and the number of samples taken
within that subregion. The estimator for ckn is biased, but [10] gives bounds on the bias and shows that it tends
to zero as the sample size increases.

If a larger sample size is needed, for instance if it is decided that a higher accuracy is required, more
points can be generated either by resampling in some regions, so that Ii increases for some values of i, or by
further subdividing some regions and sampling within any new empty regions. In both cases the values of the
corresponding weights wi will require adjustment. An adaptive method that identifies the most important input
variable to subdivide has been developed in the context of sampling as a quadrature method [13].

The main strength of the method is that it allows use of expert knowledge about the underlying model F
to generate samples that will create the most useful information about Y and to ensure that any regions of
particular importance are included in the sampling, whilst maintaining a proper probabilistic consideration of
the input distributions. Even when the model is a black box, it is possible that the user will know that some
regions of the input space give almost constant values of the output variables and that other regions produce
more variation in the output variables and so should be sampled more densely.
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The chief drawback of the method is that creating a set of non-overlapping regions of known probability
that completely fill the input space efficiently is not simple, particularly for correlated input variables and for
problems with a large number of input variables. Another drawback is that if there are multiple output variables
of interest then the best choice subdivisions for different output variables could easily be incompatible, meaning
that a unique best choice subdivision may not be possible. A lesser disadvantage is the extra care required in
interpreting the results for the case where the regions in the subdivisions are not of equal probability.

A detailed step by step guide to applying stratified sampling to a problem is not given because there are
only three steps and it is not possible to provide specific detail for any of the steps that is not model-dependent.
The three steps are define a stratification of the input space, sample within each stratified region, and process
the results using the formulae given above.

Stratified sampling has been used in the flow case study (see section 8) and in the thermophysical properties
case study (see section 9).

Figure 6 shows two ways of defining a subdivision of the two-dimensional input space of the toy problem.
The plot on the left of figure 6 shows a subdivision with nS = 10 regions of equal probability, so that pi = 0.1
throughout. The plot on the right of figure 6 shows a subdivision with regions of unequal probability, also with
nS = 10. The region in the first column has pi = 1/3, regions in the second column have pi = 1/9, and
regions in the third column have pi = 1/18. The crosses show the locations of random samples taken within
each region with Ii = 1, i = 1, 2, . . . , 10.

Figure 6: Two ways of subdividing the same sample space into ten regions: the plot on the left has regions of
equal probability and the plot on the right does not.

4.4 Latin Hypercube sampling

Latin hypercube sampling (LHS) was first described by McKay [10]. Latin hypercube sampling is an
extension of stratified sampling to ensure that every subregion of every individual input variable is sampled,
and uses a simple method to generate samples spread across the full range of values. Latin hypercube sampling
has been used in all three case studies.

The basic form of the sampling method requires that all input variables be independent. The full range
of each input variable is divided into K regions of equal probability, and a sample of each input variable is
taken from each region. If an input quantity is not defined on a finite region (e.g., if the quantity has a Gaussian
distribution), then one or two of the subregions may be infinite. TheK samples of each of theN input variables
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are then randomly arranged intoK vectors of lengthN , with each vector containing exactly one sample of each
input variable and each sample being used in exactly one vector. The K vectors are used to generate K vectors
of output variable values, and these values are post-processed using the same techniques as are used to post-
process random samples.

To generate a Latin hypercube sample of size K for N independent input quantities Xj with cumulative
distribution functions gj(Xj), take the following steps:

• Generate N ×K random samples of a random variable that has a rectangular distribution on the interval
[0, 1] and group them as N vectors of length K, ξ(i)j , i = 1, 2, . . . ,K, j = 1, 2, . . . , N.

• Generate N different permutations of the numbers {1, 2, . . . ,K}, where π(i)j , i = 1, 2, . . . ,K, j =
1, 2, . . . , N, is the value in the ith position of the jth permutation. In the absence of a random per-
mutation generator, the easiest way of generating a single such permutation is

– Generate K random samples v1, v2, . . . , vK of a random variable V that has a rectangular distribu-
tion on the interval [0, 1].

– Sort these numbers in increasing order, and use the resulting rearrangement of the sample indices
as the random permutation.

– For instance, if K = 4 and the random samples are v1 = 0.384, v2 = 0.027, v3 = 0.725, and
v4 = 0.168 then the rearranged order is v2 < v4 < v1 < v3, so the permutation is 2, 4, 1, 3.

• Calculate the quantities u(i)j = (π
(i)
j − ξ

(i)
j )/K, i = 1, 2, . . .K, j = 1, 2, . . . , N . These quantities are

samples ofK random variables, each uniformly distributed on one of theK sub-regions of [0,1], arranged
in an order determined by the random permutation.

• Construct the vectors of input quantities by setting x(i)j = g−1j (u
(i)
j ), i = 1, 2, . . . ,K, j = 1, 2, . . . , N,

and setting the ith vector to x(i) consist of the values (x
(i)
1 , x

(i)
2 , . . . , x

(i)
N )>. Then each vector contains

exactly one value of each input quantity, each subregion of the range of each input quantity is sampled
exactly once, and the vectors are assembled randomly.

• Evaluate the model function F(X) at each of the sampled values to obtain K sets of output quantities, so
that y(1) = F(x(1)),y(2) = F(x(2)), . . . ,y(K) = F(x(K)).

Latin hypercube sampling combines the space-filling properties and control of stratified sampling with the
ease of sample generation of random sampling. In the original paper describing the method [10], it is shown
that Latin hypercube sampling leads to unbiased estimates for the moments of the output distribution, and that
if the function F is monotonic in each of its inputs, then the variance of those estimates is lower for Latin
hypercube sampling than it is for random sampling. Some papers [10, 14, 15] suggest that the variance is
better than that of random sampling for a wider range of models. Extensions to Latin hypercube sampling that
optimize the sampling of points [16], handle correlation [17], inequality constraints on the inputs [18], and that
enable sensitivity analysis [19] have been proposed.

The main disadvantages of Latin hypercube sampling are the difficulty of correlated inputs, and sample size
inflexibility. As with stratified sampling, correlated input variables provide a challenge for Latin hypercube
sampling. Iman and Conover [17] developed a method to induce a user-defined rank correlation matrix in a
set of uncorrelated multivariate samples. The approach assumes that imposing a rank correlation matrix is
equivalent to imposing a sample correlation matrix, which is meaningful in most modelling situations but may
not be perfect in some cases.
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The dependence of the hypercubes used in Latin hypercube sampling on the sample sizeK makes changing
the sample size difficult, so if there are doubts about the adequacy of the sample size, the trial will have to be
rerun from the start. Theoretically it is possible to subdivide each of the K intervals for each input value and
sample in the new regions, but this approach would not lead to truly random vectors of input values (since new
values would only be input with other new values) and would have a potentially unwanted correlation structure.

For example, consider generating a Latin hypercube sample of size K = 10 for the toy problem (2).
First generate two random permutations of the integers {1, ..., 10}: π1 = (10, 8, 4, 3, 2, 7, 9, 6, 5, 1) and π2 =
(1, 6, 2, 7, 3, 10, 8, 5, 4, 9) .

The point
(
π
(i)
1 , π

(i)
2

)
lies at the top right-hand corner of the square

[
π
(i)
1 −1
10 ,

π
(i)
1
10

]
×
[
π
(i)
2 −1
10 ,

π
(i)
2
10

]
of the

grid represented in figure 7, and the i-th two-dimensional point will be sampled within that square. If ξ1 and ξ2
are independent random variables both uniformly distributed on [0, 1] then the uniform random variables − ξ

(i)
1
10

and − ξ
(i)
2
10 give the coordinates of the i-th LHS point in the sampled square relative to the top right-hand corner

of the square.

The i-th LHS sample of U1 and U2 has coordinates
(
u
(i)
1 , u

(i)
2

)
=

(
π
(i)
1 −ξ

(i)
1

10 ,
π
(i)
2 −ξ

(i)
2

10

)
. Inserting the

values of u(i)1 and u(i)2 into the inverse of the CDF gives the desired sampled values of X1 and X2. The LHS for
X1 and X2 is plotted in figure 8 and compared to a sample obtained with simple random sampling. Note that
the random sample includes several examples of points in close proximity and that much of the top left-hand
corner of the plot is empty.

Figure 7: Example of a Latin hypercube sample of size K = 10 for two uniformly distributed variables.

4.5 Generalized Polynomial Chaos

Generalized polynomial chaos (gPC) is becoming more widely used for uncertainty evaluation [20]. The ap-
proach was introduced by Wiener [21] and was generalized in [22]. The approach approximates the output
quantity of interest as a weighted sum of orthogonal polynomials of random variables. The weights are de-
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(a) Simple Random Sampling (b) Latin Hypercube Sampling

Figure 8: Examples of two ways to generate a sample of size K = 10.

fined as integrals over the space of input quantities, with the integrands being a product of the model function
and one of the polynomials. The integrals are evaluated using numerical quadrature, requiring model evalua-
tions. This approach has very rapid convergence properties (in many cases, low order polynomials give a good
approximation of the model output), meaning that the methods can outperform most sampling methods.

The method is restricted to models with independent input quantities. In some cases involving correlation,
the correlation can be eliminated because it is caused by a well-understood physical effect, and the model should
treat this effect as an independent random variable. For instance, many material properties are correlated due
to their dependence on temperature. If the temperature dependence is characterised and temperature is treated
as a random input quantity, the correlation between input quantities can be removed.

Another drawback of the method is the curse of dimensionality, meaning that the number of model evalua-
tions required increases rapidly as the number of input quantities increases. Additionally, convergence becomes
less good for cases when there is not a direct link between the distribution of interest and a family of polynomi-
als. These cases are typically addressed by identifying the most similar distribution that does have an associated
family of polynomials, and using that family in the expansion.

The following section briefly reviews the full mathematical definition of the generalized polynomial chaos
method, and section 4.5.2 gives guidelines for applying the theory to a practical problem. Good overviews can
also be found in [20, 23, 24, 25, 26, 27]. The theory is quite mathematically involved, but it can be reduced to
a series of steps to be followed fairly easily.

Polynomial chaos has been used in the scatterometry case study (section 7) and the flow case study (sec-
tion 8).

4.5.1 Theory

Let (Ω,F , P ) be a probability space consisting of a σ-algebra F over the event space Ω and an associated
probability measure P . In the following we consider independent random variables X = (Xi)

N
i=1, N ∈ N,
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Distribution Family of the ansatz polynomials

Gaussian Hermite

Gamma Laguerre

Uniform Legendre

Beta Jacobi

Table 4: Correspondence of the family of orthogonal polynomials to the distribution of a random variable. Note
that most of the random variables must be scaled in a suitable way such that the probability density function is
equal to the weight function of the polynomial family.

mapping from (Ω,F , P ) to (RN ,BN , PX), where B denotes the Borel σ−algebra and PX denotes the range
of measure of X. Assuming that F is generated by X, every square integrable function y : (Ω,F , P ) →
(RN ,BN , Py) can be expanded in a series of orthogonal polynomials with modes (ŷj)

∞
j=0, i. e.,

y(X(ω)) =

∞∑
j=0

ŷjΨj(X(ω)), (36)

where ω is used to indicate that the Xi are random variables. Here (Ψj)
∞
j=0 is a family of orthogonal polyno-

mials with respect to the weighted inner product

〈Ψk,Ψl〉w =

∫
RN

Ψk(s)Ψl(s)w(s) ds, k, l = 0, . . . ,∞ with
∫
RN

w(s) ds = 1. (37)

If the weighting function w for a given family of orthogonal polynomials has all of the properties defining a
probability density function, then the dependence of y on any input quantities with PDF w can be expanded as
a sum of that family of polynomials.

Using the Kronecker delta δkl that returns 1 if k = l and 0 otherwise it follows that

〈Ψk,Ψl〉w = Skδkl with Sk = 〈Ψk,Ψk〉w.

According to the Wiener-Askey scheme there is a connection between the polynomial family and the distri-
butions of the random variables Xi, i = 1, . . . , N . In Table 4 some continuous distributions and the associated
families of orthogonal polynomials are collected. In most cases the random variables must be scaled in a suit-
able way (e.g. rescaling to zero mean and unit variance) such that the probability density function is equal to
the weight function of the polynomial.

