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optimizacion numerica

Juan D. Velasquez Henao Ph.D.
Profesor, Escuela de Sistemas, Facultad de Minas, Universidad Nacional de Colombia
Jdvelasq@unal edu.co

Recibido para revision 03 de septiembre de 2010, aceptado 03 de enero de 2011, version final 09 de febrero de 2011

Abstract— Use of chaotic sequences as part of optimization
algorithms is a novel approach to the problem. In this paper, we
present, review, discuss and analyze the main chaos optimization
algorithmsused when the objective function is defined in a compact
domain. We found that the algorithms developed in the literature
are composed by one or several building blocks: the first wave
carrier block, the second wave carrier block and a gradient-based
optimization block. Experimentation, allow us to conclude that first
wave carrier block is unnecessary, and the successful of algorithms
isduetothe combination of second wave carrier block and gradient
based optimization.

Keywords— Chaos optimization algorithms, nonlinear test
functions, minimization, evaluation of algorithms.

Resumen— El uso de secuencias cadticas como parte de
algoritmos de optimizacion es una aproximacién novedosa al
problema. En este articulo, se revisan, presentan, discuten y
analizan los principales algoritmos de optimizacién basados en caos
cuando la funcién objetivo es definida en un dominio compacto.
Se encontrd que los algoritmos desarrollados en la literatura estan
compuestos por uno o mas bloques constructivos: un bloque de
primera onda de transporte, una segunda onda de transporte y un
bloque de optimizacion basado en gradientes. La experimentacion
realizada permite concluir que el primer bloque es innecesario y que
el éxito del algoritmo es debido a la combinacién del bloque de la
segunda ola de transporte y la optimizacion basada en el gradiente.

Palabras Clave— Algoritmos de optimizacién basados en caos,
funciones no lineales de prueba, minimizacién, evaluaciéon de
algoritmos.

I. INTRODUCCION

In many real application cases, nonlinear optimization
problems are stated as minfx) subject to L<x<U, where
x, L, U are vectors of nx1, and f(-) is a nonlinear function,
such that f:R" — R. Usually, f(*) is a complex rough function
with multiple local minima where gradient-based optimization
algorithms are trapped.

Thus, heuristic algorithms based on stochastic optimization
are gaining popularity [1] due to they do not use the information
of the gradient of the objective function, and they have been
successful for solving nonlinear complex problems; well-known
techniques include simulated annealing [2], random search
[3] [4] and genetic algorithms [5]. Recently, new paradigms
have emerged with the promise of overcome the limitations of
classical techniques; new methodologies include, among others,
artificial immune systems [6] [7], the fast clonal algorithm [8]
and harmony search [9].

Chaos optimization algorithms (COA) are a novel heuristic
technique for global optimization developed recently [10] [11]
[12], which are based in the generation of chaotic sequences of
numbers instead of random number generators. However, there
are not mathematical proofs about the benefits of use chaotic
series [ 13]. There are three research trends about this topic: first,
the solution of combinatorial problems, such as the traveling
salesman problem, by means of a transiently neural network
with chaotic annealing [14] [15]. Second, the development of
COA based on the use of numerical sequences generated by
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means of a chaotic map [10] [12] [16] [17] [32]. And third, the
hybridization of classical optimization algorithms, including
gradient-based techniques [17] [18] [19], genetic algorithms
[20] [21], interior point methods [22], simulated annealing
[23], particle swarm optimization [24] [25], taboo search [26]
and evolutionary algorithms [27], among others. Applications
of COA include mainly the training of different types of neural
networks [28] [29], but they would be used for solving other
continuous optimization problems.

This paper focuses on nonlinear optimization problems solved
by means of COA based on the use of chaotic sequences. This
paper deals specifically with methodologies based on the use
of chaotic sequences for seeking the global optimum of f(x)
in the compact domain defined by L <x <U. The aim of this
paper is to help to identify, understand, classify and characterize
the main emerging methodologies and their application to the
state optimization problem. For this, we realize numerical
simulations with the aim of compare the behavior of main
proposed COA. Also, we present a survey of most important
publications in this area. In Section 2, we describe the main
COA presented in the literature and our experimental setup; in
Sections 3 and 4, we present and discuss the obtained results;
in Section 4, the main conclusions are summarized.

II. MATERIALS AND METHODS

A. Chaotic maps

Chaos is understood as the complex, bounded and unstable
behavior caused by a simple deterministic nonlinear system
or chaotic map, such that the generated sequences are quasi-
random, irregular, ergodic, semi-stochastic, very sensible to
the initial value [30].

The use of chaotic sequences instead of quasi-random number
generators seems to be a powerful strategy for improving many
traditional heuristic algorithms, and their main use is in escape
of local minima points [27]. Commonly used one-dimensional
non-invertible chaotic maps are presented in Table 1. In Figure
1, we present a sequence of 200 points generated by the logistic
chaotic map with A =4 and an initial random value.

