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Two Kinds of Information Processing in Cognition

Mark Sprevak1

# The Author(s) 2019

Abstract
What is the relationship between information and representation? Dating back at least
to Dretske (1981), an influential answer has been that information is a rung on a ladder
that gets one to representation. Representation is information, or representation is
information plus some other ingredient. In this paper, I argue that this approach
oversimplifies the relationship between information and representation. If one takes
current probabilistic models of cognition seriously, information is connected to repre-
sentation in a new way. It enters as a property of the represented content as well as a
property of the vehicles that carry that content. This offers a new, conceptually and
logically distinct way in which information and representation are intertwined in
cognition.

1 Introduction

There is a new way in which cognition could be information processing. Philosophers
have traditionally tended to understand cognition’s relationship to Shannon information
in just one way. This suited an approach that treated cognition as an inference over
representations of single outcomes (there is a face here, there is a line there, there is a
house here). Recent work conceives of cognition differently. Cognition does not
involve an inference over representations of single outcomes but an inference over
probabilistic representations – representations whose content includes multiple out-
comes along with their estimated probabilities.

My claim in this paper is that recent probabilistic models of cognition open up new
conceptual and empirical territory for saying that cognition is information processing.
Empirical work is already exploring this territory and researchers are drawing tentative
connections between the two kinds of Shannon information in the brain. In this paper,
my goal is not to propose a specific relationship between these two quantities of
information, although some possible connections are sketched in Section 6. My goal
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is to convince you that there are two conceptually and logically distinct kinds of
Shannon information whose relationship should be studied.

Before we proceed, some assumptions. My focus in this paper is only on Shannon
information and its mathematical cognates. I do not consider other ways in which the
brain could be said to process information.1 Second, I assume a representationalist
theory of cognition. I take this to mean that cognitive scientists find it useful to describe
at least some aspects of cognition as involving representations. I focus on the role of
Shannon information within two different kinds of representationalist model: ‘categor-
ical’ models and ‘probabilistic’ models. My claim is that if one accepts a probabilistic
model of cognition, then there are two ways in which cognition involves Shannon
information. I do not attempt to defend representationalist theories of cognition in
general.2

Here is a preview of my argument. Under probabilistic models of cognition there are
two kinds of probability distribution associated with cognition. First, there is the
‘traditional’ kind: probability distributions associated with a specific neural state
occurring in conjunction with an environmental state (for example, the probability of
a specific neural state occurring when a subject is presented with a line at 45 degrees in
a certain portion of her visual field). Second, there is the new kind, characteristic of
probabilistic neural representation: probability distributions that are represented by
neural states. These probability distributions are the brain’s guesses about the possible
environmental outcomes (say, that the line is at 0, 35, 45, or 90 degrees).3 The two
kinds of probability distribution – one associated with a neural/environmental state
occurring and the other associated with the neural system’s estimate of a certain
environmental state occurring – are conceptually and logically distinct. They have
different outcomes, different probability values, and different types of probability
(objective and subjective) associated with them. They generate two separate measures
of Shannon information in the brain. The algorithms that underlie cognition can be
described as processing either or both of these Shannon quantities.

2 Shannon Information

Before attributing two kinds of Shannon information to the brain, we first need to know
what justifies attributing any kind of Shannon information. Below, I briefly review the
definitions of Shannon information in order to identify sufficient conditions for a
physical system to be ascribed Shannon information. The rest of the paper shows that
these conditions are satisfied in two separate ways. Definitions in this section are taken
from MacKay (2003), although similar points can be made with other formalisms.

1 See Floridi (2011).
2 Note that I define representationalist theories in terms of their utility for describing cognitive processes, not in
terms of their truth. Some deny truth but accept utility: they endorse some form of instrumentalism about
representationalist models in cognitive science (for example, Egan 2010; Colombo and Seriès 2012; Sprevak
2013). On my view, this still falls within the representationalist paradigm. To the extent that it is legitimate,
even if only on pragmatic grounds, to use a representationalist model of cognition, it is legitimate to say that
cognition involves two kinds of information processing.
3 This distinction is not that between ‘encoding’ and ‘decoding’ probability distributions (Eliasmith 2005a).
Encoding and decoding distributions are discussed in Section 3.
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In order to define Shannon information, one first needs to define the notion of a
probabilistic ensemble:

Probabilistic ensemble X is a triple (x, AX, PX), where the outcome x is the value of
a random variable, which takes on one of a set of possible values, AX = {a1, a2,
… , ai, … , aI}, having probabilities PX = {p1, p2, … , pI}, with P(x = ai) = pi, pi ≥
0, and ∑

ai∈AX

P x ¼ aið Þ ¼ 1

A sufficient condition for the existence of a probabilistic ensemble is the existence of a
random variable with multiple possible outcomes and an associated probability distri-
bution.4 If the random variable has a finite number of outcomes, this probability
distribution takes the form of a mass function, assigning a value, pi, to each possible
outcome. If the random variable has an infinite number of outcomes, the probability
distribution takes the form of a density function, assigning a value, pi, to the outcome
falling within a certain range. In either case, multiple possible outcomes and a
probability distribution over those outcomes is sufficient to define a probabilistic
ensemble.5

If a physical system has multiple possible outcomes and a probability distribution
associated with those outcomes, then that physical system can be treated as a proba-
bilistic ensemble. If a neuron has multiple possible outcomes (e.g. firing or not), and a
probability distribution over those outcomes (reflecting the chances of it firing), then
the neuron can be treated as a probabilistic ensemble.

Shannon information is a scalar quantity measured in bits. It is predicated of at least
three different types of entity: ensembles, outcomes, and ordered pairs of ensembles.
The definitions differ, so let us consider each in turn.

The Shannon information, H(X), of an ensemble is defined as:

H Xð Þ ¼ ∑
i
pilog2

1

pi

The only independent variables in the definition of H(X) are the possible outcomes of
the ensemble (the is) and their probabilities (the pis). The Shannon information of an
ensemble is a mathematical function of, and only of, these features. Therefore, merely
being an ensemble in the sense defined above – having multiple possible outcomes and
a probability distribution over those outcomes – is enough to define a H(X) measure
and bestow a quantity of Shannon information. Any physical system that is treated as a
probabilistic ensemble ipso facto has an associated measure of Shannon information. If
a neuron is treated as an ensemble (because it has multiple possible outcomes and a
probability distribution over those outcomes), then it automatically has a quantity of
Shannon information attached.

