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Abstract: Deep-sea exploration is widely used in fields of environment and structural monitoring as well as
exploration for oil and gas, which has attracted more attention in many countries of the world. In deep-sea
exploration, the scattering phenomenon seriously reduces the visual image quality. Existing methods are limited
in deep-sea scattering environments with multi-depth or non-uniform illumination. Thus, a deep-sea descattering
method based on a depth-rectified statistical scattering model is proposed. The model proposed uses the
transmission map to model the depth-constant scattered image, and uses the Gaussian statistical model to estimate
the local scattering to obtain the depth-rectified scattering map in each color channel, so as to achieve the accurate
modeling of scattering at multi-depth and non-uniform illumination scenarios. In order to demonstrate the
effectiveness and robustness of proposed algorithm, we conducted tests on images of different scenes in shallow
sea and deep sea, as well as on video sequences in deep-sea. Experimental results show that the proposed method
outperforms existing methods in subjective quality and objective evaluation.
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0 Introduction

To discover unexplored data and information in the
deep-sea for future research, deep-sea exploration has
become the commanding height of international
competition. In the process of deep-sea exploration, visual
information plays a significant role in a series of
activities, such as navigation' !, object recognition®
and underwater robotics"”. However, the imaging quality
always severely degrades when meeting marine snow or
when the sediment particles on the seabed are stirred up
by a robotic arm or a landing Autonomous Underwater
Vehicle (AUV). Caused by the scattering of tiny particles
in the turbid water body, this phenomenon may bring
obstacles or even dangers to deep-sea exploration.
Therefore, it is of great importance to remove scattering
effect and see targets clearly through turbid water in the
deep-sea.

Existing underwater descattering methods can be
mainly classified into the model-free and model-based
methods. The model-free algorithms directly enhance
image contrast without considering the physical scattering
mechanisms. For example, contrast limited adaptive
histogram equalization (CLAHE)® improves the image
contrast in a local manner. Retinex theory” separates an
image into illumination and reflectance components, and
then estimates both of them. Generalized unsharp masking
(GUM)" improves contrast and sharpness of the image
while reducing the halo-effect. Besides, the fusion-based
method""™ combines white-balanced and contrast-
enhanced images derived from an original image.
However, these algorithms do not model the image
degradation process caused by scattering, which may fail
in some extremely scattering situations. Among the
model-based methods, dark channel prior (DCP)!'*! based
on simplified Jaffe-McGlamery model” in which
scattering is decomposed into the respective effects of
atmospheric illumination and transmission map to
descatter. To extend DCP into underwater, underwater

dark channel prior (UDCP)'® considers selective

absorption of different wavelength underwater, thus more
refined transmission map estimation results are obtained
to better improve image quality. UDCP is unsuitable for
deep-sea situations, because it supposes that atmospheric
illumination is uniform, while in the deep-sea,
atmospheric illumination almost comes from artificial
light and inevitably causes non-uniform illumination.
Peplography!'” models and estimates scattering as a
veiled image with a Gaussian distribution. However,
Peplography supposes that targets to be observed is from
the same depth, which is not often the case in the
deep-sea.

Overall, existing methods are limited in deep-sea
scattering environment with multi-depth or non-uniform
illumination. In this paper, we propose a deep-sea
descattering method based on a depth-rectified statistical
scattering model. To deal with multi-depth scenarios, the
transmission map is utilized to rectify the scattered light
emitted by different scene depths. To cope with non-
uniform illumination, a depth-rectified scattering map is
calculated locally in each color channel with a Gaussian
statistical scattering model, representing the spatial
distribution of the scattered light in the RGB color
channels, which can remove the scattering map from the
input image. Experimental results for different underwater
images and videos captured in shallow and deep-sea show
that the proposed method outperforms the existing
methods in terms of subjective quality and objective
evaluation. The rest of the paper is organized as follows.
The proposed method is introduced in Section 2. The
experimental settings and results are shown in Section 3.

Finally, conclusions are drawn and discussed in Section 4.
1 Method

Because of the deficiency of sunlight in the deep-sea,
artificial illumination needs to be introduced for better
observation. However, this will bring non-uniform
illumination as shown in Fig.1, which is different from the

situation in the shallow sea.
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Traditional Gaussian statistical scattering model!"”’
supposes that the targets to be observed locate at the same
depth. However, many deep-sea scenarios, shown in
Fig.1, do not satisfy this assumption since the camera
shooting angle is not always perpendicular to the seabed
and the objects are always at different depths, so the ratio
of the scattered light will increase with depth.