Table 1. Some common chaotic maps

Name Equation
Logistic y,. = A, (1 —y,) . for0 <A <4
Tent Y+ = 2 min(y”, 1- yu)
Sine Vi = fflsin(ny,l) where 0 < a < 4 0.689067
Cubic Yne1 = jyiz (1 - yr%)
auss Vet = —mod 1
Spence Yot = Iy,

Cusp Yaer =1 =20y, [)%°

ISSN 1657-7663

B. Chaos optimizing algorithms
1. Basic chaos optimizing algorithm (first wave carrier)

This is the most elementary procedure; it consists in
generating candidate points x inside of the feasible region; the
optimum, X, is the candidate point with the lowest value of
£(x,). The process is schematized in Algorithm 1. Candidate
points x_(line 03) are generated in the domain [L,U] by means
of the vector of chaotic sequences y,. For this, each component
ofy,, v, (1), is mapped linearly to the interval [L(2),U(7)]. Inthe
Algorithm 1, we assume that the components of y, are restricted
to the interval [0, 1] such it occurs for the logistic map. At each
iteration, a new vector of chaotic sequences is generated using
the chaotic map H() (line 7); for example, each component is
generated using v, (D=4y, (D[1 - v, (], if H() is the logistic
map. Current local optimum x, is saved in each iteration (line 6).
This algorithm is the so-called first carrier wave and it is similar
to the Monte Carlo optimization technique, which converges
slowly and obtains the global optimum with low probability.

L0 ¢ . 9 <
09 +
08
0,7 +
06 -
y[t] 05
0,4
03
02 7

00 % ‘ra
50

Figure 1. Chaotic sequence generated using the logistic map with A =4.

100 150
t

Algorithm 1. Basic chaos optimization algorithm — First carrier wave.

01 initialize y,
02 for(my =1,..,M){

03 letx, =L+vy,(U—-L)
04 if(m; ==1) letx; = x,
05 letAf = f(x.) — f(x1)
06 if (Af <0) letx; =x,
07 lety, = H(y1)

08 }

09 # end of algorithm




53

An introduction to chaos-based algorithms for numerical optimization — Velasquez

2. Second wave carrier

Due to the convergence problems of the Algorithm 1, it is
considered a rough search procedure, and several enhancements
have been proposed for improving the search procedure. An
approach is to use the Algorithm 1 for obtaining the local
optimum X, and after, to use x, as the initial point of a local
search procedure called second carrier wave [10], which is
described in Algorithm 2. v, is a vector of chaotic sequences,
and r is a scalar parameter related to the radius of search
around of x,. For each iteration, r is decreased by means of a
function P () (line 6). Each candidate point is generate inside
of the hypercube [x,- r, X,+ r], since each component of v,
(with domain [0, 1]) is mapped to the interval [-r, r]. The local
optima is updated each time that a better point is found (line 5),
such that, the procedure continues seeking around of the new
optimum. The search procedure is similar is some fashion to
the simulated annealing technique when ascending movements
are not allowed. In [29] is suggested that 7= 0.1 as initial value
(line 1), and P(r) = Ar, with 0 <A < 1, as an useful scheme for
reducing r (line 6). In addition, it is necessary to define the
minimal value for r, such that, > 0.

Algorithm 2. Second carrier wave.

01 initialize rand vy,
02 for(m, =1,..,M,){

03 letx, =x;, +r(2y, — 1)
04 letAf = f(x.) = f(x;)
05 if(Af <0){letx;, =x,}
06 letr = P(r)

07 lety, = H(Y,)

08 }

09 # end of algorithm

3. First wave carrier with gradient optimization

Other method for improving the first wave carrier (Algorithm
1) is to use a gradient based technique instead of Algorithm
2 [17]; see Algorithm 3. In addition, the complete process is
repeated several times trying to escape of local optimal points
(line 2). Here «() is a gradient-based technique for improving
the current optimal point. Common choices are the weighted
gradient method [31] and the BFGS algorithm [17]. For the
Algorithm 3, Yang et al [17] only allows that the components
of'y, take values in the interval [u, 1-u] when the logistic map
is used. Gradient-based optimization only is used when the
algorithm is able to obtain a point better than the current optimal
point (lines 3, 8 and 14).

4. Gradient based chaos optimization

Tavazoei & Haeri [31] combines the second carrier wave with
the use of gradient-based techniques (See Algorithm 4). For the

first stage, they use Algorithm 1 to select a good initial point for
the local search (lines 1 to 8). For the second stage, an iterative
procedure is used to alternate gradient-based optimization and
second carrier wave. Thus, a new search (line 11) is made when
anew optimum is found (line 178). The proposed algorithm is
described in Algorithm 4.