4 The term ‘outcome’ here is not meant to imply that this is the output of a causal process.
5 In principle, an ensemble might have only one outcome (necessarily, with probability 1). As we will see, this
corresponds to an ensemble and its single outcome having 0 bits of Shannon information.
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The Shannon information, h(x), of an outcome is defined as:

h x ¼ aið Þ ¼ log2
1

pi

H(X) is the expected value of h(x) taken across all possible outcomes of ensemble X.
The only independent variable in h(x) is the probability of the outcome, pi. This means
that, again, the existence of an ensemble is a sufficient condition for satisfying the
definition of h(x). If an ensemble exists, each of its outcomes has a probability and ipso
facto has a measure of Shannon information. No further conditions need to be met. If a
neuron is treated as an ensemble, each of its outcomes (e.g. firing or not firing) has an
associated probability, and hence each has a quantity of Shannon information attached.

There are many Shannon measures of information defined for ordered pairs of
ensembles.6 Common ones include:

Joint information:

H X ; Yð Þ ¼ ∑
xy∈AX AY

P x; yð Þlog2
1

P x; yð Þ

Conditional information:

H X jYð Þ ¼ ∑
y∈AY

P yð Þ ∑
x∈AX

P xjyð Þlog2
1

P xjyð Þ

Mutual information:

I X ; Yð Þ ¼ H Xð Þ−H X jYð Þ

Thesemeasures differ from each other in important ways, but again, a sufficient condition
for satisfying any one of them is that a physical system hasmultiple possible outcomes and a
probability distribution over their respective outcomes. Two ensembles, X and Y, have
individual outcomes and probability distributions over those outcomes. The Shannon
measures above assume that there is also a joint probability distribution, P(X,Y), which
describes the probability of any given pair of outcomes from the two ensembles occurring.7

If ensembles X and Yexist, and if pairs of their respective outcomes have probabilities (even
if some are 0), then the Shannonmeasures of joint information, conditional information, and
mutual information are defined. Consequently, if two neurons are treated as two ensembles,
and if there is a joint probability distribution over pairs of their respective outcomes, then
those neurons have associated measures of joint information, conditional information, and
mutual information.

A sufficient condition for a physical system to be ascribed Shannon information is
that it has multiple possible outcomes and a probability distribution over those
outcomes (or pairs of outcomes). The Shannon information of an ensemble, a single

6 One member of the pair is usually called the ‘sender’ and the other the ‘receiver’.
7 P(X, Y) defines conditional probability measures, such as P(X ∣ Y).
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outcome, or a pair of ensembles is a function of, and only of, the possible outcomes and
probability distribution associated with that ensemble, single outcome, or pair. If a
physical system is treated as an ensemble (or a pair whose joint outcomes have
probabilities), it ipso facto has Shannon information.

If a physical system changes the probabilities associated with its possible outcomes
over time, its associated Shannon measures are likely to change too. Such a system may
be described as ‘processing’ Shannon information. This change could happen in at least
two ways. If a physical system modifies the probabilities associated with its physical
states occurring (e.g. a neuron makes certain physical states such as firing more or less
likely), it can be described as processing Shannon information.8 Alternatively, if the
firing of the neuron represents a probability distribution over possible outcomes, and
that represented probability distribution changes over time – perhaps as a result of
learning or inference – then that neuron’s associated Shannon measures will change
too. In both cases, probability distributions and Shannon information change. But
distinct probability distributions and distinct measures of Shannon information change
in each case. The remainder of this paper will unpack the distinction between the two.

3 The Traditional Kind of Shannon Information

Traditionally, Shannon information has been used as a building block when
naturalising representation. Many versions of information-theoretic semantics try to
explain semantic content in terms of Shannon information. These accounts aim to
explain how representation arises from Shannon information. Such theories often claim
that Shannon information is a source of naturalistic, objective facts about representa-
tional content. Dretske formulated one of the earliest such theories.9 Dretske’s (1981)
theory aimed to entirely reduce facts about representational content to facts about
Shannon information. More recently, other accounts – including Dretske’s later
(1988, 1995) views – have proposed that an information-theoretic condition is only
one part of a larger naturalistic condition on representational content. Additional
conditions include variously conditions on teleology, instrumental (reward-guided)
learning, structural isomorphism, and/or appropriate use.10 In what follows, I will focus
solely on the information-theoretic part of such a semantic theory.

Information-theoretic semantics attempts to explain representation in terms of one
physical state ‘carrying information’ about another physical state. The relationship of

8 One way in which this could occur is during learning and other kinds of long-term plasticity. However,
similar changes also occur during short-term processes. When a neuron fires, it makes a specific outcome –
firing – certain. That will affect the probabilities associated with other neurons in the brain (making their
respective outcomes of firing more or less probable), and hence change their associated Shannon measures.
Neuroscientists can track how these Shannon measures change as a specific outcome propagates in the brain
during cognition. Thanks to Nick Shea for this point.
9 Prior to Dretske’s work, Shannon information had been linked to semantic content, although not always in
reductive fashion (Bar-Hillel and Carnap 1964; Wiener 1961).
10 See Millikan (1984); Papineau (1987); Dretske (1988); Shea (2007, 2014a); Skyrms (2010); Ramsey (2016)
for a range of such proposals. Note that some of these authors argue that mental representations sometimes
gain their content solely on the basis of non-Shannon factors. Thanks to an anonymous referee for pointing
this out.
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‘carrying information’ is assumed to be a precursor to, or a precondition for, certain
varieties of representation. In the context of the brain, such a theory says:

(R) Neural state, n (from N), represents an environmental state, s (from S), only if
n ‘carries information’ about s.