The overall framework of the proposed deep-sea
descattering method is provided in Fig.2. Firstly, we use
the transmission map to rectify the scattered light emitted
by different depths. Then, a depth-rectified scattering map

is calculated in the RGB color channels separately with a

Input image

Fig.1 Non-uniform illumination and multi-depth scenarios in deep-sea

Gaussian statistical scattering model to represent the
spatial distribution of the scattered light. Finally, the
descattering image is obtained after removing the

scattering map from the input image.

Output image

Scattered light removal

Transmission map
estimation

Transmission map

v

Depth-rectified
Gaussian scattering model

Scattering map

Fig.2 Overall framework of the proposed deep-sea descattering method

First, considering that scattered light exhibits
nonlinear enhancement with distance, we utilize the
transmission map which reflects the attenuation ratio of
ballistic light at different scene depths, corresponding to
the inverse of the enhancement ratio of the scattered light.
In order to estimate the transmission map #, we compare
several methods and finally choose the underwater dark
channel prior (UDCP)'Y' which considers selective
absorption underwater to estimate the transmission map .

To deal with multi-depth scenarios, the transmission
map is utilized to model the depth-constant scattered
image. we multiply the input image 7 with transmission
map ¢ pixel by pixel to obtain a depth-constant scattered
image J" with the scene depth restrained to be the same,
which can be expressed as

™, jy =106, e, j) )

where i and j are the pixel coordinates of j,

The resulting image [ meets the depth-constant
assumption of the Gaussian statistical scattering model!”",
o, a scattering map can be correctly estimated by the
model to represent the spatial distribution of the scattered
light, and in order to cope with non-uniform illumination,
we calculate the depth-rectified scattering map locally.
Based on this, the scattering in a window X;; with the size

of w,Xw, is considered to have a mean value of y;; and

the variance of Gaussian distribution of o;;:

X;jmn)=1""({+m—-1,j+n-1)

i=1,2,--- ,N.—w,+1

j=12,-- ,Ny—w,+1

m= 1’27”‘ s Wy

n=12,--,w, (2)
where X;; is the ith column and jth row local area of j,
m and n are the coordinates in the window X;;, and N,, N,
are the total number of pixels in the x and y directions of

[morm, respectively.
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Here, the maximum likelihood estimation (MLE) is .. . 19 (i, j)
( ) e (l,]) — I(l,])(l — T‘] (7)
used to estimate the mean value of the unknown
parameter y;; by calculating the mean value of the pixels Based on Eq.(3) and Eq.(7), we can calculate
. . . E I - Ia'ark " .
in the window X;;: o = (1) - (G DI ) @)

7y ane st [ on | =

Wy Wy
xu@",”)z
Wiy Wy wy,
m=——"+lp=——+
5 1
Xij (3)

where 7™ is the estimated sample mean of the local area
(wyxXw,), L(-) is a likelihood function of Gaussian
distribution, X;; are the random variables, x;; is a cropped
window area, and x; is mean value of the cropped
window area.

Further, to compensate the depth information that is
lost in 7o, the actual scatter map of i of the input image

[ is obtained by dividing the scatter map ™ by the
transmission map #:
Ty =E" 1, ) )
Then, the descattering image [ is calculated by
subtracting the actual scatter map u from the input
image [:
I'G,j) =13, )= (%)
There are some excessive and dark pixels in the
descattering image, so we select the brightest and the
darkest pixels to limit them, and then normalize the image
to obtain the output image. Note that all the above
operations are applied on RGB color channels of the input
image, respectively.
Further, we discuss the impact on the proposed
algorithm in the case of non-uniform illumination. The
used transmission map ¢ is calculated based on the UDCP,

so the transmission map ¢ can be written as

Idark " ;
2ep ©

where A is the global illumination, f%* is the dark

t@,H)=1-

channel image of the input image /.