5. Other approximations

A novel approach consists in search along each coordinate
axis (as in the cyclic coordinate search algorithm), but
generating random points by means of a chaotic map [32]. In
each complete cycle around all components of x,, the current
optimum is refined using the BFGS algorithm. However, this
approach is out the aim of this study, and it is not considered
here.

Algorithm 3. Gradient based chaos optimization.

01 initialize y,
02 for(c=1,..,0{

03 let found = FALSE

04 for(m; =1, .., M) {

05 letx, =L+v;(U-L)
06 if(c ==1) letx; = x,
07 let Af = fx.) — f(x)
08 if(Af <0) {

09 letx;, = x,

10 let found = TRUE
11 }

12 lety, = H(y1)

13 }

14 if (found == TRUE) let x; = k(x;) else break
15 }

16 # end of algorithm

Algorithm 4. Gradient based chaos optimization.

01 initialize y,
02 for(m; =1,..,M){

03 letx, =L+vy,(U-L)
04 ifmy == 1) letx; = x,
05 let Af = f(x,) — f(x)
06 if (Af <0) letx; =x.
07 lety, = H(y,)

08 }

09 let found = TRUE
10 initialize y,
11 while (found == TRUE) {

12 let found = FALSE

13 let x; = rk(x;)

14 initialize r

15 for(m, =1,..,M,) {

16 letx, =x;, +r(2y, — 1)
17 let Af = f(x.) — £ (x))

18 if (Af < 0){
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19 letx; = x; let found = TRUE; break }
20 letr = P(r) C. Test function
21 lety, = H(y;) The algorithms described here are applied to the following test
22 } functions with the aim to understand in a better way its behavior
23 if (found == TRUE) let x; = 1(X;) and to clarify the influence of the different building blocks:
24}
25 # end of algorithm
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Figure 2. Plots of test functions used in this study.

N Griewank’s function:

f(X)=zxi2 X x} - X
f(x) = 1+Z—4000+Dcosﬁ

Sphere function:
i=1

N
Rastrigin’s function:

o0 =) i-af

De Jong’s F4 function: = N
f(x) = 2[10 + x? — 10 cos 2mx;]
i=1
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The first two functions (Sphere and De Jong’s F4) have
a unique global minimum. Griewank’s function has many
irregularities but there is only one unique global minimum.
The Rastrigin’s function has many local optimal points and one
unique global minimum. Table 2 resumes the global optimum,
the function value at global optimum and the search range
used for each test function. Figure 2 presents the plot for each
test function.

III. RESULTS

For this study, N was fixed in 30 (dimensions). For each
function and each algorithm considered, we use 50 random start
points (50 runs); each run was limited to 15000 evaluations of
the test function. In Table 3, the results for each function and
each algorithm are presented.

Table 2. Test functions used in this study

Name Global Function value Search range
Optimum at optimum
Sphere (0,0,...,0) 0.0 [-50,50]
DeJongF4  (0,0,...,0) 0.0 [-20,20]
Griewank  (0,0,...,0) 0.0 [-600,600]
Rastrigin ~ (0,0,...,0) 0.0 [-5.12,5.12]

A. Algorithm |

In first experiment, test functions are minimized using only
the first wave carrier described in Algorithm 1. Thus, candidate
points are generated, using the logistic map, inside the search
range. Results are reported in Table 3. The best run is plotted
in Figure 3.

B. Algorithm 2

In our second experiment, we apply only the Algorithm 2
(second wave carrier) to the test functions. In this case, the
initial value for ris 0.2 and we use a linear strategy to reduce
its value to 0.0001 at last iteration.

C. Algorithms I +2

In the third experiment, we combine Algorithms 1 and 2,
such it is presented in the literature. We use 5000 iterations for
Algorithm 1, with the aim of generates a good starting point
for the Algorithm 2. 10000 iterations were used for the second
wave carrier. Figure 5 presents the best run for each function.

D. Algorithm 3

In our fourth experiment, we use the Algorithm 3. For this
case, we apply 1000 iterations of the first wave carrier (M,=1000
in line 4) and then the BSFG algorithm is used to refine the
current best point. The process is repeated 15 times (C=15 in
lines 2). BSFG technique is applied only when the first wave
carrier is able to improve the current optimal point.

Algorithm 4

In the fifth experiment, we apply Algorithm 4 to the four
test functions used in this study. This algorithm combines
Algorithms 1 and 2, and the BSFG gradient-based technique.
The main difference with the previous experiment is the use of
the second wave carrier as a mechanism to improve the current
optimum point.