Implicit in R is the idea that neural state, n, and environmental state, s, come from a set
of possible alternatives. According to R, neural state n represents s only if n bears the
‘carrying information’ relation to s and not to other outcomes. Different neural states
could occur in the brain (e.g. different neurons in a population might fire). Different
environmental states could occur (e.g. a face or a house could be present). Crudely, the
reason why certain neural firings represent a face and not a house is that those firings,
and only those firings, bear the ‘carrying information’ relationship to face outcomes;
they do not bear this relationship to house outcomes. R implicitly assumes that we are
dealing with multiple possible outcomes: multiple possible representational vehicles
(N) and multiple possible environmental states (S). It names a special relationship
between individual outcomes that is necessary for representation. Representation
occurs only when n from N bears the ‘carrying information’ relation to s from S.

The primary task for an information-theoretic semantics is to explain what this
‘carrying information’ relation is. Different versions of information-theoretic semantics
do this differently.11 Theories can be divided into roughly two camps: those that are
‘correlational’ and those that invoke ‘mutual information’.

The starting point of ‘correlational’ theories is that one physical state carries
information about another just in case there is a statistical correlation between the
two that satisfies some probabilistic condition. This still leaves plenty of questions
unanswered: What kind of correlation (Pearson, Spearman, Kendall, mutual informa-
tion, or something else)?12 How should physical states be typed so that a correlation
can be measured? How much correlation is enough for information carrying? Does it
matter if the correlation is accidental or underwritten by a law or disposition?

Rival information-theoretic semantics take different views. Consider the following
three proposals:

1. P S ¼ sjN ¼ nð Þ ¼ 1

2. P S ¼ sjN ¼ nð Þ is ‘high’

3. P S ¼ sjN ¼ nð Þ > P S ¼ sjN≠nð Þ

11 The relation of ‘carrying information’ is also sometimes described as one physical state ‘having natural
information’ about another (see Stegmann 2015).
12 Millikan (2001) suggests that one should look at the probabilistic relations that are ‘learnable’ for an agent:
A is correlated with B, and hence carries information, if B is learnable (or inferable) from A. However, any
degree of probabilistic dependence between A and B (no matter how slight) could, in principle, allow an agent
to learn, or infer, one from the other. With suitable rewards, even the mildest degree of probabilistic
dependence could be a target of learning as an agent could be arbitrarily incentivised to do so. The notion
of a ‘learnable’ relation – if it is not merely a synonym for not probabilistically independent – is as much in
need of explication as the notion of ‘correlation’.
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Dretske (1981) endorses (1): a neural state carries information about an envi-
ronmental state just in case an agent, given the neural state, could infer with
certainty that the environmental state occurs (and this could not have been
inferred using the agent’s background knowledge alone). Millikan (2000, 2004)
endorses (2): the conditional probability of the environmental state, given the
neural state, need only be ‘high’, where what counts as ‘high’ is a complex
matter involving the correlation having influenced past agential use via genetic
selection or learning.13 Shea (2007) and Scarantino and Piccinini (2010) pro-
pose that the correlation should be understood in terms of probability raising,
(3): the neural state should make the occurrence of the environmental state
more probable than it would have been otherwise.

At first glance, there may seem nothing particularly Shannon-like about
proposals (1)–(3). Probability theory alone is sufficient to express the
relevant condition on representation. These theories are perhaps better described
as ‘probabilistic’ semantics than ‘information-theoretic’ semantics.14 Neverthe-
less, there is a legitimate way in which these accounts do entail that cognition
is Shannon information processing. According to (1)–(3), ‘carrying information’
is a relationship between particular outcomes and those outcomes must come
from ensembles that have probability distributions. Remember that a sufficient
condition for a system to have Shannon information is that it has multiple
possible outcomes and a probability distribution over those outcomes. (1)–(3)
assure us that this is true of a cognitive system that contains representations.
According to (1)–(3), the representational content of a neural state arises when
that state is an outcome from an ensemble with other possible outcomes (other
possible neural states) that could occur with certain probabilities (and probabil-
ities conditional on various possible environmental outcomes). If cognition
involves representation, and those representations gain their content by any of
(1)–(3), then cognition ipso facto involves Shannon information. Shannon
information attaches to representations because of the probabilistic nature of
their vehicles. According to (1)–(3), that probabilistic nature is essential to their
representational status. Therefore, to the extent that cognition can be described
as processing representations, and to the extent that we accept one of these
versions of information-theoretic semantics, cognition can be described as
processing states with a probabilistic nature, and so, processing states with
Shannon information.

‘Mutual information’ versions of information-theoretic semantics unpack ‘car-
rying information’ differently. They invoke the Shannon concept of mutual infor-
mation – or, rather, pointwise mutual information, the analogue of mutual infor-
mation for pairs of single outcomes. The familiar notion of mutual information
I(X; Y) is the expected value of pointwise mutual information PMI(x, y) across all

13 See Stegmann (2015), pp. 873–874 for helpful analysis of Millikan’s view.
14 Timpson (2013), pp. 41–42 makes a similar point with regard to Dretske’s (1981) theory, and related
criticisms are raised by commentators for Dretske (1983).
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outcomes from a pair of ensembles.15 Pointwise mutual information for a pair of
single outcomes, x, y, is defined as:

PMI x; yð Þ ¼ log2
P x; yð Þ
P xð ÞP yð Þ ¼ log2

P xjyð Þ
P xð Þ ¼ log2

P yjxð Þ
P yð Þ

Skyrms (2010) and Isaac (2019) propose that the information carried by a physical
state, n, (its ‘informational content’), is a vector consisting of the PMI(n, s) value for
every possible environmental state, si, from S, given that n from N: ⟨PMI(n, s1), … ,
PMI(n, sn)⟩. Isaac identifies the meaning or representational content of n with this
PMI-vector. Skyrms says that the meaning or content is likely to be a more traditional
semantic object, such as a set of possible worlds – this set is derived from the PMI-
vector by considering the environmental states that generate high-value elements in the
vector; the representational content is the set of possible worlds in which high PMI-
value environmental states occur.

