
1

Mining the Lexicon Used by Mining the Lexicon Used by 

Programmers during Software Programmers during Software 

EvolutionEvolution

Giuliano Antoniol, Yann-Gaël Guéhéneuc,
Ettore Merlo, Paolo Tonella
From:

École Polytechnique de Montréal, Canada
University of Montreal, Canada
FBK-IRST, Trento, Italy



2

Is this one the class you Is this one the class you 

are looking for?are looking for?
public class T01<T02,T03> extends T04<T02,T03> 

implements T05<T02,T03>, T06, T07 { 

public T03 m01(T02 x01, T03 x02) { 

if (x01 == null) 

return m02(x02); 

int x03 = m03(x01.m04()); 

int x04 = m05(x03, x05.x06); 

for (T08<T02,T03> x07 = x08[x04]; x07 != null; x07 = x07.x09) { 

T09 x10; 

if (x07.x11 == x03 && ((x10 = x07.x12) == x01 || x01.m06(x10))) { 

T03 x13 = x07.x14; 

x07.x14 = x02; 

x07.m07(this); 

return x13; 

} 

} 

x15++; 

m08(x03, x01, x02, x04); 

return null; 

} 

}



3

Is this one the class you Is this one the class you 

are looking for?are looking for?
public class HashMap<K,V> extends AbstractMap<K,V> 

implements Map<K,V>, Cloneable, Serializable { 

public V put(K key, V value) { 

if (key == null) 

return putForNullKey(value); 

int hash = hash(key.hashCode()); 

int i = indexFor(hash, table.length); 

for (Entry<K,V> e = table[i]; e != null; e = e.next) { 

Object k; 

if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 

V oldValue = e.value; 

e.value = value; 

e.recordAccess(this); 

return oldValue; 

} 

} 

modCount++; 

addEntry(hash, key, value, i); 

return null; 

} 

}



4

SelfSelf--documentingdocumenting

identifiersidentifiers

Corollary: When we teach programming, we should never let our students use
names such as foo or bar (pippo, pluto) for any program entity.

Good identifiers:

� provide concise clues on the semantics of labeled entities;
� save programmers from reading the entire code segment;

� speed up knowledge acquisition;
� support program understanding (code queries, grep, etc.).

To some extent, we know how the structure of a program evolve.

HowHow doesdoes the the lexiconlexicon of of identifiersidentifiers evolve?evolve?



5

ResearchResearch questionsquestions

RQ1: How does the stability of the lexicon of identifiers

compare to the stability of the program structure as the 

program evolves?

RQ2: What is the frequency of changes to program 

entities (in particular renaming) due to identifier

refactoring?



6

Data modelData model

(Sub)System or (Sub)Directory

File Function

name

struct

lexicon

Class Attribute

name

struct

lexicon

class HashMap<K, V> {

Entry<K, V> table[];

V put(K key, V value) {…}

}

Function
Name: put

Struct: <10, 1, 2, 31, 0, 0, 24>

Lexicon: <0, 0, 0, 1, 1, 1>

Full lexicon: 

<hash, map, table, put, key, value>

Attribute
Name: table

Struct: <1, …>

Lexicon: <0, 0, 1, 0, 0, 0>



7

StabilityStability metricsmetrics

StructSim(Ei, Ej) = <struct(Ei), struct(Ej)> / |struct(Ei)| |struct(Ej)|

For leaf entities, cosine similarity:

LexicalSim(Ei, Ej) = <lexicon(Ei), lexicon(Ej)> / |lexicon(Ei)| |lexicon(Ej)|

Function
Name: put

Struct: <10, 1, 2, 31, 0, 0, 24>

Lexicon: <0, 0, 0, 1, 1, 1>

Function
Name: put’

Struct: <11, 2, 1, 30, 0, 0, 22>

Lexicon: <0, 0, 0, 1, 1, 1>

StructSim(put, put’) = 0.998

LexicalSim(put, put’) = 1

Similarity between

corresponding entities in the 

history ► entity traceability

required!