Using Ψ0 = 1, the equivalence of the probability density function and the weight function of the polynomial
ansatz, as well as the orthogonality of the ansatz polynomials, the expectation E(y) and the variance V (y) can
be directly calculated from the series expansion (36), i. e,

E(y) =

∫
RN

y(X(ω)) dP (ω) =

∞∑
j=0

ŷj〈Ψj , 1〉w = ŷ0,

V (y) = E(y2)− E(y)2 =

∞∑
j=0

∞∑
k=0

ŷj ŷk〈Ψj ,Ψk〉w − ŷ
2
0 =

∞∑
j=1

ŷ2jSj .

(38)
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In many practical computations, the degree p of the polynomials has to be restricted, which leads to an approx-
imation

ỹ(X) =

q∑
j=0

ŷjΨj(X), q + 1 =
(N + p)!

N !p!
, (39)

of the series expansion (36). In expression (38) we have only to sum up q + 1 modes ŷj . The length of the
series increases very fast with the polynomial degree p and the dimension of the random space N .

Many applications for which polynomial chaos is useful are governed by partial differential equations that
have dependence on the spatial coordinates r. Such problems can be written as an operator L acting on the
solution y

L(y(r,X), r,X) = 0, r ∈ D ⊂ Rd, d ∈ N, (40)

with appropriate initial and boundary conditions. The solution y(r,X) is a random field. Exploiting the or-
thogonality of the ansatz polynomial, the modes of the series expansion are given by

ŷj(r) =
1

Sj
〈y(r, ·),Ψj〉w, j = 0, . . . ,∞. (41)

In practical applications there exists a robust and efficient numerical solver for the operator L, so equation
(41) cannot be determined analytically. Therefore the jth projection ŷj(r) of the solution y(r,X) onto the basis
polynomial Ψj in equation (38) has to be approximated. This can be done by a cubature rule given by K ∈ N
cubature nodes (x(k))Kk=1 and weights (λ(k))Kk=1. The integral of the weighted inner product in equation (41)
becomes a sum and equation (41) can be written as

ŷj(r) ≈ 1

Sj

K∑
k=1

y(r,x(k))Ψj(x
(k))λ(k), j = 1 . . . , q. (42)

Thus, the underlying deterministic equation has to be solved for K samples x(k), k = 1, . . . ,K given by the
cubature rule. For a small number of random variables X, tensor Gauss cubature is the natural choice, and
[20] gives tables of nodes x(k) and weights λ(k) for certain quadrature formulas. For moderate or large N this
approach becomes infeasible and sparse grid approaches are to be preferred [28, 29].

Once the modes ŷj are known, an approximation to the solution can easily be calculated. This is discussed
in Section 5.5, where the polynomial chaos approximation is used as a surrogate model.

4.5.2 Applying generalised polynomial chaos to a problem

The application of the theory is straightforward and is broadly similar to the steps in the evaluation of a Fourier
series. For the application of polynomial chaos to a specific problem, the following steps have to be performed:

1. Identify the polynomial family associated with the distribution assigned to each of the input quantities.
Some examples are listed in Table 4, but other pairs of distribution and polynomial family are known.

2. Select a polynomial degree p. The choice of polynomial degree will affect the accuracy. The less smooth
the output quantity is as a function of the input quantities, the higher the degree of polynomial required.
The rate of convergence is controlled by how quickly the polynomials of degrees higher than p decay.

3. Select the quadrature points x(k), k = 1, 2, . . . ,K, using either Gaussian quadrature or sparse grid tech-
niques for high dimensional spaces.
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4. Evaluate the model function, all of the polynomials, and the associated weight function w at each of the
quadrature points. These values are used in equation (42) to determine the coefficients in the sum of
polynomials (36).

5. Mean and variance (as well as other moments) can directly be calculated from equation (38). Note that
the sum in equation (38) only runs from 1 to q due to the truncation of the polynomial degree p.

4.5.3 Toy model

The uniform distribution of X1 means that Legendre polynomials should be used to expand the function in
terms of X1. The triangular distribution of X2 requires a transformation of variables.

If W2 ∼ U(0, 1) then X2 given by

X2 =
√
W2/2 for 0 < W2 < 1/4,

X2 = 1−
√

3(1−W2)/2 for 1/4 ≤W2 < 1,
(43)

is triangular on (0, 1) with mode 1/4.
The toy model has been evaluated using ten quadrature nodes for X1 and two for X2, i.e. 20 model

evaluations are required in total. The presence of the nonlinear term sin(2πX1) means that the degree of the
polynomial in the expansion terms using X1 has to be as high as possible. The evaluation gave a mean of 0.67
and a standard deviation of 0.56, which are in excellent agreement with the reference values of 0.67 and 0.57
respectively.
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5 Surrogate models

Surrogate models are meta models used when the output quantity of interest is difficult to calculate. The
surrogate model is a simplified model that captures the main features of the full model for a certain range of
input quantities. In many cases the surrogate model is constructed from simple high dimensional functions. Sur-
rogate models are approximations of more rigorous calculations. Surrogate models can improve computational
efficiency by replacing time demanding finite element calculations used to solve partial differential equations.
Therefore, surrogate models enable statistical methods derived elsewhere [30] to be applied to computationally
expensive problems. First of all we will introduce different types of surrogate models.

Suppose we have a model problem
Y = F(X), (44)

where X = (X1, X2, . . . , XN )> is an input vector of random variables of known joint distribution and Y =
(Y1, Y2, . . . , YM )> is a vector of model outputs for which it is required to determine the joint distribution. It
is assumed that the function F is a black box, so that the evaluation of F is possible, and that the evaluation is
computationally costly. Typically, the function Y is a computationally costly solution of a partial differential
equation. The main idea is to replace the model equation (44) by an approximation, either using a stochastic
process or a deterministic function,

Ỹ = G(X1, ..., XN , β1, ..., βn) ≈ F(X), (45)

where for a deterministic function, G is commonly taken as a linear combination of simple functions. In some
cases the input random variables are not all used in the surrogate model in order to reduce the computational
expense further. The subset of variables that are used are generally selected by using a screening method to
identify the most important variables, as explained in section 3. It will be assumed throughout the following
that any screening of input variables has already taken place, so that (X1, X2, . . . , XN )> are all to be used in
the surrogate model.

For both types of approximation, the hyper-parameters β = (β1, ..., βn)> are model specific and typically
have to be determined by using a set of training point outputs yi, i = 1, 2, . . . `, associated with a set of training
point input values xi, i = 1, 2, . . . , `. Training point outputs are experimentally measured values or rigorously
calculated output values of the expensive model which are provided by equation (44).

In the following we introduce four different surrogate models with increasing complexity: nearest neighbor
interpolation, response surface methodology, Gaussian process modelling, and the polynomial chaos expansion.
Throughout the section, a single output quantity is considered. Multiple output quantities are generally treated
by creating separate surrogate models for each output and evaluating these surrogate models using the same
input quantity values so that correlations between output quantities can be estimated.

5.1 Training point selection

Training points are the points at which the full model is evaluated, and upon which the surrogate model is
based. Most surrogate modelling methods permit an almost free choice of training points.

The choice of training input values can strongly affect the quality of the approximation. The aim is to
span the space of likely input values. Various schemes are available for choosing these values, amongst the
most commonly used being full factorial and fractional factorial designs and various optimized forms of Latin
hypercube design. Values need not be chosen randomly (Hammersley sampling [31] is a popular deterministic
method), and (as with sampling methods, see section 4) the training points should be most dense in regions
where the output quantities are sensitive to the values of the input quantities.
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In cases where the training points and input values are taken from experiment or from previous evaluations
of an expensive model, there may be no control over that choice and there may be a resultant loss of quality of
the approximation or instability in the parameter estimation calculations.

The thermophysical properties case study (see section 9) presents a comparison of several different training
point selection methods.

5.2 Nearest neighbor interpolation

Nearest-neighbor (NN) interpolation is one of the simplest interpolation techniques. Here, the nonlinear
function Fk(X) is calculated for chosen training points xi and the interpolated function value at some arbitrary
point xk is given by the function value at a training point close to xk. In particular, the interpolated function
value is F̃k = F(xi) if and only if xk ∈ U(xi), where U denotes the neighborhood of xi. This approximation
leads to a piecewise constant discontinuous approximation of the function Fk(X). The method can be imple-
mented in various forms depending on how the neighbourhood U(X) is defined. The example given below
defines a set of identically sized hypercubes, defines one training point within each hypercube, and assigns
any sampled point lying within a given hypercube the value of the function at the training point within the
hypercube.

An alternative approach that allows for more generally defined training points (and hence potential reuse of
historical data) is to define the neighbourhood of a given training point to be the region that encloses all space
that is closer to that training point than to any other training point (i.e. the cells in a Voronoi tesselation). If this
approach is taken, it is sensible to normalise the input quantities by introducing length scales into the definition
of “closer” so that large valued quantities do not dominate the definition of distance.

The NN interpolation method is simple to understand and to implement, but many training points are needed
to be certain of a good approximation, particularly for models known to be nonlinear.

To implement a surrogate model using NN interpolation and a simple neighbourhood definition for a single
output quantity, carry out the following steps:

• Define the range Ii associated with each input quantity Xi, i = 1, 2, . . . , N .

• Choose the number of training point neighbourhoods in each dimensionm. The total number of volumes,
and hence of training points, is given by K = mN .

• Divide the ranges Ii into m non-overlapping intervals of equal size, I1i , I
2
i , ..., I

M
i , i = 1, 2, . . . , N .

• Define the neighbourhood volumes as cross products of these one-dimensional intervals and label them
consecutively. For instance, for a case with three input quantities (N = 3) and a known value of M , then
a general expression for a volume would be I(j = j1 + (j2 − 1)M + (j3 − 1)M2) = Ij11 × I

j2
2 × I

j3
3 .

This approach can be extended to systems with more input quantities by extending the powers ofM used
in the expression for j up to (jN − 1)MN−1.

• Choose a training point x(j) ∈ I(j).

• Calculate y(j) = F (x(j)) for j = 1...K using the full model.

• To approximate the function value at an arbitrary point x̂, identify the volume I(j) that has x̂ ∈(j) and
set G(x̂) = y(j).

Nearest neighbour interpolation is used in the scatterometry (see section 7) and thermophysical properties
(see section 9) case studies.
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Figure 9 shows a possible definition of the neighbourhoods of a Latin hypercube sample of the toy problem.
The dots show the sampled points, and the lines split the domain into regions such that the nearest sampled point
to any point in a given region is the sampled point in that region.

These regions were created using a Voronoi tesselation rather than by using the procedure defined above,
because the aim was to construct a surrogate model based on existing evaluations of the full model, so the
training points had already been selected and could not be redefined.

Figure 9: Voronoi tesselation of the toy problem domain into neighbourhoods, based on a Latin hypercube
sample.

5.3 Response surface methodology

The response surface methodology (RSM), also referred to as polynomial regression, is a parametric regression
model. The model uses training points to determine the parameters β by regression. Once the parameters are
known, the training set is no longer used and only the parameters of the model characterize the response at new
points. In the RSM, the model outputs are represented as a polynomial plus an error [32, 33, 34], so for a single
model output,

Ỹ (X) = G(X,β) + ε. (46)

Here, ε represents random error which is in general assumed to be normally distributed with zero mean and
standard deviation σ. The approximation polynomial can have any order, but most models only use terms up
to the second order. Linearization of the model around a best estimate as is done in the GUM corresponds to a
first order approximation. For second order polynomials the model is expressed as

G(X,β) = β0 +

N∑
i=1

βiXi +

N∑
i=1

N∑
j≥i

βijXiXj , (47)

where β0 is referred to as the intercept, βi, i = 1, 2, . . . , N are the slopes, and βij , 1 ≤ i ≤ j ≤ N , are the
interaction coefficients, which together represent the unknown hyperparameters of the surrogate model. To find
a best approximation for the desired model the experimentalist makes a series of experimental runs or data sets
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are calculated using the expensive model defined by equation (44). The best fit parameters are obtained by least
squares estimation, that is by minimizing the error [33]

S(β) =
∑̀
i=1

ε2i =
∑̀
i=1

(
yi −G(x(i),β)

)2
. (48)

The discussion here has been restricted to scalar model outputs for simplicity, but the scheme can easily be
extended to vector valued outputs. For more details on least squares regression modelling see [33].

The key choices that uncertainty evaluation with RSM requires are a choice of training input values, a
choice of polynomial order, and a method for uncertainty evaluation using the surrogate model.

RSM is a well-established method and its implementation has been used for many applications. The eval-
uation of parameters is generally quick once the training values have been obtained. RSM is best suited for
fewer than 10 input random variables and is able to tackle weakly nonlinear problems.