Like Skyrms and Isaac, Usher (2001) and Eliasmith (2005b) appeal to pointwise
mutual information to define ‘carrying information’. Unlike Skyrms and Isaac, they
define it as a relation that holds between a single neural state, n, and a single
environmental state, s. They say that n carries information about s just in case s is
the environmental state for which PMI(n, s) has its maximum value given neural state
n. Neural state n carries information about the s that produces the peak-value element in
its PMI-vector. Usher and Eliasmith connect this to what is measured in ‘encoding’
experiments in neuroscience. In an encoding experiment, many environmental states
are presented to a brain and researchers look for the environmental state that best
predicts a specific neural response – that yields the highest PMI(n, s) as one varies s for
some fixed n. Usher and Eliasmith offer a second, conceptually independent definition
of ‘carrying information’. This is based around what is measured in ‘decoding’
experiments. In a decoding experiment, researchers examine many neural states and
classify them based on which one best predicts an environmental state – i.e. which
neural state n yields the highest PMI(n, s) for a fixed s. Here, instead of looking for the
maximum PMI(n, s) value as one varies s and keeps n constant, one looks for the
maximum PMI(n, s) value as one varies n and keeps s constant. There is no reason why
the results of encoding and decoding experiments should coincide: they pick out two
different kinds of information-theoretic relationship between the brain and its environ-
ment. Usher and Eliasmith argue that they provide different, complementary, and
equally valid accounts of representational content.

On each of these semantic theories, Shannon information is ascribed to a cognitive
system because of the probabilistic properties of neural states qua vehicles. It is because
a given neural state is an outcome from a set of possible alternative states, combined
with the probability of various environmental outcomes, that the cognitive system has
the Shannon information properties relevant to representation and hence to cognition.
In the next section, I describe a different way in which Shannon information enters
into cognition. Here, the relevant information-theoretic quantity arises not from the
probabilistic nature of the physical vehicles and environmental states, but from its
representational content. ‘Probabilistic’ models of cognition claim that the

15 I X ;Yð Þ ¼ ∑
x;y∈AX ;AY

P x; yð ÞPMI x; yð Þ
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representational content of neural states is probabilistic. This means that Shannon
information attaches to a cognitive system in a new way: via its content rather than
via the probabilistic occurence of its neural vehicles.

4 The New Kind of Shannon Information

Probabilistic models of cognition, like the accounts discussed in the previous section,
ascribe representations to the brain. Unlike the previous accounts, these models do not
aim to naturalise representational content. They help themselves to the existence of
representations. Their claim is that these representations have a particular kind of
content. They are largely silent about how these representations get this content. In
principle, probabilistic models of cognition are compatible with a variety of underlying
semantic theories, including versions of information-theoretic semantics.16

The central claim of a probabilistic model of cognition is that neural represen-
tations have probabilistic representational content. Traditional, ‘categorical’ ap-
proaches assume that neural representations have single outcomes as their repre-
sentational content. Under a categorical approach, a neural state, n, represents a
single environmental outcome (or a single set of outcomes). Thinking about neural
representation in these terms has prompted description of neural states early in V1
as edge detectors: their activity represents the presence (or absence) of an edge at
a particular angle in a portion of the visual field. The represented content is a
particular outcome (edge at ~45 degrees). Similarly, neurons in the inferior
temporal (IT) cortex are described as hand detectors: their activity represents the
presence (or absence) of a hand. The represented content is a single outcome
(hand present). Similarly, neurons in the fusiform face area (FFA) are described as
face detectors: their activity represents the presence (or absence) of a face. The
represented content is a single outcome (face present) (for example, see Gross
2007; Kanwisher et al. 1997; Logothetis and Sheinberg 1996).

There is increasing suspicion that representation in the brain is not like this. Content
is rarely categorical (hand present); rather, what is represented is a probability distri-
bution over many possible states. The brain represents many outcomes simultaneously
in order to ‘hedge its bets’ during processing. This allows the brain to store, and make
use of, information about multiple possible outcomes if it is uncertain which is the true
one. Uncertainty may come from unreliability in the perceptual hardware, or from the
brain’s epistemic situation that even with perfectly functioning hardware it only has
incomplete access to its environment.

Ascribing probabilistic representations to a cognitive agent is not a new idea (de
Finetti 1990; Ramsey 1990). However, there is an important difference between past
approaches and new probabilistic models of cognition. In the past, probabilistic
representations were treated as personal-level states of a cognitive agent – ‘credences’,
‘degrees of belief’, or ‘personal probabilities’. In the new models, probabilistic repre-
sentations are treated as states of subpersonal parts of the agent – of neural populations,
or single neurons. Their novel claim is that, regardless of whichever personal-level

16 I discuss how information-theoretic semantics might interact with probabilistic models of cognition in
Section 6.
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states that are attributed to an agent, various parts of that agent token diverse (and
perhaps even conflicting) probabilistic representations. Thinking in these terms has
prompted redescription of neural states early in V1 as probabilistically nuanced ‘hy-
potheses’, ‘guesses’, or ‘expectations’ about edges. Their neural activity does not
represent a single state (edge at ~45 degrees) but a probability distribution over
multiple edge orientations (Alink et al. 2010). The represented content is a probability
distribution over how the environment stands with respect to edges. Similarly, neural
activity in the IT cortex does not represent a single state of affairs (hand present) but a
probability distribution over multiple possible outcomes regarding hands. The repre-
sented content is a probability distribution over how the environment stands with
respect to hands. Similarly, neural activity in FFA does not represent a single state of
affairs (face present) but a probability distribution over multiple possible outcomes
regarding faces. The represented content is a probability distribution over how the
environment stands with respect to faces (Egner et al. 2010).

Traditional models of cognition tend to describe cognitive processing as a compu-
tationally structured inference over specific outcomes – if there is an edge here, then
that is an object boundary. Probabilistic models of cognition in contrast describe
cognitive processing as a computationally structured inference over probability distri-
butions – if the probability distribution of edge orientations is this, then the probability
distribution of object boundaries is that. Cognitive processing is a series of steps that
use one probability distribution to condition, or update, another probability distribu-
tion.17 Neural representations may conceivably maintain a probabilistic character right
until the moment that the brain is forced to plump for a specific outcome in action. At
that point, the brain may select the most probable outcome from its current represented
probability distribution conditioned on all its available evidence (or some other point
estimate that is easier to compute).