For container entities, 

average similarity



8

EntityEntity traceabilitytraceability

By name:

By structure:

f() f()f() g() g()

f() f()f() f() f()

(1) Traceability by name fails

(2) There is no entity g() in previous release

(3) StructSim(f, g) ≥ T (=1)

Renaming detected!



9

MetricsMetrics and and analysisanalysis

RQ1 (struct vs. lexicon evolution):

Null hypothesis: there is no statistically significant difference
between the probability distribution of lexical vs. structural
stability.
Statistical test: non-parametric Wilcoxon paired test.

RQ2 (frequency of renamings): 

RenFreq = DetectedRenamings / Total Entities



10

SubjectSubject systemssystems

System Language Size Versions Identifiers

Eclipse Java 2.9 MLOC 19 124187

Mozilla C++ 4.4 MLOC 24 55244

CERN/Alice C++ 0.825 MLOC 13 9002



11

StabilityStability plot: plot: EclipseEclipse
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

S
ta

b
ili

ty

1
.0

−
2

.0

2
.0

.1

2
.0

.2

2
.1

2
.1

.1

2
.1

.2

3
.0

3
.0

.1

3
.0

.2

3
.1

3
.1

.1

3
.1

.2

3
.2

3
.2

.1

3
.3

M
1

3
.3

M
2

3
.3

M
3

3
.3

M
4

P-value < 0.05 

for every release



12

StabilityStability plot: plot: MozillaMozilla
0
.9

8
0

0
.9

8
5

0
.9

9
0

0
.9

9
5

1
.0

0
0

S
ta

b
ili

ty

1
.0

−
1
.1

1
.2

1
.2

.1

1
.3

1
.4

1
.5

1
.5

a

1
.5

b

1
.6

1
.6

a

1
.6

b

1
.7

1
.7

a

1
.7

b

1
.7

.2

1
.7

.3

1
.7

.5

1
.7

.6

1
.7

.7

1
.7

.8

1
.7

.1
0

1
.7

.1
1

1
.7

.1
2

P-value < 0.05 

for every release



13

StabilityStability plot: Aliceplot: Alice
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

S
ta

b
ili

ty

3
.0

1
−

3
.0

2

3
.0

3

3
.0

4

3
.0

5

3
.0

6

3
.0

7

3
.0

8

3
.0

9

4
.0

1

4
.0

2

4
.0

3

4
.0

4

P-value < 0.05 

for every release



14

RenamingRenaming

Eclipse (Java): AvgRenFreq = 7 / 106760 = 0.000065
Mozilla (C++): AvgRenFreq = 0 / 51981 = 0

Alice (C++): AvgRenFreq = 0 / 6736 = 0



15

SummarySummary

RQ1 (struct vs. lexicon evolution):

� Lexical and structural changes have different
distributions over time; they probably obey different rules.
� Lexicon is always more stable than structure.
� Both structural and lexical stabilities tend to increase
over time and tend to have correlated instabilities.

RQ2 (frequency of renamings): 

� Renamings are rare during the evolution of a software 
system.



16

DiscussionDiscussion

((ourour interpretationsinterpretations))
• A different change process holds for lexicon and structure.

• Programmers are generally reluctant to change the lexicon. 
Some possible reasons:
– Optimistically, there is no need to do it (domain perfectly modeled by

lexicon).

– High cognitive burden associated with this kind of change.

– No dedicated tool available.

• The development environment seems to have an influence
on the evolution of the lexicon. A renaming tool available in  
the IDE may help (Java vs. C++ in our study).
– Other tools that may help: glossaries, cross-referencing tools, 

abbreviation expansion tools, documentation tools (possible using
ontologies).

Corollary: A program written with a bad lexicon (foo, bar, pippo, pluto and 

the like) tends to keep its poor identifiers forever. 

Programmers must adapt to them; the inverse rarely happens.



17

ConclusionsConclusions and and 

future workfuture work

RQ1: The lexicon is more stable than the structure.

RQ2: Identifier restructuring is rare.

Drafting a future work agenda: 

• The lexicon of a program represents a substantial

investment for a company. 

• However, almost no support is available to

preserve and increase such value over time.

• Research on techniques and tools for program 

lexicon analysis and manipulation is strongly
needed.