RSM is less efficient for strongly nonlinear or discontinuous problems. In principle, higher order polyno-
mials can be adopted, but it needs a large number of training points to accurately capture the function behavior,
reducing the benefits of using RSM. Alternatively the input quantity space could be divided into subsets and a
local response surface could be fitted over each subset.

To construct a quadratic response surface given a set of training points x(k), k = 1, 2, . . . ,K, and corre-
sponding function values y(k):

• Identify suitable normalisation constants `i, i = 1, 2, . . . , N and Mi for each of the input quantities
Xi, i = 1, 2, . . . , N . The normalisation constants should be chosen such that the likely range of val-
ues taken by each input quantity (including all training point values) maps onto the interval [0, 1] via
X̂i = (Xi −Mi)/`i. This normalisation will improve the stability of the surface fitting process. Define
normalised values of the training points as x̂(k)i = (x

(k)
i −Mi)/`i, i = 1, 2, . . . , N, k = 1, 2, . . . ,K.

• Calculate the mean value of the output quantity m = 1
K

∑K
k=1 y

(k) and subtract it from each function
value to give ŷ(k) = y(k) −m. If values of ŷ(k) are not of the order of one, scale ŷ(k) by calculating the
standard deviation s and dividing by that value.

• Either use a linear least squares fitting routine to determine the parameters, or calculate all of the follow-
ing quantities

– a0 =
∑K

k=1 ŷ
(k),

– Ai =
∑K

k=1 x̂
(k)
i , i = 1, 2, . . . , N ,

– Bij =
∑K

k=1 x̂
(k)
i x̂

(k)
j , i = 1, 2, . . . , N, j = i, i+ 1, . . . , N ,

– ai =
∑K

k=1 ŷ
(k)x̂

(k)
i , i = 1, 2, . . . , N ,

– B̂ij =
∑K

k=1 x̂
(k)
i x̂

(k)
j , i, j = 1, 2, . . . , N ,

– Cmij =
∑K

k=1 x̂
(k)
i x̂

(k)
j x̂

(k)
m , i,m = 1, 2, . . . , N, j = i, i+ 1, . . . , N ,

– aij =
∑K

k=1 ŷ
(k)x̂

(k)
j x̂

(k)
i , i = 1, 2, . . . , N, j = i, i+ 1, . . . , N ,

– Dijmn =
∑K

k=1 x̂
(k)
j x̂

(k)
i x̂

(k)
n x̂

(k)
m , i,m = 1, 2, . . . , N, j = i, i+ 1, . . . , N, n = 1, 2, . . . , N .
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• The following system of linear equations can be solved to obtain the best fit values of the parameters β
for the normalised variables:

Kβ0 +
N∑
i=1

βiAi +
N∑
i=1

N∑
j≥i

βijBij = a0 (49)

Am +

N∑
i=1

βiB̂mi +

N∑
i=1

N∑
j≥i

βijCmij = am, m = 1, 2, . . . , N, (50)

Bmn +
N∑
i=1

βiCimn +
N∑
i=1

N∑
j≥i

βijDijmn = amn, m = 1, 2, . . . , N, n = 1, 2, . . . , N. (51)

Note that these parameters link X̂ and Ŷ .

• To evaluate the surface value at a new point x̃, substitute the calculated best fit parameter values and the
normalised values of (x̃1−M1)/`1, (x̃2−M2)/`2, . . . , (x̃N−MN )/`N into equation (47) and calculating

ỹ = m+ s

β0 +
N∑
i=1

βi
x̃i −Mi

`i
+

N∑
i=1

N∑
j≥i

βij
x̃i −Mi

`i

x̃j −Mj

`j

 . (52)

Response surface methodology is used in the scatterometry (see section 7) and thermophysical properties
(see section 9) case studies.

The Latin hypercube sample of the toy model plotted in figure 9 was used for construction of a quadratic
response surface. The surface and the training points are plotted in figure 10. The surface does not pass
through most of the points and (as expected) does not capture the sinusoidal behaviour shown in figure 3. Many
models exhibit behaviour that is sufficiently close to quadratic that a response surface is a sufficiently good
approximation, particularly when used locally. If it was known that sinusoidal behaviour was likely, a more
suitable surrogate model might combine a low order Fourier series in X1 with a low order polynmial series in
X1 and X2. The parameters for such a series could be determined by solving a linear least squares problem.

5.4 Kriging and Gaussian process modelling

Kriging was developed as a geostatistical estimator for single realizations of random fields that infers the
value of the field at unobserved locations from samples. The theory was developed by Georges Matheron and
Danie G. Krige [35, 36]. It is a specific application of a broader class of surrogate models known as Gaussian
process emulators.

Gaussian process emulation in its simplest form is optimal interpolation based on regression against values
of the surrounding training points. The predicted value of the emulator for a new set of input variable values is
a weighted sum of the values of the training points. In the absence of noise in the evaluation of Y, as is the case
for most models, the emulator has zero variance at the training points. The weights in the sum determining the
mean and variance of the function at a new set of input variable values are determined by a covariance function
that depends on the distances between the new set of variable values and the training input values.

A Gaussian process is a (possibly infinite) set of random variables, any finite number of which have a joint
Gaussian distribution [37]. A Gaussian process emulator maps between such a collection of random variables
and the space of input variables of the model, such that each of the random variables represents the value of
Y(X) for a given value of X. A Gaussian process emulator is a description of the model as a random function,
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Figure 10: Quadratic response surface fitted to a Latin hypercube sample for the toy problem. The training
points are shown as black dots.

in as much as for a given set of training points and hyperparameters, the emulator predicts the distribution of
the function value for any new set of input quantity values.

Note that throughout the following, the joint distribution of X is not taken into account: the emulator treats
X as a control variable, creates a surrogate model that estimates Y(X) at lower computational cost than the
full model, and requires a separate technique for uncertainty evaluation based on this surrogate model.

Throughout the following, the case of a single output Y is considered, but the technique can be extended to
multiple outputs. The Gaussian process approximation [38] is given by

Ỹ (X) = β(X) + Z(X), (53)

where β(X) is the unknown mean function of Ỹ (X). The second contribution Z(X) is a zero-mean Gaussian
process with known covariance function. Alternative forms to equation (53) exist. One common form occurs
in regression problems, where a parametric form of the mean function is specified in terms of a set of basis
functions h(X), and parameters β are to be determined as part of the model fitting. Then the expression
becomes

Ỹ (X) = h(X)>β + Z(X). (54)

It is not necessary to specify β unless there is specific information about its form: the development of the Gaus-
sian process emulator produces an explicit form for Ỹ (X) conditional on the training data and the parameters
used to define the covariance function of the Gaussian process. In practical applications it is often found to be
sufficient to set β = 0, β = β0 for some constant β0, or to set h(X) to span a space of low-order polynomials.
The case β = β0 is known as the ordinary kriging model.

The outputs of the emulator are very strongly influenced by the form chosen for the covariance function of
the stochastic process. A common approach [39, 40, 41] gives the covariance function C as

C(Z(X), Z(X′)) = σ2R(X,X′). (55)

R(X,X′) is a parametrized correlation function that can be tuned to the training data, and σ2 is the variance
of the Gaussian process. In many practical applications exponential functions are typically chosen for the
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correlation functions:

R(X,X′) =

N∏
j=1

exp

[
−
∣∣∣∣Xj −X ′j

`j

∣∣∣∣pj
]
, (56)

where `j and pj are hyperparameters. Typical values for the parameters satisfy `j > 0 and 0 < pj ≤ 2. For
the special case pj = 2 the function is a Gaussian and the covariance and hence all potential realisations of
the random function are infinitely differentiable. `j is a length scale controlling how far the influence of any
training point spreads in a given dimension. A smaller value of `j leads to a more rapidly changing function,
tending towards white noise as `j → 0.

The hyperparameters for a chosen correlation function can be estimated by minimising the negative marginal
log-likelihood function for the hyperparameters given the training points (see section 5 of [37] for more details).
This minimisation process is a nonlinear least squares problem and is likely to require multiple runs from ran-
domly generated initial estimates to obtain best fit hyperparameters.

Once the hyperparameters have been obtained, the Gaussian process emulator can be used to estimate the
function value ỹ for a new point x̃. Let y = (y(1), y(2), . . . , y(K))> denote the vector of function values at
the training points, and let the correlation function be R(x, x̃). Then the joint distribution of (ỹ,y) has the
multivariate Gaussian distributionỹ

y

 ∼ N1+K

β(x̃)

β(x)

 , σ2

 1 r(x̃)>

r(x̃) R

 . (57)

where β(x) is the vector of values of the mean function β evaluated at the training points, r(x̃) = (R(x̃,x1), R(x̃,x2), ..., R(x̃,xK))>

, and R denotes the correlation matrix whose i, j component is R(xi,xj).
It follows that the conditional distribution of the model output ỹ at the new point x̃ is the univariate distri-

bution

ỹ|y, x̃,x ∼ N
[
β(x̃) + r(x̃)>R−1(y − β(X)), σ2

(
1− r(x̃)>R−1r(x̃)

)]
. (58)

This distribution depends on the parameters used to specify the mean function β(x) and the variance pa-
rameter σ2 of the Gaussian process. Once these parameters have been estimated (for instance by maximum
likelihood estimation; see [37]), [42], their best estimates β̂(x), β̂(x̃) and σ̂2 can be plugged into equation (58).

The mean of equation (58) is the predictive mean at input variable values x̃ and is the Best Linear Unbiased
Predictor of Y (x̃). The variance is the mean squared error of the predicted mean.

Note that this is not a distribution for the model output Ỹ , it is a conditional distribution for the value of Ỹ
for a given set of values of the input variables. The distribution of Y can be estimated using a sampling method
and treating Ỹ as a surrogate model.

Figure 11 shows the mean function (plotted in black) and a 95 % confidence interval (plotted in blue)
obtained by calculating the Gaussian process emulator of the function exp (−1.4x) × cos (3.5πx) (plotted in
red) on [0, 1] using correlation functions with different length scales. R1 (left-hand plot) has ` = 0.0856 andR2

(right-hand plot) has ` = 0.2. The calculation used seven evenly-spaced training points. Kriging predictions
and 95 % confidence intervals were computed with the R package Dice Kriging [43]. The plots clearly show
the effects of the length parameter `.

Gaussian process emulation is an extremely flexible method that imposes minimal assumptions on be-
haviour. Further flexibility is given by the wide range of covariance functions available. The functions can be
tailored to fit particular features of a training data set, see section 5.4.3 of [37] for an example.

The technique can be applied to problems with many input quantities (examples with up to 50 input quan-
tities appear in the literature). The performance is good and comparable to second order polynomial regression
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Figure 11: GP emulators with the Gaussian correlation functions R1 and R2. Each plot shows the true curve in
red, the mean function curves in black, the bounds of a 95% confidence interval in blue, and the predictions at
x̃ = 0.55 as a black cross.

models. The method can be used to identify regions of the input space that require extra training points, making
the algorithm more efficient.

Drawbacks of the method include the difficulty of choosing an appropriate training data set, particularly
since closely-spaced points can lead to ill-conditioning of the correlation matrix R. The minimisation process
used to determine the most likely hyperparameter values can be difficult to code and may have multiple local
minima. The model construction is rather time consuming and the calculations are sophisticated, although
software packages are available to carry out many of the common calculations. Addition of extra training
points requires recalculation of all terms in the predictor, and since R is an `× ` matrix that must be inverted,
this can be time-consuming and potentially unstable.

To construct a Gaussian process emulator given a set of training points x(k), k = 1, 2, . . . ,K, and corre-
sponding function values y(k), k = 1, 2, . . . ,K, carry out the following steps:

• Select a correlation function. Guidance on selecting the best function for a given set of training points
is available [37], but a common choice is to use an exponential function such as (56) with pi = 2, i =
1, 2, . . . , N as this has desirable smoothness and differentiability properties.

• Given the correlation function and the training points, identify a suitable set of hyperparameters for the
correlation function. Guidance is available [37], but the work reported in the thermophysical properties
case study (see section 9 minimised the negative marginal log-likelihood function for the hyperparameters
given the training points.

• If a parameterised mean function is required, use an appropriate method (e.g. maximum likelihood
estimation) to determine the parameters of the mean function and evaluate the mean function at the
training points.
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• Evaluate the correlation matrix Rij = R(x(i),x(j)), 1 ≤ i, j ≤ K.

• To evaluate the emulator at a new point x̃, use the calculated best fit parameters and the correlation matrix
in equation (58).