Substituting Eq.(6) into Eq.(1) we can get

A
where E () is the expectation operator.
Finally, by combining Eq.(1), (4), (5), (7) and (8)
together, we can calculate that
G j)=1G, )~ =
Im)rm (l, ]) _m;)rm
1(i, j)
I1G, )-EUG )+
E G, ) I G j) = E(LG, )1 G, )
A _ Idark (l, _])

According to the derivation results, we found that the

)

global illumination term 4 significantly affects the quality
of transmission map. Because of multiple searchlights in
the deep-sea probe, the global illumination of the image is
non-uniform. However, in a local area, the illumination
can be considered to be approximately equal, which
means that the light is uniform in this area. The proposed
method takes a regional processing, thus the global
illumination term 4 of Eq.(9) in a block can be regarded
as constant, so the algorithm is effective when the

illumination in the block is uniform.
2 Experiments

In this section, in order to demonstrate the
effectiveness of the proposed method, the performance of
the proposed method is compared with seven existing
methods: DCP"*, a representative descatter method based
on the assumption that the darkest channel of RGB retains
the effective information of the image; UDCP!, which
considered the selective absorption of different
wavelength underwater; GUM!"", improved the image
quality by extracting and amplifying the high frequency
part of the image; Fusion method™, which processed a
single image differently, and then merged the obtained
multiple images to obtain a result with better imaging
quality; Retinex, based on the human visual system to

performs color correction and contrast enhancement on
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images; Peplography'”, improved image quality by
assuming that scattering satisfies Gaussian distribution;
CLAHE"™, enhanced the bright areas and attenuating the
dark areas to enhanced the overall contrast of the image.
The experiments are conducted on scattering
images/videos captured in the shallow sea and deep-sea.
The data of shallow sea are from UIEB"® dataset. The
deep-sea videos was collected by Deep Sea Video
Technology Laboratory, Institute of Deep-sea Science and
Engineering, Chinese Academy of Sciences in the South
China Sea with the self-developed deep-sea imaging and
recording system "Lan Mou" equipped with deep-sea high

resolution stereo camera and deep-sea LED illumination.

The parameters and the features of the images and videos
are listed in Tab.l with sample frames. The shallow sea
data contains image with color shift and scattering. In
order to verify that the proposed algorithm can deal with
the scattering in the shallow sea, and can have a better
visual presentation effect. The data of the deep-sea are
video sequences, including strong and weak scattering;
the scattering is relatively stable and dynamic; the
illumination is relatively uniform and the illumination is
non-uniform. By selecting these data, the effectiveness
and robustness of the proposed algorithm can be verified.
The images in Fig.3 are the 270", 241%, 61%, 50", 1* and

7" frame in the corresponding videos.

Tab.1 Overview about 2 images and 6 video sequences

Video Framerate ~ Resolution Frame number Contents S.catter.l ne Sample images
sequence intensity
Shallow 1 1 fps 640%x480 1 Coral +
Shallow 2 1 fps 640x480 1 Fish +
Robot arm and
Deep 1 30 fps 1920930 300 acquisition -+ e Al
equipments 4 l’i‘ :
Robot arm and
Deep 2 30 fps 1920930 1080 acquisition ++
equipments
Robot arm and E
Deep 3 30 fps 1920930 750 acquisition +H++
equipments
o o o o T + - -
plant
o o o o - o - -
Deep 6 30 fps 3 840%2 160 330 Seabed

+ I I
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For the shallow sea images shown in Fig.3, the
results of DCP, UDCP, GUM, Peplography and CLAHE
in descattering and improving image visibility are
unsatisfactory. Fusion and Retinex are more robust and
effective than DCP, UDCP, GUM, Peplography and
CLAHE, but they still do not remove the scattering well,
and there is still a scattering mask on the result. Our
method produces images with high visibility, well
descattering and clear detail.

For the deep-sea images shown in Fig.3, the results
of DCP, UDCP, GUM, Peplography and CLAHE in
enhancing the contrast and descattering is poor, and DCP,
UDCP, and Peplography will introduce a larger color cast.
Although Fusion and Retinex remove the color cast to a
certain extent, which improves the visual effect of the
picture, they do not effectively remove the scattering. Our
method significantly removes the effects of scatter and
improves the visual effect of the images. In addition, our
method also shows good performance when the scattering
is non-uniform.

Furthermore, we select underwater color image
quality evaluation metric (UCIQE)'” which is an
evaluation index of underwater image quality. UCIQE is a
DCP!'