Modelling cognition as probabilistic inference does not mean modelling cognition as
non-deterministic or chancy. The physical hardware and algorithms underlying the
probabilistic inference may be entirely deterministic. Consider that when your elec-
tronic PC filters spam messages from incoming emails it performs a probabilistic
inference, but both the PC’s physical hardware and the algorithm that the PC follows
are entirely deterministic. A probabilistic inference takes representations of probability
distributions as input, yields representations of probability distributions as output, and
transforms input to output based on rules of valid (or pragmatically efficacious)
probabilistic inference. The physical mechanism and the algorithm for processing
representations may be entirely deterministic. What makes the process probabilistic is
not the chancy nature of vehicles or rules but that probabilities feature in the repre-
sented content that is being manipulated.

Perhaps the best-known example of a probabilistic model of cognition is the
‘Bayesian brain’ hypothesis. This says that brains process probabilistic representations
according to rules of Bayesian or approximately Bayesian inference (Knill and Pouget
2004). Predictive coding provides one proposal about how such inference could be
implemented in the brain (Clark 2013; Friston 2009). It is worth stressing that the
motivation for ascribing probabilistic representations to the brain, and for

17 Conditional probabilities tell the cognitive system how to update its estimate of one variable based on its
knowledge about other variables.
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probabilistic models of cognition in general, is broader than that for the Bayesian brain
hypothesis (or for predictive coding). The brain’s inferential rules could, in principle,
depart very far from Bayesianism and still produce adaptive behaviour under many
circumstances. It remains an open question to what extent humans are Bayesian (or
approximately Bayesian) reasoners. Probabilistic techniques developed in AI, such as
deep learning, reinforcement learning, and generative adversarial models can produce
impressive behavioural results despite having complex and qualified relationships to
Bayesian inference. The idea that cognition is a form of probabilistic inference is a
more general idea than that cognition is Bayesian. A researcher in cognitive science
may subscribe to probabilistic representation in the brain even if they take a dim view
of the Bayesian brain hypothesis.18

The essential difference between a categorical representation and a probabilistic one
lies in its content. Categorical representations aim to represent a single state of affairs.
In Section 3, we saw that schema R treats representation as a relationship between a
neural state, n, and an environmental outcome, s. Representational content is
typically specified by a truth, accuracy, or satisfaction condition. Meeting this condition
is assumed to be largely an all-or-nothing matter. A categorical representation effec-
tively ‘bets all its money’ that a certain outcome occurs. An edge detector represents
there is an edge. Multiple states of affairs may sometimes feature in the representational
content (for example, there is an edge between ~43–47 degrees), but those states of
affairs are grouped together into a single outcome that is represented as true. There is no
probabilistic nuance, or apportioning of different degrees of belief, to different
outcomes.

In contrast, probabilistic representations aim to represent a probability distribution
over multiple outcomes. The probability distribution is a measure of how much the
system ‘expects’ that the relevant outcomes are true. Unlike categorical representations,
the represented content does not partition the possible environmental states into only
two classes (true and false). Representation is not an all-or-nothing matter but involves
assigning a probability weight to various possible outcomes. As we will see in the next
section, these outcomes need not coincide with the possible outcomes of S. Whereas
categorical representational content is typically specified by a truth, accuracy, or
satisfaction condition, probabilistic representational content is typically specified by a
probability mass or density function over a set of possible outcomes.

In principle, probabilistic representations could use any physical vehicle, and any
formal format. There is nothing about the physical make-up of a representational
vehicle that determines whether it is categorical or probabilistic. Either type of repre-
sentation could also, in principle, use any number of different formal formats to
organise its structure and guide the algorithms that operate on it. Possible formats for
a representation include being a setting of weights in a neural network, a symbolic
expression, a directed graph, a ring, a tree, a region in continuous space, or an entry in a
relational database (Griffiths et al. 2010; Tenenbaum et al. 2011). The choice of
physical vehicle and representational format affects how easy it is to implement an
inference with computation in a specific physical context (Marr 1982). Certain physical
vehicles and certain formal formats are more apt to serve certain computations than
others. But in principle, there is nothing about the physical make-up or formal structure

18 See Ma (2012).
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of a representation that determines whether the representation is categorical or proba-
bilistic. That is determined solely by its represented content.

The preceding discussion should not be taken as suggesting that a model of
cognition must employ only one type of representation (categorical or probabilistic).
There is no reason why both types of representation cannot appear in a model of
cognition, assuming there are appropriate rules to take the cognitive system between
the two. Neither does the discussion suggest that one type of representation cannot be
reduced to the other. A variety of such reductions may be possible. For example, a
cognitive system might use structured complexes of traditional representations to
express the probability calculus and thereby express probabilistically nuanced content
with categorical representations (maybe this is what we do with the public language of
mathematical probability theory). Alternatively, a cognitive system might use struc-
tured complexes of probabilistic representations to represent all-or-nothing-like truth
conditions. Feldman (2012) describes a proposal in which categorical representations
are approximated by probabilistic ones with strongly modal (sharply peaked) proba-
bility distributions.19 Categorical and probabilistic representations may mix in cogni-
tion, and perhaps, given the right conditions, one may give rise to the other.20

5 Two Kinds of Information Processing

In Section 1, we assumed that cognition is profitably described by saying it involves
representations. In Section 2, we saw that having multiple outcomes and a probability
distribution over those outcomes is sufficient to have an associated measure of Shannon
information. We have now seen, in Sections 3 and 4, two ways in which the represen-
tations involved in cognition can have multiple outcomes and probability distributions
associated with them. Consequently, Shannon information may attach to cognition in
two separate ways. What characterises the Shannon information of Section 3 is that it is
associated with probability of the vehicle occurring (conditional on various environ-
mental outcomes). What characterises the Shannon information of Section 4 is that it is
associated with the probabilities that appear inside the represented content.