Gaussian process emulation is used in the thermophysical properties case study (see section 9).
A Gaussian process model was fitted to the Latin hypercube sample of the toy problem plotted in figure 9.

A Gaussian correlation function was used, with hyperparameters σ = 2.74, `1 = 0.44, and `2 = 3.99. The
large value of the length parameter for X2 in comparison with the typical size of X2 suggests that the model
is not very sensitive to X2, which agrees with the functional form. The surface is plotted in figure 12. The
emulator interpolates the training points (shown as black dots) and is clearly very similar to the full model as
plotted in figure 3.

Figure 12: GP emulator for the toy problem using a Latin hypercube sample as its training points (shown as
black dots).

5.5 Polynomial Chaos

The polynomial chaos method approximates a stochastic process by a series of polynomials. For a detailed
introduction and an explanation of how to construct the approximation, the reader is referred to Section 4.5.
When the polynomial chaos method is used as a surrogate model the model function F is approximated by F̃.
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Thus, the approximated output Ỹ is given by

Ỹ = F̃(r,X) =

q∑
j=0

ŷj(r)Ψj(X) with ŷj(r) =
1

Sj

K∑
k=1

F(r,x(k))Ψj(x
(k))λ(k). (59)

Here, r denotes the spatial coordinates and X the vector of random variables, which model the uncertain pa-
rameters in the system. Furthermore, {Ψj}qj=0 are orthogonal polynomials, which should be chosen according
to the distribution of the random variable X. This correspondence is given by the Wiener-Askey scheme, see
Table 4. The modes ŷj , j = 0, . . . , q, are calculated by a cubature rule with nodes x(k) and weights λ(k),
k = 1, . . . ,K.

Note that the surrogate model F̃ can now be used to approximate the solution of the computationally
expensive model F for a realisation Xh. In this case, only the values Ψj(X

h) have to be calculated and
plugged into equation (59) yielding F̃(r,Xh).
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6 Processing and presenting results

6.1 General guidance

Whilst the presentation of results has few aspects that are unique to computationally expensive models, it is
still worth presenting some general advice and tips here if only for completeness.

There are two important aspects to presentation of results. The first is the presentation of a clear statement
of the process that has been used to generate a set of results so that the reader can potentially follow the same
steps to obtain comparable values. The second is the presentation of a clear statement, whether numerical or
graphical, of the results that have been obtained using the stated method.

The first aim requires inclusion of the following points:

• Specification of all input quantities and definition of their fixed values or distributions as appropriate.

• Specification of all choices of function or parameter associated with the uncertainty evaluation method,
such as order of polynomial or choice of correlation function.

• For a sampling method: statement of sample size used and any associated choices (e.g. definition of
stratification for stratified sampling, space-filling approach if a space-filling Latin hypercube sample was
used, etc.).

• For a surrogate modelling method: statement of the number of training points used and their method of
selection, statement of any hyperparameter values and/or the methods used to evaluate these values (e.g.
“the response surface parameters were calculated by minimising the mean square error at the training
points”).

• Statement defining the model used to generate the results: this statement could be a complete specification
of the equations solved and the numerical approach used to do so, or it could be a short statement that
“Ansys been used to solve a static stress analysis with 17 482 degrees of freedom”, but it should be
detailed enough that the reader can ensure that their model can be reasonably expected to be comparable
with the model being reported.

There are many ways of presenting results, and the choice of presentation method should be driven by the
point the results are intended to highlight. For reporting numerical summaries, Supplement 1 to the GUM [2]
states that

5.5.1 The following items would typically be reported following the use of the propagation of
distributions:

• an estimate y of the output quantity Y ;

• the standard uncertainty u(y) associated with y;

• the stipulated coverage probability 100p% (e.g. 95 %);

• the endpoints of the selected 100p % coverage interval (e.g. 95 % coverage interval) for Y ;

• any other relevant information, such as whether the coverage interval is a probabilistically
symmetric coverage interval or a shortest coverage interval.
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5.5.2 y, u(y) and the endpoints of a 100p% coverage interval for Y should be reported to a number
of decimal digits such that the least significant decimal digit is in the same position with respect to
the decimal point as that for u(y). One or two significant decimal digits would usually be adequate
to represent u(y).

and this excellent advice can be applied directly to results of the methods described in this guide.
Various graphical techniques are available to highlight particular aspects of results. Box plots were dis-

cussed in section 2 as a good way of comparing the two “halves” of a full factorial model for each variable.
Box plots are also a useful way of comparing results of different samples of the same size. As was stated in
section 2, the box of the plot represents the interquartile range for each sample, the median is marked by a solid
line, the length of the stems is a multiple (1.5) of the interquartile range, and the points that lie beyond the
length of the stems are treated as outliers and are denoted with plus symbols. Figure 13 shows two box plots
comparing the results of the thermophysical model evaluations for ten Latin hypercube samples of size 10 (left
hand plot) and ten random samples of size 10 (right hand plot). The plots suggest that the medians of the Latin
hypercube samples are more consistent than those of the random samples, but that both sets of samples show a
lot of sample-to-sample variability.

Figure 13: Comparison of the results of a set of ten Latin hypercube samples of size 10 (left hand plot) to the
results of a set of ten random samples of size 10.

Another useful way of looking at repeatability across multiple samples of the same size is an envelope CDF
plot. This plot shows the highest and lowest values of the output quantity at given percentiles that occur within
the samples, and are constructed by taking the maximum and minimum value of the quantity at each percentile
from the CDFs of the samples. An example is shown in figure 14. Again, this plot compares the results of
ten Latin hypercube samples of size 10 (left hand plot) and ten random samples of size 10 (right hand plot),
with the red line showing the reference CDF. These plots suggest that the percentiles evaluated using the Latin
hypercube samples are closer to the reference distribution than those evaluated using random sampling.

It should be noted that the envelope width will increase as the number of samples increases. If a large
number of samples are being compared, it may be better to take the 10th and 90th percentiles of the range of
values at each probability level to ensure comparability of envelopes across different numbers of samples.

A good way of comparing two distributions is a quantile-quantile plot. These are scatter plots of quantiles
computed from two samples, with a line drawn between the first and third quartiles. These are a particularly

42



NEW04 Uncertainty

Figure 14: CDF envelop plot comparing the maximum and minimum values at percentiles across ten Latin
hypercube samples (left hand plot) to those obtained across ten random samples (right hand plot). In each plot
the red curve is a set of reference values calculated separately.

convenient way of comparing distributions to a reference distribution. An example is shown in figure 15, where
the results of Gaussian process emulators based on three different training point determination methods are
being compared to a reference distribution. The reference distribution is indicated by the line y = x. It is clear
from the plot that the emulator using the Latin hypercube sampling for the training points shows signifcant
deviation from the line y = x, suggesting that the CDF calculated with this emulator may not be accurate at the
tails of the distribution.

6.2 Toy problem results

The toy problem has been used to illustrate the various methods used in this report. It should be noted that
some of the models are not suitable for a problem with the sinusoidal nonlinearity that occurs in this problem:
this does not mean that the methods are “bad”: they are just not suitable for this problem.

Each of the sampling methods was used to create 10 samples of size 10. The mean and standard deviation
of each sample were calculated, and for each method the mean of means and the mean of the standard deviation
were calculated, along with the sample-to-sample variation of the sample mean and standard deviation.

The ten Latin hypercube samples were used as training points for each of the surrogate modelling methods.
Once the surrogate models had been constructed, random sampling with a sample size of 104 was used to
calculate the mean and standard deviation of the surrogate model, and the sample-to-sample variation was
analysed.

The polynomial chaos method was used to evaluate the mean and standard deviation using deterministic
quadrature, so repeatability is not relevant.

The results of all methods are listed in table 5. These results suggest that for a problem like this which is not
well approximated by a single quadratic function, the methods that give best accuracy and repeatability are Latin
hypercube sampling, polynomial chaos, nearest neighbour spproximation, and Gaussian process modelling.
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Figure 15: Quantile-quantile plot comparing the results obtained from Gaussian process emulators constructed
based on three different training point generation methods.

Method Mean of Mean of Standard deviation Standard deviation of

means standard deviations of means standard deviations

Reference results 0.67 0.57

Random sampling 0.58 0.51 0.22 0.05

Importance sampling 0.68 0.31 0.13 0.12

Stratified sampling 0.56 0.54 0.14 0.05

Latin hypercube sampling 0.65 0.58 0.03 0.05

Polynomial chaos 0.67 0.56

Nearest neighbour 0.64 0.57 0.04 0.05

Response surface 0.68 0.67 0.07 0.26

Gaussian processes 0.66 0.57 0.01 0.01

Table 5: Collected results of the toy problem illustrating accuracy and repeatability.
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7 Case Study 1: Scatterometry

7.1 Problem description

In scatterometry, periodic nano-structured surfaces are illuminated by a monochromatic light source and diffracted
intensities are measured. Relative maxima of diffracted intensities (efficiencies) are used to reconstruct the un-
known geometry. In this context, the forward model is defined as a map from parametrized geometries onto the
efficiencies of diffracted light.

In our case study we used a model of an EUV photo mask geometry that consists of a multilayer, two
capping layers, and periodic straight absorber lines of three different materials. The period of the line structure
is 280 nm and the geometry parameters are bottom-CD = 140 nm (width of bottom), and height of the second
absorber layer = 80 nm. The angle of the upper layer is fixed to employ corner rounding; the angle of the second
TaN layer is called side wall angle (SWA). Typically, the SWA, bottom-CD and the height are reconstructed.
These are the geometric parameters considered in this work. A cross section of the geometry is shown in figure
16.

Si capping 

Multilayer
(49xMoSi-Mo-MoSi-Si)

SiO2

TaO

pitch 280 nm

height

top - CD

bottom - CD
TaN

SWA

FEM region

x

y

z

Figure 16: Cross section of the EUV photo mask for one period.

7.2 Mathematical model

The mathematical model is characterized by the propagation of electromagnetic waves through optical materi-
als. Wave propagation of electromagnetic waves in the context of scatterometry is well described by Maxwell’s
equations.

The specific line structure chosen implies invariance of optical properties in one spatial direction, here
labeled as the z-direction. Therefore, Maxwell’s equations can be simplified and reduced to the two dimensional
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Helmholtz equation in the x− y plane,

∆u (x, y) + k2 (x, y)u (x, y) = 0, (60)

where u is the transversal field component that oscillates in the z-direction and k (x, y) is the wave number

k (x, y) = ω (µ0ε (x, y))1/2 , (61)

that is assumed to be constant for areas filled with the same material. The boundary conditions that are imposed
on the PDE are periodic on the lateral boundaries due to the periodic structure and usual outgoing wave con-
ditions in the infinite regions [44]. For rigorous calculations we used the finite element (FEM) solver DIPOG
(developed at WIAS; http://www.wias-berlin.de/software/DIPOG). We fixed the wavelength of the incident
light λ = 13.4 nm, chose an incident angle of 6◦ and used values of the optical parameters given in [45]. For
every set of geometry parameters p = (p1....pN )>, there is a set of efficiencies f1(p)...fM (p) which defines a
nonlinear map (forward model)

p 7→ fj(p). (62)

In the work reported here, M = 22 efficiencies were used. Efficiencies obtained in experiments include
additional noise. For scatterometry, two main sources of noise are known. Variations of the incoming light
beam and noise from background fluctuations. To include these effects, we extend our model by adding a
Gaussian distributed noise term εj :

yj = fj (p) + εj . (63)

Here, the standard deviation of Gaussian distributed noise consists of two independent contributions embodied
in the parameters ã and b̃, that yield

σ̃2j = (ãfj)
2 + b̃2, (64)

where the first term models fluctuations of the light beam and the second represents background noise. When
we use numerical approximation of the forward model there is an additional error. A simple Ansatz of a
complete error model is given by a multivariate Gaussian distribution with standard deviations

σ2j = (afj)
2 + b2, (65)

where the error parameters include the measurement error and the approximation error, i.e., a2 = ã2 + a2approx
and b2 = b̃2 + b2approx.

For the estimation of geometry parameters an inverse problem has to be solved, which makes it necessary
to evaluate the forward model equation (62) several times which is computationally expensive.

7.3 Implementation of surrogate methods

Three different types of surrogate model were created to replace the FE model within the inverse problem. The
input quantities were the SWA, bottom-CD and height as shown in figure 16. The parameters a and b are not
part of the computationally expensive (i.e. FE) part of the model and so were not included as inputs into the
surrogate model.