UDCP! Fusion!?!

Input images

Retinex”!

linear combination of chroma, saturation and contrast,
which is an important indicator of underwater image
quality evaluation. UCIQE can be defined as UCIQE =
¢ X o, + ¢y X cony +c3 x u,, where g, is the standard
deviation of chroma, con, is the contrast of luminance, and
1, 1s the average of saturation. And, ¢; =0.4859,¢,=0.2745
and c¢; = 0.2576 in Ref. [19].

The proposed method aims to process the videos or
images directly, so that it can be applied to data in any
shooting scene. However, due to the lack of the measured
scattering intensity during video shooting, the evaluation
value of the image domain is used to describe the
scattering intensity. The research found that there is a
positive correlation between UCIQE and the subjectively

visible scattering intensity''”!

, so we have marked the
UCIQE value for each set of test data to represent the
variation of the scattering intensity.

In Fig.4, we calculate the UCIQE of the deep-sea
video, and obtain the UCIQE value of the video at
different times, and we present some video frames with
different UCIQE values. It is found that the smaller the
UCIQE value, the larger the scatttering intensity of the
image, and vice versa.

GUM! Peplography!'”? CLAHE®  Proposed

N

Fig.3 Subjective comparisons on shallow sea and deep-sea images. From left to right are input underwater images, and the results of DCP!", UDCP!"®,

Fusion!", Retinex”, GUM!"", Peplography!”, CLAHE', and the proposed method

20210919-6



s Gk A2

www.irla.cn

Time=132 s, UCIQE=0.607 7
(@) (b)

Time=730 s, UCIQE=0.34
© (d

Time=370 s, UCIQE=0.385

Time=757 s, UCIQE=0.300 4

© .65
0.60

Time: 132 s

UCIQE: 0.607 7
0.55

050

o4

S 04s
040 |
035 |
030 |
025

Time: 730 s
UCIQE: 0.34

Time: 370 s
UCIQE: 0.385
Time: 757 s

UCIQE: 0.300 4

100 200 300 400 500 600 700 800 900

Time/s

Fig.4 Objective comparisons of deep-sea video. (a)-(d) are the video frame samples in the video and their UCIQE values; (e) is the UCIQE results of the

video

We also use UCIQE to evaluate the result of image
reconstruction quality of underwater images shown in
Fig.3. Table 2 gives the evaluation scores of these

methods applied to shallow sea and deep-sea images

shown in Fig.3. In both of deep-sea and shallow sea, the
proposed method has a higher UCIQE value than other
methods, reflecting the universality, efficiency and

robustness of proposed algorithm.

Tab.2 UCIQE values of different methods in Fig.3 (The bold values represent the best results)

Inputimages ~ DCP'"  UDCP"?  Fusion!”  Retinex’”  GUM"  Peplography!”  CLAHE™  Proposed
Shallow 1 04711 05755 05745 05112 06397 05217 0.6413 0.5339 0.6803
Shallow 2 0.3683 0.4789 0.4714 0.4437 0.6274 0.3952 0.5629 0.3957 0.6299
Deep 1 0.5250 0.6213 0.5889 0.5358 0.5789 0.5398 0.4899 0.5311 0.6259
Deep 2 0.4417 0.4137 0.3802 0.4765 0.5390 0.4836 0.3780 0.4814 0.5828
Deep 3 0.4335 0.4316 0.4130 0.4771 0.5525 0.4387 0.3455 0.4371 0.6644
Deep 4 0.3400 0.4917 0.4316 0.4204 0.5919 0.3640 0.5233 0.3617 0.6372
Deep 5 0.3455 0.4464 0.3985 0.4227 0.5557 0.366 1 0.3303 0.3668 0.6344
Deep 6 0.5979 0.6392 0.6244 0.5887 0.5692 0.5966 0.3297 0.5908 0.6459

In order to verify the effectiveness and robustness of
the algorithm in dynamic scattering scenarios, we also
tested the deep-sea scattering videos, and used UCIQE as
an evaluation indicator, the average UCIQE of the video
sequences were shown in Tab.3 and the UCIQE results of
the video sequences were shown in Fig.5.

In Tab.3, compared with other methods, our method
can have higher UCIQE in different scenarios, which
reflects the effectiveness of our algorithm. The scattering
intensity is different between different videos, and our
method can improve UCIQE by 8% to 79% on these data

sets which reflecting the robustness of the algorithm.