The degree to which these two quantities of Shannon information differ depends on
the degree to which the two underlying sets of outcomes and probability distributions
differ. In this section, I argue that they typically involve different sets of outcomes,
different numerical probability values, and they must involve different kinds of
probability.

Different Sets of Outcomes In Section 3, the relevant set is the set of possible neural
and environmental states. The outcomes are the objective possibilities – neural and
environmental – that could occur. What interests Dretske, Millikan, Shea, Skyrms, and
others is to know whether a particular neural state from a set of alternatives (N) occurs

19 Feldman calls these ‘symbolic representations’, but his claim is about their content, not about the
representational format of their vehicles.
20 Also see Rahnev (2017) for models of cognition that are ‘intermediate’ between categorical and probabi-
listic representation.
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conditional on a particular environmental state from a set of alternatives (S).21 In
contrast, in Section 4, the relevant outcomes are the represented possible states of the
environment. These are the ways that the brain represents the environment could be.
This set of represented environmental possibilities need not be the same as what is
objectively possible. A cognitive system might make a mistake about what is possible
just as it might make a mistake about what is actual: it might represent an environ-
mental outcome that is impossible (e.g. winning a lottery that the agent never entered)
or it might fail to represent an environmental state that is possible (e.g. that it is a brain
in a vat). Unless the cognitive system represents all and only the objectively possible
outcomes, there is no reason to think that its set of represented outcomes will be the
same as the set of possible outcomes in Section 3. Hence, the set of outcomes
represented by a neural state need not be the same as the set of outcomes S. Moreover,
for the two sets of outcomes over which probabilities are ascribed to be the same, the
brain would need to represent not only the possible environmental states (S) but also its
possible neural states (N). Only in the special case of a cognitive system that (a)
represents all and only the objectively possible environmental states and (b) represents
all and only its own possible neural states would the respective sets of outcomes which
are assigned probabilities coincide.

Different Probability Values Suppose that a cognitive system, perhaps due to some
design quirk, does represent all and only the objectively possible environmental and
neural states. In such a case, the numerical probability values associated with
the outcomes are still likely to differ. In the context of the projects of Section 3, these
probability values measure the objective chances, frequencies, propensities, or some
similar measure of a neural state occurring conditional on a possible environmental
state. What interests Millikan, Shea, and others are these objective probabilistic rela-
tions between neural states and environmental states. In contrast, for the projects of
Section 4, the probability values are the cognitive system’s estimation of how likely
each outcome is, not its objective probability. Brains are described as having ‘priors’ –
probabilistic representations of various outcomes – and a ‘likelihood function’ or
‘probabilistic generative model’ – a probabilistic representation of the relationships
between the outcomes. Psychologists are interested in how the brain uses its priors and
generative model to make inferences about unknown events, or in how it updates its
priors in light of new evidence. All the aforementioned probabilities are the brain’s
guesses about the possible outcomes and the relationships between them. Only a God-
like cognitive agent, one who knew the truth about the objective probabilities of events
and their relations, would assign the right probability values to the various outcomes
and relations. Such a system would have a veridical (and a complete) probabilistic
representation of its environment, its own neural states, and the relationships between
them. This may be a goal to which a cognitive system aspires, but it is surely a position
that few achieve.

Different Kinds of Probability Assume for the sake of argument that we are dealing
with a God-like cognitive agent who has a complete and veridical probabilistic

21 Or whether an environmental state occurs conditional on some neural state occurring. Each can be
exchanged for the other via Bayes’ theorem.
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representation of its environment and its neural states. Even for that agent, there are still
two distinct types of Shannon information. This is because its respective probability
values, even if they agree numerically, measure different kinds of probability. The P(·)s
measure something different in each case. In the context of the projects of Section 3, the
P(·) values measure objective probabilities. These may be chances, frequencies, pro-
pensities, or whatever else corresponds to the objective probability of the relevant
outcome occurring.22 In the context of the projects of Section 4, the P(·) values measure
subjective probabilities. These are the system’s estimation of how likely it thinks the
relevant outcomes are. Chances, frequencies, propensities, or similar are not the same
as a system’s representation of how likely an event is to occur. Even for a God-like
cognitive agent – for whom the two are stipulated as equal in terms of numerical value
– what is measured is distinct. Subjective probabilities, even if they agree in terms of
numerical value with objective probabilities, do not become objective probabilities
merely because they happen to accurately reflect them. No more than a description of a
Komodo dragon becomes a living, breathing Komodo dragon if that description
happens to be accurate. One is a representation, the other is a state of the world. In
the case of our God-like agent, one is a distribution of objective probabilities and the
other is the system’s (veridical) representation of possible outcomes and their respective
credences. Well-known normative principles connect subjective and objective proba-
bilities. However, no matter which normative principles one endorses, and regardless of
whether a God-like agent satisfies them, the two kinds of probability are distinct.23

Two kinds of probability distribution feature in cognition. Each generates an
associated measure of Shannon information. The two Shannon measures are
distinct: they are likely to involve different outcomes, different probability
values, and must involve different kinds of probability. This allows us to make
sense of two kinds of Shannon information being processed in cognition: two
kinds of probability distribution change under probabilistic models of cognition.
Processing involves changes in a system’s representational vehicles and changes
in a system’s probabilistic represented content. Information-processing algo-
rithms that govern cognition can be defined over either or both of these
Shannon quantities.24

22 Different theorists in Section 4 take different views about the nature of these objective probabilities. Shea
(2007) says the probabilities are chances (although he does not say what chances are); Millikan (2000) focuses
on the idea that they are frequencies and she considers the consequent reference class problem. No one
entertains the hypothesis that they are subjective probabilities.
23 Skyrms agrees: ‘objective and subjective information’ may be carried by a neural state (2010 pp. 44–5).
Skyrms’ concern is with the objective probabilities that are associated with neural states and environmental
states. However, he agrees that subjective probabilities (and, hence, subjective information) may be carried by
a neural state qua content.
24 One might object that there are not two kinds of Shannon information, but only two applications of a single
mathematical kind of Shannon information to the brain. However, the same could be said of objective and
subjective probabilities: both are applications of a single kind of mathematical probability (to measure
objective chances and agents’ uncertainties). To the extent that one is willing to say that there are two ‘kinds’
of probability (objective and subjective), one should be willing to say the same for Shannon information.
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6 Relationship Between the Two Kinds of Information

My claim in the previous section was that the two kinds of Shannon information are
distinct. This does not rule out all manner of interesting connections between them.
That they are distinct does not mean that they can vary independently of each other.
This section highlights some possible connections.