7.3.1 Nearest-neighbor interpolation

For the NN interpolation we divided the input parameter space into 729 cubes and calculated output values
from the midpoints of all cubes rigorously with the FEM solver. From this set we constructed a look up table to
approximate the full physical model. Every output value is obtained by the identification of the cube containing
the input values and reading off the output value which is related to that cube.
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7.3.2 Response surface methodology

In our case study, we used 609 training point input values. The training point outputs Ym(xk),m = 1, 2, . . . ,M, , k =
1, 2, . . . ,K, are rigorously calculated by a FEM solver. The hyper-parameters are calculated by projecting
Ym(x) onto the polynomial basis. With the obtained hyper-parameters we construct the quadratic response
surface as an approximation of the output quantities.

7.3.3 Polynomial chaos

In this case study all input distributions are chosen as rectangular distributions R[pmin
i , pmax

i ], where pi = µi+ωi
where µi is the mean of pi (the ith input quantity) and ωi is the half-range. According to the Wiener-Askey
scheme, we have chosen Legendre polynomials as basis functions Ψk and the expansion coefficients have been
calculated by projections onto the basis functions Ψk, i.e.,

βαim(µ) =

∫
Ym(x)Ψk(ωi)U(ωi)dωi∫

Ψ2
k(ωi)dωi

≈ 1∫
Ψ2
k(ωi)U(ωi)dωi

∑
k

λikYj(ω
k
i )U(ωki ), (66)

The integral in the denominator was solved analytically and other integrations are approximated by sparse
Legendre quadrature rules. In our case study, we calculated expansion coefficients up to the 10th order. By
using sparse grid techniques 608 training points are needed for good approximation results. The location of
training points were given by the sparse Legendre grid.

7.4 The Bayesian approach

The Bayesian approach provides a statistical method to solve the inverse problem by including prior informa-
tion. For more details see [30]. We will apply this approach to computationally expensive problems.

We assume normal distributed measurement errors and therefore the likelihood function is given by

L(p, a, b;y) =
M∏
j=1

1√
2πσ2j (p, a, b)

exp

[
−(yj − fj(p))2

2σ2j (p, a, b)

]
, (67)

with σ2j = (afj(p))2 + b2. (68)

The estimates of parameters θ = (p>, a, b) are given by the expectation values θ̄i = E[θi]π and the
associated variances are given by V (θi) = E[θ2i ]π − E[θi]

2
π with E[θi]π =

∫
θidπ, where dπ is the posterior

measure. For our study we have chosen uniform prior distributions: R[128.8, 151.2] nm for the bottom CD,
R[74.4, 85.6] nm for the height and R[82.5, 92.5]◦ for the sidewall angle. These distributions are identical to
those used in the polynomial chaos expansion described above. The parameters a and b were also assigned
uniform prior distributions, R[0.01, 0.1] for a and R[0.001, 0.1] % for b.

7.5 Results of the case study

7.5.1 Comparison of surrogates

All surrogate models are constructed from 608 to 729 training points and validated with rigorous FEM calcula-
tions. We have randomly chosen one hundred geometries from the prior distribution, calculated all efficiencies
with each surrogate model and compared the results with rigorous FEM calculations.
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Figure 17: Boxplots of the L2-norm of the difference between rigorous FEM calculations and surrogate ap-
proximations of the forward model (approximation error) for hundred geometries chosen randomly from the
prior distribution. a) nearest neighbor method, b) quadratic response surface methodology and c) polynomial
chaos approach.

Application Function evaluations FEM NN RSM PC

Sensitivity Analysis 3× 104 41 d 20 h + 5 min 20h +9.0 min 20h + 0.1 s

Bayesian MCMC ∼ 105 139 d 20 h + 17 min 20 h + 30 min 20 h + 47 min

Maximum Likelihood 30 1 h 20 h + 0.3 s 20 h + 0.54 s 20h + 0.84 s

Least squares 15 0.6 h 20 h + 0.15 s 20 h + 0.27 s 20 h + 0.42 s

Table 6: Speed up on various applications for different surrogate models. All surrogate methods need a pre-
calculation time of about 20 h to determine the hyper-parameters. Here, d denotes days, h hours, min minutes
and s seconds.

For every geometry we calculated the L2-Norm of the difference between rigorous calculations and the ap-

proximation, i.e., error =
√∑22

j=1(f
FEM
j (p)− f surrogatej (p))2. Figure 17 shows box-plots of the error of each

surrogate model. The approximation error of the surrogate model based on the polynomial chaos expansion is
more than one order of magnitude smaller than that of the others.

To estimate the speed up of each model, we measured the time of function evaluations. Since the construc-
tion of the surrogate model requires the calculation of about 700 training points, there is a pre-calculation time
of about 20 hours for each model. For applications like Bayesian inference or sensitivity analysis, typically
more than 104 function evaluations are necessary and the computational cost of the forward model becomes
significant. In table 6 we compare the time duration of all models with rigorous FEM calculations for various
hypothetical applications of the model. For the estimation of one parameter set within the Bayesian approach
using rigorous FEM calculations a time of more than six months is needed. In contrast, the computational time
reduces to less than an hour when a surrogate model is applied.
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Surrogate a aapprox ã b bapprox b̃

RSM 0.03666 0.03096 0.01932 0.002670% 0.00159% 0.002146%

PC 0.02467 0.01160 0.02177 0.002334% 0.00113% 0.0020434%

Table 7: Error parameters a, b and aapprox, bapprox are calculated from the posterior distribution. ã and b̃
are calculated with equation (65). For simulations of the measurements we used an error of ã = 0.02 and
b̃ = 0.002%.

7.5.2 Parameter estimation and uncertainty quantification

We simulated a set of measurement data by choosing randomly a geometry from the prior distribution, cal-
culating the corresponding efficiencies rigorously and superimposing noise accordingly to the error model
(68). Here, we have chosen ã = 0.02 and b̃ = 0.002% corresponding to experimental experiences in EUV-
scatterometry [45, 46].

Furthermore, we used a Markov-Chain Monte Carlo (MCMC) sampling method using each surrogate model
to estimate geometry parameters and determine its uncertainties from the approximated posterior distribution.
MCMC methods are described in detail elsewhere [30]. For diagnostics we analyzed mixing and used the
Gelman-Rubin criterion [47].

To estimate the geometry parameters and associated uncertainties from the posterior distribution we con-
struct Markov chains with 2×105 steps. For the burn in phase we used 25000 steps according to the diagnostics
result.

We estimated all parameters by calculating the means of the posterior distributions and determined the un-
certainties by calculating 95% credible intervals of the distribution. Figure 18 depicts results for the bottom-CD.
The error bars indicate the credible intervals and can be asymmetric if the underlying distribution is asymmetric.
For all data sets, the geometry was the same (‘true’ geometry). Differences appear due to randomly distributed
error according to equation (68). The ‘true’ geometry is marked by the red dashed lines. The green dashed
lines give the mean value of the set of estimations.

In the case of the NN method, Markov-Chains are drifting to the boundary of the support of the prior and the
posterior becomes asymmetric. The ‘true’ bottom-CD was not estimated and uncertainties are not consistent
with the true value. Estimations using the RSM are consistent but not very precise and with large uncertainties
(σ ≈ 3.0 nm). In addition there is a bias of about 2 nm which is independent of the simulated measurement
noise. In the case of PC expansion results are almost all consistent, uncertainties are smaller (σ ≈ 1.5 nm) and
there is no bias. It turns out that the PC method provides precise and accurate results in contrast to the other
two methods.

7.5.3 Approximation error

So far uncertainties include the measurement noise and the approximation error. To separate both errors, we
first set ã = b̃ = 0 and used MCMC sampling to obtain the posterior distribution for the approximation error in
the same way as explained in the previous section. Secondly, we calculated the posterior distribution including
the full error, where the measurement error was set to ã = 0.02 and b̃ = 0.002%. In table 7 results for the
estimated error parameters are compared. The values of aapprox and bapprox for the RSM are large due to the
large approximation error. But estimations for ã and b̃ are in a good agreement with the chosen values for both
methods.
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Figure 18: Estimation of the bottom-CD (line bottom width) by using different surrogate models and the
Bayesian approach. a) Quadratic response surface methodology, b) Polynomial chaos approach and c) Nearest
neighbor interpolations. For each surrogate model 100 000 Markov-Chain Monte Carlo samplings are used,
where the burn in phase was to be up to 25 000 sampling steps. Estimations are obtained from a data set of 20
simulated measurements. Red dashed line is the initial bottom-CD and the green dashed line is the average of
20 estimated bottom-CDs. In figure b), the red and green lines overlay one another.
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This short consideration shows that the approximation error can be determined in advance and could be
used to determine the pure measurement error.

7.5.4 Conclusions for the case study scatterometry

In this case study, we applied and discussed different surrogate models (NN, RSM, PC) to approximate the
forward model of a scatterometry measurement experiment. We validated each model by rigorous finite element
calculations and calculated the associated approximation error. For the same number of training points the
approximation error was large for NN interpolations, moderate for the RSM and small for the PC expansion.

Furthermore, surrogate models are used to enable the application of the Bayesian approach to scatterometry.
By using a Markov-Chain Monte Carlo method (Metropolis Hastings) uncertainties are determined. We found
reasonable agreement and consistency with the geometry used for the RSM and the PC method. For the number
of training points chosen the PC method gives the best performance with respect to accuracy and precision.
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8 Case Study 2: Fluid flow

This case study is presented in two distinct parts: one section analysing the uncertainties in pipe flow
measurement caused by the inflow profile, and the other section evaluating the uncertainties associated with a
Venturi nozzle.

8.1 Pipe flow

8.1.1 Numerical model

In the following, the influence of uncertain inflow profiles modeling bends or restrictions further upstream in
the pipe on the flow field is investigated. This is an illustrative example how the non-intrusive polynomial chaos
approach introduced in section 4.5 can be applied. We consider the flow of water at 20◦ C in a “DN 50” pipe
of diameter d = 55 mm and length L = 5500 mm. The geometry is shown in Figure 19. Note that cylindrical

skew inflow 
profile 

profile at possible 
measurement 

position 

L = 5500 mm 

d = 55 mm 

Figure 19: Schematic drawing of the considered geometry.

coordinates (r, φ, z) are used. The origin (0, 0, 0) is at the inlet in the middle of the pipe. The pipe is assumed
to be hydraulically smooth. The stationary flow through a pipe is described by the stationary Navier-Stokes
equations, modeling conservation of mass and momentum, given by

∇ · u = 0, u · ∇u = −1

ρ
∇p+ ν∇2u. (69)

Here, u = (ur, uφ, uz)
> is the velocity field with radial, angular, and axial component, p the pressure, ρ the

density of the fluid, and ν its kinematic viscosity. We prescribe standard no-slip boundary conditions on the
walls, a zero-gradient boundary condition on the outlet, and an inflow boundary condition on the inlet:

ur = 0 for r = R,
∂uz
∂z

= 0 for z = L, uz(r, φ, 0) = U(r, φ) for z = 0.

The numerical simulations of the turbulent flow through such a pipe are performed by ANSYS CFX R© in three
dimensions. The turbulence is modeled by Reynolds-averaging the Navier-Stokes equations and applying the
SST-model of Menter, see [48]. The ouptuts of interest are the values of uz across the cross-section of the pipe
for various values of z.
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8.1.2 Validation

In order to check the accuracy of the CFD model, we compare with experimental data1. After a half aperture,
the flow profile was measured by a laser Doppler velocimetry (LDV) system. From this data, we use the velocity
vectors and the turbulence data as input data for the CFD model. Further downstream the velocity profile was
again measured by a second LDV system. These data are used for comparison with the CFD simulations. In
Figure 20 a vertical cut of the measured profile, one of the numerically obtained profile on different meshes, and
a curve of the ideal profile of Gersten and Herwig [49, 50] are shown. The curves of the numerically obtained
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Figure 20: Vertical cut of the measured profile, a vertical cut of the numerical obtained profile on different
meshes and the ideal profile of Gersten and Herwig. The difference between the measured profile and the with
CFD calculated solution is less then 4%.

profiles are close together, which means that the numerical method is converged. The profile of Gersten and
Herwig is in good agreement with the experimental data. The numerical profile is flatter than the curve of the
ideal profile and the measured profile. However, the maximal difference is under 4%.