IV. DISCUSSION

A. Aigorithm |

It is clear that the Algorithm 1 made a rough search inside of
the feasible search region; however, the generation mechanism
of the next candidate point no exploits the accumulated
knowledge of the function surface, and, thus, it is very difficult
to obtain a better point. Numerical results in Table 3 confirms
our reasoning: the best found function value is very far of
the global optimal point for each function; mean best value,
calculated as the mean of the best value obtain in each run, is far
from the best point, and standard deviation of the sample of best
points is huge. Figure 3 reveals that the method is ineffective, in
the sense that it is necessary many tries to found a better point
that the current. For the sphere function, Algorithm 1 was not
able to improve the initial point for the best run.

Table 3. Comparison among different algorithms. All results
have been averaged over 50 runs. “Best value” indicates the
minimum value of the objective function over 50 runs. “Mean
best value” indicates the mean of the minimum values. “Std.
Dev” is the standard deviation of the minimum values.

Algorithm Best value Mean best value Std. Dev.
Sphere function

1 11775.8433 18772.5616 1580.6817

2 0.1604 0.5462 0.1952

1+2 0.1992 0.6115 0.2263

3 8.82 x 107° 7.33 x 1078 4.14 x 1078

4 1.69 x 107* 9.65 x 102%° 2.33 x 1078
Delongl'4 function

1 4592347.0545  8072397.2825 1342851.3951

2 0.0029 0.0449 0.0420

1+2 0.0050 0.0791 0.0860

3 2.17 < 1077 437 x 107" 1.62 = 1071°

4 205 % 107" 420% 107" 1.53 x 107'°
Gricwank function

1 594.8358 688.0459 41.0269

2 0.8373 0.9778 0.0522

1+2 0.8503 0.9942 0.0440

3 0.0025 0.0850 0.1519

4 0.0025 0.1724 0.2944
Rastrigin function

1 386.1310 428.9419 14.9182

2 67.8730 133.0823 38.6321

142 92.7028 191.3053 48.5231

3 110.4401 232.5600 56.4270

4 145.2634 2493351 38.5667
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Figure 3. Best run for Algorithm 1

B. Algorithm 2

This optimization scheme remember us the simulated
annealing algorithm. Algorithm 2 is a local search method
where the base point for the perturbation is the best point at
moment. This structure allows exploring the neighborhood of
the best current point, such that, local information is used to
generate the next candidate point. This scheme is more effective
than the Algorithm 1; evidences presented in Table 3 support
this conclusion. First, the best optimal point is far, in quality,
from the obtained using only the Algorithm 1. Second, the
dispersion of the best values for Algorithm 2 is very low when
they are compared with Algorithm 1. Figure 4 shows a rapid
convergence and a high rate of successful points improving the
value of each test function.

C. Algorithms | + 2

It is notorious that, the first part (Algorithm 2) is not able to
peak up a good initial point; and there is a vertical line indicating
the starting point of the second wave carrier. Numerical
evidence in Table 3, allow us to conclude that the first wave
carrier it is unnecessary and to worse the performance of the
algorithm. In all test functions, the best value in all 50 runs is
worse that the obtained using only the Algorithm 2.

D. Algorithm 3

For the best run (Figure 6), the strategy proposed in Algorithm
3 is able to locate an optimal value in the first main cycle,
except for the Griewank function where the optimum is cycle
2. Thus, the first wave carrier component is ineffective, such
as it occurred in the first experiment.

For the two first functions, characterized by the presence
of a unique global optimum, the gradient-based technique
is responsible for the location of the global minimum
independently of the behavior of the first carrier wave. For the
Griewank function, the behavior of the Algorith 3 is similar
to the previous functions. For the Rastrigin function, the
BSFG component converge to a near optimal local point, but
Algorithm 1 is very weak to find good initial points. This is
evidenced in the fact that optimal point found by the algorithm
3 is worse than alternatives using Algorithm 2; in this sense,
the BSFG component is used to refine the points generated in
the first wave carrier.
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E. Aigorithm 4

As in the previous experiment, BSFG component is
responsible of the convergence of the algorithm to the global
optimum for the Sphere and DeJongF4 functions (Table 3).
However, Algorithm 3 is superior in terms of the mean best
value and the standard deviation of the best values found.
For the Rastringin function, the use of second wave carrier
(Algorithm 2) is harmful, and the search capacity of the
algorithm is reduced. Figure 7 shows that in any case, the second
wave carrier was able to found a better point that the found in
the first component of the Algorithm 4.

V. CONCLUSIONS

In this paper, we present, discuss and analyze the most
important algorithms for nonlinear optimization based on
chaotic sequences. Our analysis is restricted to the case when
optimization is realized in a compact domain. We identify
three basic building blocks: the first wave carrier block, the
second wave carrier block and a gradient-based optimization
block. Thus, five different algorithms are presented. Also, we
use these algorithms for optimizing four complex nonlinear
test functions and we discuss in detail the behavior of each
algorithm. Our main conclusion is that the first wave carrier
block is unnecessary, and the successful of algorithms is due
to the combination of second wave carrier block and gradient
based optimization.
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