6.1 Connections Via Semantic Theory

One is likely to be persuaded of deep connections between the two kinds of Shannon
information if one endorses some form of information-theoretic semantics for proba-
bilistic representations. The probabilistic models described in Section 4 are silent about
how neural representations get their content. In principle, these models could be
combined with a range of semantic proposals, including some version of the
information-theoretic semantics described in Section 3.

Skyrms’ or Isaac’s theory looks the most promising approach to generate an
information-theoretic account of probabilistic content. Both their theories already
attribute multiple environmental outcomes plus a graded response for each outcome.
However, it is not immediately obvious how to proceed. The probability distribution
represented by n cannot simply be assumed to be the probability distribution of S. As
we saw in Section 5, a probabilistic representation may misrepresent the objective
possibilities and their probability values. A second consideration is that the represented
probabilities appear to depend not only on the probabilistic relations between a
representational vehicle and its corresponding environmental outcomes; they also
depend on what else the system ‘believes’. The probability that a system assigns to
there is a face should not be independent of the probability that it assigns to there is a
person, even if the two outcomes are represented by different neural vehicles. A
noteworthy feature of the information-theoretic accounts of Section 3 is that they
disregard relationships of probabilistic coherence between representations in assigning
representational content. They assign content piecemeal, without considering how the
contents may cohere. How to address these two issues and create an information-
theoretic semantics for probabilistic representations is presently unclear.25

If an information-theoretic semantics for probabilistic neural representations could
be developed, it would provide a bridge between the two kinds of Shannon informa-
tion. One kind of information (associated with the represented probabilities) could not
vary independently of the other (associated with the objective probabilities). The two
would correlate at least in the cases to which this semantic theory applied. Moreover, if
the semantic theory held as a matter of conceptual or logical truth, then the connection
between the two Shannon quantities would hold with a similar strength. An
information-theoretic account of probabilistic representation offers the prospect of a
conceptual or logical connection between the two types of Shannon information. In the
absence of such a semantic theory, however, it is hard to speculate on exactly what the
nature of that connection would be.

If one is sceptical about the prospects of an information-theoretic semantics for
probabilistic neural representation, then one may be less inclined to see deep conceptual

25 See Shea (2014b, 2018) for a promising approach.

Two Kinds of Information Processing in Cognition



or logical connections between the two kinds of Shannon information. If one endorses
Grice’s (1957) theory of non-natural meaning, for example, then the two Shannon
quantities may look conceptually and logically independent. Grice said that in cases of
non-natural meaning, representational content depends on human intentions and not,
for example, on the objective probabilities of a physical vehicle occurring in conjunc-
tion with environmental outcomes. There is nothing to stop a physical vehicle
representing any content, provided it is underwritten by the right intentions. I might
say that the proximity of Saturn to the Sun (appropriately normalised) represents the
probability that Donald Trump will be impeached. Provided this is underwritten by the
right intentions, probabilistic representation occurs. Representation is, in this sense, an
arbitrary connection between a vehicle and a content that can be set up or destroyed at
will, without regard for the probabilities of the underlying events.26 If one endorses
Grice’s theory of non-natural meaning, there need be no connection between the
probabilities of neural and environmental states and what those states represent, and
one Shannon measure could vary independently of the other. This is not to say that the
two measures would not correlate in the brain; just that, if they correlate, that would not
flow from the semantic theory.

6.2 Connections Via Empirical Correlations

Regardless of connections that may arise from one’s semantic theory, there are likely to
be other reasons why the two measures of Shannon information would correlate in the
brain. The nature of these connections will depend on the strategy that the brain uses to
‘code’ its probabilistic content. This coding scheme describes how probabilistic content
– which may consist of probability values, the overall analytical shape of the proba-
bility distribution, or summary statistics like the mean or variance –maps onto physical
activity in the brain or onto physical relations between the brain and environment. The
specific scheme that the brain uses to code its probabilistic content is currently
unknown and the subject of much speculation. Suggested proposals include that the
firing rate of a neuron, the number of neurons firing in a population, the chance of
neurons firing in population, or the spatial distribution of neurons firing in a population
is a monotonic function of characteristic features of the represented probability distri-
bution (see, for example, Barlow 1969; Averbeck et al. 2006; Deneve 2008; Fiser et al.
2010; Griffiths et al. 2012; Ma et al. 2006; Pouget et al. 2013). According to these
schemes, the probability of various neural physical states occurring varies in some
regular way with their represented probability distributions. This relationship may be
straightforward and simple or it may be extremely complicated and vary in different
parts of the brain or over time. The same applies to the relationship between the two
Shannon quantities. If an experimentalist were to know the brain’s coding scheme, she
may be able to infer one Shannon measure from the other. But even granted this were
possible, the two kinds of Shannon information would remain distinct, for the reasons
given in Section 5.

Cognitive processing is sometimes defined over the information-theoretic properties
of the neural vehicles. Saxe et al. (2018) describe how brain entropy during resting

26 Skyrms (2010) argues against this that ‘all meaning is natural meaning’ (p. 1). All meaning depends on the
physical probabilities that connect vehicles and their content.
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state, as measured by fMRI, correlates with general intelligence. Chang et al. (2018)
describe how drinking coffee increases the brain’s entropy during resting state. Carhart-
Harris et al. (2014) describe the relationship between consciousness and brain entropy,
and how this changes after taking the psychedelic drug psilocybin. Rieke et al. (1999)
advocate a research programme that examines information-theoretic properties of
neural vehicles (spike trains) and their relationships to possible environmental out-
comes. They argue that information-theoretic properties of the neural vehicles and
environmental outcomes allow us to infer possible and likely computations that the
brain uses and the efficiency of the brain’s coding scheme. In each of these cases, the
Shannon measures are defined over the possible neural vehicles and environmental
states, not over their represented content (although several of the authors suggest that
since the two are correlated by the brain’s coding scheme, we can use one to draw
conclusions about the other).