8.1.3 Uncertain inflow profiles

The propagation of uncertain inflow profiles is investigated by a generalized polynomial chaos approach. A
family of skew inflow profiles is considered, i.e., U = (0, 0, Uz)

> with

Uz(r, φ) =
1

2
(W (−r)−W (r)) (cosφ+ 1) +W (r), (70)

1Obtained at Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
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and

W (r) =

 −
Wmax(r+R)(r−R−2rM )

(R+rM )2
, −R ≤ r ≤ rM ,

−Wmax(r−R)(r+R−2rM )
(R−rM )2

, rM < r ≤ R.
.

Here r is the radial, φ the angular direction, rM denotes the position of the maximum, which is assumed to be
uniformly distributed in the interval [−R,R] (where R = 27.5 mm), and Wmax = 5.377m/s is the maximal
axial velocity in the pipe. The Reynolds number is about Re = 1.82× 105.

Since only one random parameter is considered, we have N = 1 and p = dp in equation (39). Since we
model that all positions of the maimum velocity have equal probability, the random variable is assumed to be
uniformly distributed in the interval [−R,R]. The output of interest is the axial component of the velocity
further downstream in the pipe. This models the position of a possible flow meter in practice. According
to the assumed distribution of the random variable and the Askey scheme, Legendre polynomials were used
as ansatz functions in the polynomial chaos approach, see Table 4. Furthermore, we have used a Gauss-
Legendre quadrature rule for the calculation of the modes in the polynomial chaos approximation, for details
see section 4.5. Note that this quadrature rule is exact for polynomials of degree 2q − 1 or less.

For the generalized polynomial chaos approximation we have used q = 50 collocation points. The Gauss-
Legendre quadrature rule is exact at least for polynomials up to order 2q − 1 = 99. If we assume that the
output of interest behaves like a polynomial of degree ds with respect to the uncertain parameter, then the ansatz
polynomials should be of order 2q−1−ds = 99−ds. The polynomial degree dp was chosen as dp = q−1 = 49.
So it is assumed that the solution behaves like a polynomial of degree ds = 2q − 1− dp = q = 50.

8.1.4 Results

Figure 21: Expectation value ± standard deviation of velocity profiles at different z-positions (cut line φ = 0),
calculated by generalized polynomial chaos with q = 50 collocation points and polynomial degree dp = q−1 =
49.

Figure 21 shows the radial distribution of the expectation value E(u) ± standard deviation
√
V (u) of

velocity profiles at different z-positions for a cut line at φ = 0. The first picture of Figure 21 gives the
expectation value ± standard deviation for the prescribed inflow profiles. One can see that the family of
prescribed profiles covers quite a large range of possible inflow profiles. Further downstream, which can be
seen in the next pictures, the variation between the different profiles decreases. At z = 50D the variance has

54



NEW04 Uncertainty

become very small and all prescribed profiles look almost like a “standard” fully-developed turbulent profile,
independent of the position of the maximum prescribed at the inlet.

In order to check the convergence of the method, the expectation and variance of the approximated solution
ũ, see equation (39), at the inlet are compared with the expectation and variance of the prescribed family of
parabolic inflow profiles, see equation (70). Figure 22 compares polynomial chaos approximations of different
orders with the analytically calculated solution at the inlet. In the left picture, the expectation value is depicted.

Figure 22: Comparison of the expectation value and the variance between generalized polynomial chaos of
different orders and the analytical solution at the inlet.

The right picture shows the variance. One can see that the polynomial chaos ansatz with only q = 5 collocation
points gives already good approximations of the true expectation value and variance. Table 8 shows the decay
of the error of the polynomial chaos approximation with increasing order. Here, U denotes the prescribed
inflow profile and ũ(r, φ, 0) the polynomial chaos approximation at the inlet z = 0.

q ‖E(U)− E(ũ (·, ·, 0)) ‖∞ in m/s ‖V (U)− V (ũ (·, ·, 0)) ‖∞ in m2/s2

2 0.1183 1.1127

5 0.0291 0.2212

10 0.0131 0.0694

20 0.0074 0.0197

50 0.0073 0.0098

Table 8: Maximum absolute error of expectation value and variance for different number of collocation points
q.

8.1.5 Summary

We show that gPC is a promising approach to treat flow problems with random input parameters, which are
well-known to be computationally expensive. In contrast to classical Monte-Carlo methods, the approach only
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needs a few evaluations of the underlying deterministic problem. However, if the output of interest does not
depend smoothly on the random parameters, a relatively high polynomial degree and thus many evaluations
are necessary even for a method as efficient as gPC. In this case, a stochastic finite-element approach may be
preferable [51].

8.2 Sonic nozzle

8.2.1 Problem Description

The physical problem of interest concerns a Venturi nozzle through which air is flowing, see figure 23. The
air speed at the narrowest part of the nozzle, the throat, is sonic under standard operating conditions. The
inlet pressure Pin, the inlet temperature Tin, the outlet pressure Pout, the molar mass M , dynamic viscosity µ,
specific heat at constant volume Cv and the Prandtl number Pr of the air are all known with some uncertainty.
In table 9 the corresponding probability distributions are listed. The input quantities are assumed to be inde-
pendent. The governing mathematical equations are the Navier-Stokes equations. The quantity of interest is
the value of the mass flow rate q flowing through the nozzle and its uncertainty due to the uncertainty in the
parameters mentioned above. The mathematical model was solved using the OpenFOAM [52] solver sonic-
Foam. Performing four model evaluations in parallel on a desktop computer with 4 Intel(R) Core (TM) i7 CPU
870@2.93 GHz processors and 7.8 GB of RAM memory took approximately 30 minutes. The memory usage
was slightly over 30 %, whereas the 4 CPUs were performing at 100 %.

Figure 23: Schematic drawing of a critical flow Venturi nozzle with toroidal throat.

8.2.2 Sampling methods

The following methods have been applied to evaluate the uncertainty of the mass flow rate:

• Monte Carlo sampling (MC);

• Law of Propagation of Uncertainty (LPU);

• Stratified Sampling (SS);

• Latin Hypercube Sampling (LHS);
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Variable symbol Description Unit Distribution

Pin Inlet pressure Pa N(100 000, 132)

Pout Outlet pressure Pa N(60 000, 132)

Tin Inlet temperature K N(295, 0.12)

M Molar mass kg/ kmol N(28.85, 0.0052)

µ Dynamic viscosity µPa s R(18.09, 18.51)

Cv Specific heat kJ/ (kg K) R(710.5, 725.0)

at constant volume

Pr Prandtl number - R(0.687, 0.729)

Table 9: Definition of distributions of the uncertain input quantities of the model.

• Polynomial Chaos (PC).

The second method is the standard GUM approach [1] using numerically calculated sensitivity coefficients
and the Law of Propagation of Uncertainty (LPU). It may yield good results when the uncertainties in the
parameters are small relative to the non-linearity of the model. LPU was implemented by evaluating the model
once using the best estimates of all of the parameters, and 7 times at the best estimates of the parameters except
for one parameter at a time, which was evaluated at its mean plus twice its standard deviation. This amounts
to a total of 8 model evaluations. Note that the calculated linear sensitivity coefficients could be used to fix
some uncertain input parameters to their mean value, but this has not been done in order to be sure not to miss
possibly present higher order interaction effects (which appear to be absent in this problem, as revealed by the
reference result).

The Stratified Sampling (SS) method was used with 27 = 128 samples, with each input quantity being
split into two regions of equal probability. This method was tested 3 times. Latin Hypercube sampling (LHS)
was assessed with 8 samples in order to compare it with LPU-sampling, and with 128 samples in order to
compare it with SS-sampling. For both sample sizes the method was repeated 3 times. Polynomial Chaos (PC)
was performed on a full 7-dimensional tensor product grid with 2 sample points per dimension, resulting in
27 = 128 input samples to be evaluated by the model. As the PC-method is deterministic for a given sample
size, this method was only used once. The Monte Carlo procedure was applied using sample sizes of 8 and 128
in order to compare MC-sampling with the methods LPU, LHS, SS and PC. Again, the method was repeated
3 times for each sample size. Reference results were established by means of the Monte Carlo method using
approximately 2000 samples.

8.2.3 Results

The model has been evaluated with the samples described in the last section. Each sampling method has been
run 3 times in order to assess the variability of each method. For reasons of computation time no additional
runs were performed. The final objective is to assess the uncertainty of the output quantity, i.e. the mass flow
rate q through the nozzle in this particular case. A measure for the uncertainty of the estimate is the standard
deviation of the model evaluation results, called the ‘standard uncertainty’ of q and denoted by u(q). The mean
of the results is of less interest, as one would usually only evaluate the model at the best estimates of the input
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quantities and not repeat the model evaluation multiple times to determine the mean of the output distribution.
Nevertheless the mean of the calculated flow rates by the model is presented as well. This mean value is the
best estimate of the flow rate according to GUM supplement 1 [2].

The reference mean mass flow rate and the associated standard deviation can be found in table 10. The
number in parentheses denotes the uncertainty of the last digit of the presented value. This value has been
calculated by calculating a pooled standard deviation based on a subdivision in 6 sets of approximately equal
size of the 1998 samples, and dividing it by the square root of the total number of samples, 1998. The reference
result is denoted by ‘REF-MC-1998’.

Sample ID qref [mg/s] uref(qref) [mg/s]

REF-MC-1998 43720 (1) 27 (5)

Table 10: Reference results for the calculated mass flow rate and its standard uncertainty with the uncertainty
of the values in parentheses. The values are based on 1998 Monte Carlo simulations.

The results for the calculated mass flow rate and the standard uncertainty for several sampling methods and
several sample sizes can be found in table 11. The results are presented as differences from the reference values
of table 10. In parentheses the uncertainty of each value is indicated. This uncertainty only takes into account
the variability of the sampling method and not the uncertainty of the reference results. The sampling method in
tables 10 and 11 is indicated by a letter combination abbreviating the sampling method, followed by a dash and
the number of samples used in each of the 3 individual repetitions. The mean results and their uncertainties in
parentheses are shown. The results for the individual repetitions of the sampling methods are not shown.

Sampling method q − qref [mg/s] u(q)− uref(qref) [mg/s]

MC-8 2 (5) 2 (8)

LPU-8 0 (0) 0 (0)

LHS-8 0 (2) 0 (6)

MC-128 0 (2) 1 (1)

SS-128 -1 (2) 0 (0)

LHS-128 0 (0) 0 (1)

PC-128 0 (0) -1 (0)

Table 11: Results for the calculated mass flow rate and the standard uncertainty for several sampling methods
and several sampling sizes, presented as differences from the reference values of table 10. In parentheses the
uncertainty of each value is indicated. This uncertainty only takes into account the variability of the sampling
method and not the uncertainty of the reference results.

8.2.4 Discussion of the results

In table 10 it can be seen that practically all results are consistent with the reference values when the variability
of the sampling method is taking into account, even when the uncertainty of the reference values is not taken
into account. Only the deterministic PC result for the standard uncertainty is slightly different.
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For a sample size of 8, the Monte Carlo sampling method shows more variability in both the values for
the flow rate amd the standard uncertainty than Latin Hypercube sampling, the other stochastic method. The
deterministic method LPU is superior to both methods in this case. The problem with this method, however, is
that it is not clear beforehand if it will produce correct results or not because the assumption of model linearity
is not known to be valid initially, whereas MC and LHS are guaranteed to yield correct results as long as the
sample size is sufficiently large. The results of MC and LHS can be checked for convergence whereas this is
not possible for the results of LPU. For a sample size of 128 model evaluations all methods perform well.

Overall, the best method for this particular problem is LPU, as it happens that the model function can be
linearized around the input values given the sizes of the uncertainties of the input values. If it is not known
beforehand if the model can be linearized, as was the case for this potentially very non-linear flow problem, LPU
cannot be used as the only method. In that case LHS-8 seems to be a suitable method, though the variability of
the calculated uncertainty may be higher than desirable. In that case LHS with more samples can be used. It
does not seem to be necessary to use as many as 128 samples to determine the mean and standard uncertainty
of the model output value.

A combination of methods is also possible. First one could investigate with LPU the sensitivity of the flow
rate to each of the input parameters, taking into account the size of the uncertainty associated with the input
parameters. In a second step one could use a different number of input values for each input parameter, if either
the Stratified Sampling or the Polynomial Chaos method is used. For input parameters to which the output is
sensitive, a greater variety of input values would be allocated than for less sensitive input parameters.

The statistical significance of the presented results was not assessed. As all methods have been repeated
only 3 times, the difference in the results may not be significant to the 5 % level. However the presented results
and conclusions may nevertheless provide at least qualitative information.