In Fig.5(m), (o) and (r), it can be shown that when
the scenes with little dynamic changes in scattering, the
stability of the performance of all methods is well. The
proposed method has a significantly higher UCIQE, and
the performance is relatively stable throughout the video.
In Fig.5(n), (p) and (q), it is shown that when the scenes
with large dynamic changes in scattering, the UCIQE of
existing methods fluctuates significantly, while that of the
proposed method always has good stability. Moreover,
UCIQE of the proposed method is much higher than those
of other algorithms, which reflecting the effectiveness and

robustness of our algorithm.

20210919-7
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Tab.3 Averaged UCIQE values of different methods with above 6 video sequences(The bold values represent the

best results)

50 100 150200250300350400450

50 100 150 200 250 300 350 400

50

100 150 200 250 300

Video ID Input vidleo ~ DCP™ UDCP!'¢! Fusion!"! Retinex!”! GuMm!™ Peplography!'” CLAHE® Proposed
Deep 1 0.5210 0.6141 0.5832 0.5328 0.5755 0.5341 0.4878 0.4872 0.6267
Deep 2 0.4538 0.4225 0.4140 0.4841 0.5562 0.4958 0.3767 0.3911 0.5829
Deep 3 0.4254 0.4280 0.4064 0.4705 0.5266 0.4263 0.3362 0.4656 0.6586
Deep 4 0.3497 0.4792 0.3845 0.4242 0.5742 0.3801 0.4736 0.4070 0.6261
Deep 5 0.3439 0.4606 0.3960 0.4225 0.5331 0.3587 0.3254 0.4105 0.6256
Deep 6 0.5980 0.6393 0.6244 0.5884 0.5692 0.5968 0.3319 0.5564 0.6450

Deep 1 Deep 2 Deep 3
| | E
| | :
| |
| |
| |
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Fig.5 Objective comparisons of six deep-sea videos corresponding to Deep 1-6. (al) to (11) are the video frame samples in the six videos; (a2)-(12) are

the results of (al) to (1) of the proposed algorithm; (m)-(r) are the UCIQE results of the six videos by different methods. The red dotted line in

(m) to (r) mark the corresponding frame of the above video frame samples in (al)-(11)

3 Discussions

Here, we will discuss the physical limit of our

proposed algorithm. We applied our proposed method to

the images with different scattering intensities. The results

20210919-8
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UCIQE=0.3251

Fig.6 Subjective and objective comparisons on deep-sea images with different scattering intensities from Haze 1 to Haze 5. From left to right are input

underwater images, and the results of DCP!"*, UDCP!"%, Fusion!"*, Retinex”, GUM!", Peplography!'”, CLAHE'™, and the proposed method

In Fig.6, the scattering of Hazel to Haze 5 increased
gradually. From the image Haze 2 (UCIQE=0.3705), we
can find that DCP, UDCP, GUM, Peplography and
CLAHE can no longer improve the image quality, while
Fusion, Retinex and proposed algorithm can also
effectively remove the scattering phenomenon. When the
scattering intensity increases to Haze 4 (UCIQE=0.3442),
the results reconstructed by Fusion and Retinex are more
difficult to distinguish effective information, however,
some information can be distinguished in the
reconstruction results of proposed algorithm. When the
scattering intensity reaches Haze 5 (UCIQE=0.3251), the
effective information cannot be reconstructed by the
proposed algorithm which is considered to reaches its

physical limit in this case.
4 Conclusion

In this paper, to deal with multi-depth and non-
uniform illumination in deep-sea scattering environment,
we proposed a deep-sea descattering method based on a
depth-rectified statistical model. First, in order to rectify
the scattered light emitted by different scene depths, the
transmission map is utilized. Then, in each RGB channel,
we calculate a depth-rectified scattering map with a
Gaussian statistical scattering model to represent the

spatial distribution of the scattered light. Finally, after the

scattering map subtraction from the input image, the
descattering image is obtained. Experimental results with
shallow and deep-sea images and videos demonstrate the
efficiency and effectiveness of the proposed method
compared the existing methods in terms of subjective
quality and objective evaluation. In the future, we can
improve the computational efficiency for the real-time

requirements in actual scenes.
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