In contrast, Feldman (2000) looks at algorithms defined over the information-
theoretic properties of the represented content. He argues that the difficulty of learning
a new Boolean concept correlates with the information-theoretic complexity of the
represented Boolean condition. Kemp (2012) and Piantadosi et al. (2016) extend this
idea to general concept learning. They propose that concept learning is a form of
probabilistic inference that seeks to find the concept that maximises the probability of
the represented classification. This cognitive process is described as the agent seeking
the concept that offers the optimal Shannon compression scheme over its perceptual
data. Gallistel and Wilkes (2016) describe associative learning as a probabilistic
inference concerning the most likely causes of an unconditioned stimulus given the
observations. They describe it in terms of Shannon information processing: the cogni-
tive system starts with priors over hypotheses about causes that have maximum entropy
(their probability distributions are as ‘noisy’ as possible consistent with the data); the
cognitive system then aims to find the hypotheses that provide optimal compression
(that maximise Shannon information) of the represented hypothesis and observed data.
In general, researchers who model cognition probabilistically move smoothly between
probabilistic formulations and information-theoretic formulations when describing a
cognitive process. In each of the cases described above, the Shannon information is
associated not with the probabilities of specific neural vehicles occurring, but with the
probability distributions that they represent (although, again, one might think that the
two are likely to be related via the brain’s coding scheme).

6.3 Two Versions of the Free-Energy Principle

Friston (2010) claims that the ‘free-energy principle’ provides a unified theory of how
cognitive and living creatures work. He invokes two kinds of Shannon information
processing and he effectively describes two separate versions of the free-energy
principle.

First, Friston says that the free-energy principle is a claim about the probabilistic
inference performed by a cognitive system. He claims that the brain aims to predict
upcoming sensory activation and it forms probabilistic hypotheses about the world that
are updated in light of its errors in making this prediction. Shannon information
attaches to the represented probability distributions over which the inference is per-
formed. Friston says that the brain aims to minimise the ‘surprisal’ of – the Shannon
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information associated with – new sensory evidence. When the brain is engaged in
probabilistic inference, however, he says that it does not represent the full posterior
probability distributions as a perfect Bayesian reasoner would do. Instead, the brain
approximates them with simpler probability distributions, assumed to be Gaussian.
Provided the brain minimises the Shannon-information quantity ‘variational free ener-
gy’, it will bring these simpler probability distributions into approximate correspon-
dence with the true posterior distributions that a perfect Bayesian reasoner would have
(Friston 2009, 2010). Variational free energy is an information-theoretic quantity,
predicated of the agent’s represented probability distributions, that measures how far
those subjective probability distributions depart from the optimal guesses of a perfect
Bayesian reasoner. According to Friston, the brain minimises ‘free energy’ and so
approximates an ideal Bayesian reasoner.

Friston makes a second, conceptually distinct, claim about cognition (and life in
general) aiming to minimise free energy. In this context, his goal is to explain how
cognitive (and living) systems maintain their physical integrity and homoeostatic
balance in the face of a changing physical environment. Cognitive (and living) systems
face the problem that their physical entropy tends to increase over time: they generally
become more disordered and the chance increases that they will undergo a fatal
physical phase transition. Friston says that when living creatures resist this tendency,
they minimise free energy (Friston 2013; Friston and Stephan 2007). However, the free
energy minimised is not the same as that which attaches to the represented, probabilistic
guesses of some agent. Instead, it attaches to the objective probabilities of various
possible (fatal) physical states of the agent occurring in response to environmental
changes. Minimising free energy involves the system trying to arrange its internal
physical states so as to avoid being overly changed by probable environmental
transitions. The system strives to maintain its physical nature in equipoise with likely
environmental changes. The information-theoretic free energy minimised here is de-
fined over the objective distributions of possible physical states that could occur, not
over the probability distributions represented by an agent’s hypotheses.

Minimising one free-energy measure may help an agent to minimise the other: a
good Bayesian reasoner is plausibly more likely to survive in a changing physical
environment than an irrational agent. But they are not the same quantity. Moreover, any
correlation between them could conceivably come unstuck. An irrational agent could
depart far from Bayesian ideals but be lucky enough to live in an hospitable environ-
ment that maintains its physical integrity and homoeostasis no matter how badly the
agent updates its beliefs. Alternatively, an agent might be a perfectly rational Bayesian
and update its beliefs accordingly, but its physical environment may change so rapidly
and catastrophically that it cannot survive or maintain homoeostasis. Understanding
how Friston’s two formulations of the free-energy principle interact – that pertaining to
represented subjective probabilities and that pertaining to objective probabilities – is
ongoing work.27

27 Colombo and Wright (2018) draw a similar contrast between the two formulations of the free-energy
principle. They describe different versions of the principle as involving ‘epistemic’ and ‘physical’
probabilities.
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7 Conclusion

Shannon information has traditionally been seen as a rung on a ladder that takes one to
naturalised representation. In this context, Shannon information is associated with the
outcomes and probability distributions of neural and environmental states. This project,
however, obscures a novel way in which Shannon information enters into cognition.
Probabilistic models of cognition treat cognition as an inference over representations of
probability distributions. This means that probabilities may enter into cognition in two
distinct ways: as the objective probabilities of neural vehicles and/or environmental
states occurring and as the subjective probabilities that describe the agent’s expecta-
tions. Two types of Shannon information are associated with cognition accordingly:
information that pertains to the probability of the neural vehicle occurring and infor-
mation that pertains to the represented probabilistic content. The former is conceptually
and logically distinct from the latter, just as representational vehicles are conceptually
and logically distinct from their content. Various (conceptual, logical, contingent)
relations may connect the two kinds of Shannon information in the brain, just as
various such relations connect traditional categorical vehicles and their content. Care
should be taken, however, not to conflate the two. For, as we know, much trouble lies
that way.
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