8.2.5 Complete distribution functions

Often one is not only interested in the standard uncertainty of the result, but also in a coverage interval with
a specified coverage probability or in the mode or median of the result distribution. All this information is
encoded in the cumulative distribution function (CDF). In figure 24 the reference CDF based on the REF-MC-
1998 samples, the CDF obtained using LPU-8 in case of variation of the input parameters with 1 standard
deviation, the CDF using PC-128 and the maximum and minimum observed values for the CDFs at a given
cumulative relative frequency in each of the 3 repetitions the simulations for the MC-8, LHS-8, MC-128, LHS-
128 and SS-128 sampling methods are shown. For the CDF obtained by using the Law of Propagation of
Uncertainty the rectangular distribution was used, as the dominating input parameter Cv had this probability
distribution. Polynomial chaos yields a polynomial expansion for the probability distribution of the output
quantity in terms of the input distributions. Instead of explicitly evaluating the sum of polynomials of the
definition, the (same) polynomial expansion can easily be evaluated by calculating a sum of 128 terms each
consisting of a product of 7 linear Lagrange polynomials and a specific calculated flow rate as evaluated by
the CFD model. This approximate CDF has been numerically evaluated by means of a Monte Carlo method
using 105 samples. This large number of samples poses no problem here, as the approximate CDF is not
computationally expensive. Furthermore, note that the CDFs for MC-8 and LHS-8 start at an ordinate value of
0.125, corresponding to a cumulative relative frequency of 1/8. For the purpose of better visualization of the
values on the x-axis all flow rates have been reduced by 0.0437 kg/s (an approximation to the reference mean
value in table 10).

It can be seen that the reference CDF closely resembles the rectangular distribution found by means of LPU-
8. The CDFs only start to deviate from the rectangular distribution at probabilities smaller than approximately
0.05 or bigger than 0.95. The limiting CDFs found by applying the sampling methods MC-128, LHS-128 and
SS-128 are much closer to the reference CDF than the CDFs for MC-8 and LHS-8. In table 12 the maximum
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Figure 24: Cumulative probability distributions for the flow rate for various sampling methods. The reference
CDF is shown, the CDF for LPU and the minimum and maximum observed values for MC, LHS and SS random
sampling methods. The CDFs for MC-8 and LHS-8 start at an ordinate value of 1/8 = 0.125. All flow rates
have been reduced by 0.0437 kg/s for better visualization of the values on the x-axis.
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of the absolute differences of the constructed CDFs based on the sampling results with the reference CDF is
shown. The difference between the CDFs was evaluated at all values for the flow rate found in the reference
sample set REF-MC-1998. Only LPU-8, LHS-128 and PC-128 have a maximum deviation smaller than 5 %
in the entire domain. The maximum deviations for MC-8 and LHS-8 are very large. In this case study PC
performs better than LHS, LHS performs better than SS and SS performs better than MC. Note that as the
reference distribution is based on 1998 samples, the agreement is not expected to be better than 0.005 at best.
It is even possible that the PC-128 CDF is more accurate than the REF-MC-1998 CDF.

Sampling method maximum absolute difference maximum absolute difference

with CDF of the minimum values with CDF of the maximum values

MC-8 0.308 0.131

LPU-8 0.033 0.033

LHS-8 0.250 0.156

MC-128 0.088 0.076

SS-128 0.077 0.056

LHS-128 0.047 0.048

PC-128 0.013 0.013

Table 12: Maximal absolute difference of the CDF constructed from the samples with the reference CDF for
various sampling strategies. As LPU-8 and PC-128 are deterministic methods the values in both columns are
equal.

8.2.6 Summary

In this case study a computationally expensive CFD model for calculating the flow rate through a sonic Venturi
nozzle has been studied. Different sampling methods have been tested in order to evaluate the uncertainty of the
output quantity due to uncertainties in the input parameters. It appears that the problem can be linearized around
the best estimates as the uncertainties are sufficiently small. Physically speaking this means that the nozzle is
operated in a stable regime with stable sonic flow. For this reason the “Law of Propagation of Uncertainty”
approach (LPU-8) performed very well for calculating the mean value of the flow rate, its standard uncertainty
and its associated cumulative probability density function. For calculating the mean value and the standard
uncertainty all sampling methods performed reasonably well and only small sample sizes were needed. In the
case when the full probability distribution is required, MC-8 and LHS-8 do not perform well. The best methods
are first PC-128, then LPU-8, then LHS-128, then SS-128 and then MC-128.

It is not generally known beforehand if a model can be linearized, given that input quantities are indepen-
dent, and thus if LPU can be applied. The results of the LPU method give no information about this criterion.
The method of choice is therefore not LPU-8. In the case when only the mean value and the standard uncer-
tainty is needed, one could repeat LHS-8 at least three times and assess from the variability in the results if they
have converged. If not, one can apply additionally a higher order LHS-approach, e.g. LHS-50 or LHS-100.
An alternative approach is to assess the sensitivity of the output quantity to the various input quantities first,
and then apply PC with different polynomial orders for each dimension. If a coverage interval or the full CDF
is required, then PC is clearly the method of choice. A disadvantage of PC is that it is more complicated to
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implement than LHS.
This example also shows that if a model can be linearized, then LPU-8 is a very powerful tool needing only

a few model evaluations and outperforming MC-128, SS-128 and LHS-128.

62



NEW04 Uncertainty

9 Case Study 3: Thermophysical properties

The problem discussed in this case study concerns the estimation of the thermophysical properties, typically
the thermal conductivity, of a material by matching the temperatures predicted by a model of the laser flash
thermal diffusivity experiment to voltages generated by a temperature sensor. The laser flash thermal diffusivity
experiment [55] heats one side of a small cylindrical material sample with a short burst of energy supplied by
a laser, and measures the resulting temperature rise of the opposite face over time. In the simplest cases and
for a uniform material, an analytical solution to the governing equation and boundary conditions can be used to
estimate the thermal diffusivity of a material [54, 55, 53]. Thermal diffusivity is defined as

α =
λ

ρcp
(71)

where λ is the thermal conductivity of the material, ρ is the density of the material, and cp is the specific heat
capacity of the material.

For layered materials such as thermal barrier coatings, this analytical approach cannot be used and a nu-
merical approach is needed. The work reported here uses a finite volume model to solve the heat equation

ρcp
∂T

∂t
= ∇.(λ∇T ) +Qδ(z)I(t < tflash), (72)

where Q is the energy flux into the sample due to the laser and I(t < tflash) is a function that takes the value 1
if the condition in the brackets is true and 0 otherwise, with radiation-like boundary conditions of the form

n.∇T = σε(T 4
a − T 4), (73)

where Ta is the ambient temperature and ε is an effective emissivity parameter not constrained to lie between
0 and 1. The inverse model uses an optimisation algorithm to estimate the unknown model parameters λ and
Q by matching the model predictions of temeprature to the measured voltages. This matching process is an
inverse problem and so provides a link to related work [30].

An initial assessment of potential methods of interest was carried out using a simulation of a uniform
material (ArmCo Iron). The best performing methods were then applied to a layered material, with the thermal
conductivity of one of the layers being regarded as unknown. The results of both sets of tests are reported here.

For the initial model, the model output quantities are the thermal conductivity of the sample, λ, and the
laser power Q. The inputs include the measured values used as the target data in the optimisation routine, the
sample radius R and thickness h2, the sample material density ρ and specific heat capacity cp, the duration of
the laser pulse tflash, the equivalent emissivity ε1 and the temperature conversion coefficient (used to convert
from voltage to temperature) ∆T . The assumed distributions for the input quantities are listed in table 13.

The layered sample consisted of a layer of copper (denoted by a subscript 2) and a layer of braze (denoted
by a subscript 1). The thermal conductivity of the copper was regarded as unknown. The other parameters
of the model and their associated distributions or fixed values, are listed in table 14. The various differences
between tables 13 and 14 will be explained as the case study progresses. The effective emissivity ε was treated
as unknown because it became clear that too little was known about the parameter for it to be assigned a
meaningful distribution.

9.1 Measured values and reference results

The two sets of measured values used to match to model results are shown in figure 25. It is clear from these
plots that the measured values are noisy. If the data points, of which there are more than 1 000, are treated
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Symbol Quantity, unit Distribution

Density, kg m−3 ρ N(7870, 78.72)

Specific heat capacity, J kg−1 K−1 cp N(465, 4.652)

Effective emissivity, dimensionless ε N(226.6, 0.372)

Laser pulse duration, ms tflash R(0.7, 0.9)

Sample layer thickness, mm h2 R(1.91253392, 1.91346608)

Sample radius, mm R R(4.9992, 5.0008)

Temperature normalisation, K ∆T T(1.5, 6.5)

Table 13: Definition of distributions of the uncertain input quantities of the model.

Quantity, unit Symbol Distribution

Braze density, kg m−3 ρ1 N(8 600, (86)2)

Braze specific heat capacity, J kg−1 K−1 cp1 N(377, (3.77)2)

Braze thermal conductivity, W m−1 K−1 λ1 N(112, (2)2)

Copper density, kg m−3 ρ2 N(8 930, (89.3)2)

Copper specific heat capacity J kg−1 K−1 cp2 N(397, (3.97)2)

Furnace temperature, K Ta R[373, 383]

Temperature scaling factor, K ∆T R[1.5, 6.5]

Laser flash duration, ms tflash R[0.5, 0.7]

Sample radius, mm R 6.2 mm

Braze layer thickness, mm h1 1.018 5 mm

Copper layer thickness, mm h2 1.018 5 mm

Copper thermal conductivity, W m−1 K−1 λ2 Unknown

Laser heat flux, MW m−2 Q Unknown

Effective emissivity, dimensionless ε Unknown

Table 14: Probability distributions associated with the input quantities for the copper and braze layered sample
model runs.
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as a set of uncertain inputs then most surrogate methods cannot be used. A curve was fitted to the data in
figure 25(a), the noise on the data was characterised as being N(0, (4mV)2), and two Monte Carlo runs were
carried out. One run treated the fitted curve as the target data and evaluated λ and Q given values of the
uncertain inputs listed in table 13, and one run treated the noise on each of the measured points as independent
identically distributed random input quantities and evaluated λ and Q. The sample sizes of these runs were
dictated by the time available. The first run used 5 048 samples and the second used 2 021 samples. The CDFs
for Q and λ using idealised and noisy data differed very little, so it was assumed that the noise associated with
the data could be neglected.

The results of the first Monte Carlo run were extended to include almost 9 000 samples, and were used as
reference data to which the results of the other methods could then be compared. A similar set of reference
results were generated for the layered material using 2 632 samples (again, the sample size was determined by
the time available). The results of these reference runs, which should not be compared directly because they
are for different materials, are summarised in table 15. The correlation coefficients associated with the various
pairs of output quantities were sufficiently small that the output quantities can be regarded as uncorrelated.

Uniform material Layered material

λ (W m−1 K−1) Q (MW m−2) λ2 (W m−1 K−1) Q (MW m−2) ε

Mean 66.0 60.5 277.7 45.1 90

Std. dev. 0.84 15.9 13.4 4.2 18

Median 66.0 60.1 276.9 44.6 190

2.5% 64.4 31.4 253.8 38.7 144

97.5% 67.7 92.2 306.1 53.2 235

Table 15: Summary of the reference results for the two models.

9.2 Input screening

Input screening was carried out for the problem with the uniform material. Full factorial and fractional factorial
designs were considered, and the results were in agreement. The full set of direct effects and the top seven
influence factors for each output quantity are shown in table 16. Note that although the interactions are denoted
by a × sign, their interaction may not be multiplicative.

The values in table 16 suggests that variations in R and h2 do not significantly affect either output quantity,
so only their mean values and not their distributions are required by the model. These results have motivated
the use of fixed values for the geometric parameters R, h1, and h2 in table 14. It is reassuring to note that the
effects of ρ1 and cp are equal, as would be expected since they only ever appear as the product ρcp in equation
(72) and they both have the same relative uncertainty of 1 %.

9.3 Sampling methods

Three sampling methods were compared using the model of the uniform material: random sampling, stratified
sampling, and Latin hypercube sampling. Different sample sizes were used for each method, the sample sizes
used being:

• random sampling: 10, 25, 50, 75, 100, 150, 200, 250.
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Figure 25: Measured values used in the work. Plot (a) was measured using a uniform Armco iron sample, and
plot (b) was measured using a layered sample consisting of a layer of copper and a layer of braze.
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Input Effect on λ (W/(m K))

ρ 2.26

cp 2.26

∆T 0.25

ε 0.19

tflash 0.16

R 0.032

h2 0.0025

Interaction Effect on λ (W/(m K))

∆T × ε 0.15

h2 × cp1 0.14

h2 × ρ 0.14

h2 × ε 0.13

ρ× tflash 0.13

tflash × cp 0.13

ρ×∆T 0.12

Input Effect on Q (MW/m2)

∆T 76.2

tflash 15.2

ρ 2.34

cp 2.34

h2 0.0077

ε 0.0038

R 0.0004

Interaction Effect on Q (MW/m2)

tflash ×∆T 9.52

∆T × cp 1.47

ρ×∆T 1.47

ρ× tflash 0.31

tflash × cp 0.31

ρ× cp 0.059

h2 × ρ 0.014

Table 16: Absolute change in output quantity for each contributing input quantity, and the top 7 interaction
effects. Effects are significant if greater than the standard error, 0.15 W/(m K) for λ and 3.48 MW/m2 for Q.
The significant effects are marked in bold.
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• stratified sampling: 32, 48, 72, 108, 243.

• Latin hypercube sampling: 10, 25, 50, 75, 100, 150, 200.

The stratified sampling sample sizes were generated by splitting the range of each of the input quantities into
either 2 or 3 regions of equal probability and using every combination of these regions to define stratification
of the complete input space into regions of equal probability. The choice of subdivisions was partly motivated
by the results of the input screening, which suggested R and h2 were not important. The full list of intervals
for each sample size is shown in table 17. Whilst two separate stratifications were used for sample size 48, no
significant differences were found between the results for the two sets of samples.

Number of intervals for each input quantity

Sample size R h2 ρ tflash ∆T cp ε

32 1 1 2 2 2 2 2

48 (1) 1 1 3 2 2 2 2

48 (2) 1 1 2 2 3 2 2

72 1 1 3 2 2 3 2

108 1 1 3 2 3 3 2

243 1 1 3 3 3 3 3

Table 17: Number of intervals associated with each input quantity for a given sample size for the stratified
sampling method.

Ten samples of each sample size were generated using each method so that the repeatability of the methods
could be assessed. The results of each sample were used to calculate an estimate of the mean and the standard
deviation of each output quantity. The means and standard deviations of the ten samples generated using the
same method and sample size were then used to estimate an inter-sample mean and standard deviation of the
sample means and sample standard deviations. The inter-sample standard deviation of the sample means gives
a good insight into the likely sample-to-sample variation of estimates of the mean, and hence a good indication
of the repeatability of the method.

9.4 Surrogate models

Three surrogate modelling methods were compared: nearest neighbour interpolation, response surface method-
ology, and Gaussian process emulation. Nearest neighbour interpolation was implemented in both scaled and
unscaled form (the scaled form transformed all variables to be zero mean and unit standard deviation). The
response surface methodology was used to fit a quadratic response surface to the full set of training points. A
Gaussian process emulator was fitted to the training points using a covariance function of the form, as specified
in equations (55) and (56)

Cov(X,X ′) = σ2
N∏
j=1

exp

[
−
∣∣∣∣xj − x′j`j

∣∣∣∣2
]
. (74)

The hyperparameters σ2 and `j required for the Gaussian process model were determined using an optimisation
routine to minimise the negative marginal log-likelihood function for the hyperparameters given the training
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points. The optimisation process was run repeatedly to ensure that the best set of hyperparameters was identi-
fied.

Three different methods were used for the training point selection: random sampling, Latin hypercube
sampling, and Hammersley sampling. Hammersley sampling [31] is a deterministic method that ensures the
training points are spread throughout the input space. The method will not be described in full here, but is based
on the use of Halton sequences with increasing prime bases. Each method was used to generate a single set of
37 training points. The size of the training point set was chosen as being one more than the number of points
required to uniquely define a quadratic response surface passing through all the data points.

A surrogate model of each type was fitted to each set of training points. Models for each of the two output
quantities were fitted independently. Once the surrogate models had been fitted, a random sample of the input
quantities of size 10 000 was generated, the surrogate model was evaluated at those 10 000 points, and the
results were used to evaluate the uncertainties associated with the output quantities.

9.5 Initial results

9.5.1 Sampling methods

A visual summary of the results of the sampling methods is shown in figures 26 and 27. The plots in figure 26
show the variation of the estimates of the mean and standard deviation of λ with sample size, and figure 27
shows the equivalent information for Q. The upper plot shows the mean of the sample means (left hand plot)
or sample deviations (right hand plot) as a line joining different sample sizes and the inter-sample standard
deviation of the quantity as error bars, and the lower plot shows the inter-sample standard deviation of the
sample mean or sample standard deviation separately for clarity.

Figure 26: Variation of sample mean and standard deviation and sample-to-sample variability with sample size
for λ.
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Figure 27: Variation of sample mean and standard deviation and sample-to-sample variability with sample size
for Q.

These results suggest that the sample to sample variability of the estimate of the mean and standard deviation
generated by Latin hypercube sampling is significantly smaller than that generated by random sampling and
stratified sampling for all sample sizes. For the problem studied here, Latin hypercube sampling gives good
repeatability and accuracy for surprisingly small sample sizes. This statement applies to estimates associated
with λ and with Q. Estimates obtained using stratified sampling have a lower sample-to-sample standard
deviation than those obtained using random sampling.

9.5.2 Surrogate models

A comparison of the results of the different training point sets for each method suggested that for the problem
studied here, the choice of training points made no difference to the results. One possible reason for this lack
of sensitivity was highlighted by the input screening analysis. The input screening suggested that λ is strongly
affected by the values of ρ and cp and is less sensitive to the other input quantities, and thatQ is strongly affected
by the values of ∆T and tflash and is almost independent of the other input quantities. Hence the 37 points used
to train the models are effectively spanning a two-dimensional space rather than a seven-dimensional space (the
initial model has seven input quantities), and all training point selection methods can fill the space reasonably
well.

A comparison between the results of the different surrogate models using the Latin hypercube training
points is shown in table 18. The results in this table are expressed as absolute differences between the values
calculated using the surrogate models and the reference values presented in table 15, with a negative value
meaning that the reference result is larger.

The results suggest that all four models give good estimates of the mean, standard deviation and CDF of λ,
and that the estimates of the mean, standard deviation and CDF of Q are generally quite good, although all the
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Nearest Neighbour Scaled Nearest Neighbour Quadratic Response GP emulator

λ Q λ Q λ Q λ Q

(W/m K) (MW/m2) (W/m K) (MW/m2) (W/m K) (MW/m2)) (W/m K) (MW/m2)

Mean 0.0 −2.0 0.1 −0.3 0.2 −2.5 0.0 0.2

Std. dev. 0.06 −4.0 0.02 −5.3 0.08 −2.3 0.07 0.1

Correlation 0.18 −0.06 0.03 0.03

Median 0.0 −0.4 0.1 −0.4 0.2 −0.5 0.1 0.0

2.5% −0.6 3.0 0.2 9.5 0.0 −1.0 −0.5 −0.3

97.5% 0.1 −13.9 0.3 −13.9 0.4 −11.4 −0.2 −0.5

Table 18: Comparison of the results obtained using the different surrogate modelling methods on the Latin
Hypercube sampling training points, expressed as differences between the reference results in table 15 and
values calculated using each method.

methods apart from the GP emulator significantly underestimate the standard deviation of Q.
The good performance of the nearest neighbour methods is surprising. As with the choice of training

points, this result may be affected by the dominance of two of the input quantities for each output quantity and
the resulting space-filling nature of the training points.

Checks on goodness of fit using the “leave one out” method described in section 3 were carried out. The re-
sults will not be reported in full here, but they suggested that nearest neighbour interpolation was very sensitive
to the removal of a training point (as would be expected), that Gaussian process emulation was not sensitive to
the removal of a point, and that the quadratic response surface was sensitive for some training points sets but
not others. It is likely that the removal of isolated points has a strong effect on the surrogate models and that
this has a disproportionate effect for the quadratic response surface because the number of training points in
the full set was only one more than the minimum number required for unique definition of a quadratic response
surface.

9.6 Final results

The results of the initial model on the uniform material suggested that Latin hypercube sampling was the best
choice of sampling method and that Gaussian process modelling was the best choice of surrogate model for this
problem. These two methods were applied to a model with a layered material.

Three sample sizes (10, 50, and 100) were chosen, and ten Latin hypercube samples of each size were
generated. These samples were processed to obtain sample means and standard deviations. Random samples
of sizes 10 and 100 were also generated and evaluated for comparison.

A Gaussian process emulator was constructed using each Latin hypercube sample as the training points.
The correlation function given in equation (74) was used, and the best fit hyperparameters were determined
using nonlinear optimisation as before. The Gaussian process emulator was then evaluated at 10 000 randomly
chosen points to obtain estimates of the uncertainties associated with the output quantities.

A summary of the results associated with λ2, the thermal conductivity of the copper layer, is shown in
tables 19 and 20. Results for other output quantities showed similar trends.
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Method Sample Mean of Standard Minimum Maximum

size sample deviation value value

means of sample of sample of sample

(W m−1 K−1) means mean mean

(W m−1 K−1) (W m−1 K−1) (W m−1 K−1)

LHS 10 277.27 1.49 275.29 278.84

LHS 50 277.26 0.33 276.55 277.63

LHS 100 277.47 0.29 276.80 277.83

GP 10 277.39 1.29 275.39 279.65

GP 50 276.84 0.54 276.02 277.56

GP 100 277.13 1.36 274.55 278.65

RS 10 277.62 3.87 271.80 282.21

RS 100 277.77 1.29 276.06 279.39

Table 19: Statistics associated with the means of the ten samples for each size. Reference mean is 277.7
W m−1 K−1.

Method Sample Mean of Standard Minimum Maximum

size standard deviation of value of value of

deviations standard sample standard sample standard

(W m−1 K−1) deviations deviation deviation

(W m−1 K−1) (W m−1 K−1) (W m−1 K−1)

LHS 10 14.60 2.35 12.33 19.24

LHS 50 13.43 0.51 12.56 14.38

LHS 100 13.21 0.54 12.21 13.85

GP 10 16.33 4.38 11.47 24.64

GP 50 14.37 1.05 12.86 16.75

GP 100 14.51 1.32 13.11 16.87

RS 10 13.42 3.13 11.32 18.48

RS 100 12.78 0.75 11.35 14.08

Table 20: Statistics associated with the standard deviations of the ten samples for each size. Reference standard
deviation is 13.4 W m−1 K−1.
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The first point of interest in these results is that all sample sizes give very good estimates of the mean with
both methods. The maximum deviation of the sample mean from the reference mean is about 2 % even for
a sample size of 10 using random sampling. The sample standard deviations are less good estimates of the
reference standard deviation, as would be expected, but are still reasonably accurate, particularly for the Latin
hypercube samples.

The Latin hypercube sample estimates become more accurate and more repeatable (lower sample-to-sample
standard deviation) as the sample size increases, but the same is not true of the Gaussian process model results
even though the Gaussian process models are based on the Latin hypercube sample points. For the large sample
sizes, the Gaussian process model estimates of mean and standard deviation are less accurate and more variable
than the corresponding Latin hypercube estimates. This phenomenon is shown for a sample size of 100 in
figures 28 for sample means and 29 for sample standard deviations. The dotted line in each graph denotes
the reference value, the solid squares are the Gaussian process estimates plotted against sample number, and
the empty circles are the Latin hypercube estimates for the same samples. In most cases, the Latin hypercube
estimate is closer than the Gaussian process estimate to the reference value.

Figure 28: Sample means for a sample size of 100.

These figures suggest that the Gaussian process model adds no value to the Latin hypercube sample on
which it is based. It is difficult to explain the behaviour of the Gaussian process models. The models have eight
input quantities, which makes useful visualisation of the model surfaces challenging. It was noted above that
sometimes the hyperparameter fitting process can become numerically unstable for large numbers of training
points, and it may be that the hyperparameter values determined are not suitable.
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Figure 29: Sample standard deviations for a sample size of 100.
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Bartel, A., Brunk, M., Schöps, S., and Striebel, M. (eds.), Springer, 2012.

[28] Smolyak, S. A. Quadrature and interpolation formulas for tensor products of certain classes of functions,
Dokl. Akad. Nauk SSSR, 148, 1042–1045, 1963.

[29] Gerstner, T. and Griebel, M. Numerical integration using sparse grids, Numer. Algorithms, 18, 209–232,
1998.
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