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Abstract

Screening programs must balance the benefits of early detection against the costs of over
screening. Achieving this goal relies on two complementary technologies: (1) the ability to
assess patient risk, (2)  the ability to develop personalized screening programs given that risk.
While methodologies for assessing patient risk have significantly improved with new advances
in deep learning applied to imaging and genetics, our ability to personalize screening policies
still lags behind. Here, we introduce a novel reinforcement learning-based framework for
personalized screening, Tempo, and demonstrate its efficacy in the context of breast cancer. We
trained our risk-based screening policies on a large screening mammography dataset from
Massachusetts General Hospital (MGH) USA and validated them on held-out patients from
MGH, and on external datasets from Emory USA, Karolinska Sweden and Chang Gung
Memorial Hospital (CGMH) Taiwan. Across all test sets, we found that a Tempo policy combined
with an image-based AI risk model was significantly more efficient than current regimes used in
clinical practice in terms of simulated early detection per screen frequency. Moreover, we
showed that the same Tempo policy can be easily adapted to a wide range of possible
screening preferences, allowing clinicians to select their desired early detection to screening
cost trade-off without training a new policy. Finally, we demonstrated Tempo policies based on
AI-based risk models out performed Tempo policies based on less accurate clinical risk models.
Altogether, our results show that pairing AI-based risk models with agile AI-designed screening
policies has the potential to improve screening programs, advancing early detection while
reducing over-screening.
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Introduction

For multiple diseases, early detection significantly improves patient outcomes [1, 2]. This
motivates considerable investments in population-wide screening programs [3, 4] such as
mammography for breast cancer. To be effective and economically viable, these programs must
find the right balance between early detection and overscreening. This capacity builds on two
complementary technologies: (1) ability to accurately assess patient risk at a given time point;
(2) ability to design screening regimes based on this risk. With recent advances in deep
learning, imaging and genetics, risk assessment technologies are rapidly improving [5, 6].
However, our ability to utilize these predictions to personalize screening regimes lags behind.
This deficiency is particularly apparent when the screening system has limited throughput.

In this paper, we focus on the design of screening regimes attuned to the increased capacity of
the modern risk assessment models. The need for new methods to personalize screening is
motivated by a substantial change in risk assessment algorithms. Traditional risk assessment
models rely on a number of categorical variables encoding patient demographics and clinical
history combined with traditional statistical models to predict risk [7, 8]. These scores are
relatively static throughout a patient's lifetime, with changes typically driven by the patient's age.
Moreover, the limited predictive capacity of these risk models restricts the scope of
recommendations they support and, consequently, their impact on the screening regime.
Current guidelines divide the population into a few large groups, most often discriminating
predicted high-risk patients from the rest, and recommend the same screening frequency to all
the members of that cohort [9-11]. As a result, there remains large opportunities to further
personalize care.

The power of novel, AI-driven risk models [6, 12-14] has given us an opportunity to
fundamentally transform population screening. Deep learning algorithms enable these risk
models to operate over raw patient data such as imaging in addition to traditional
expert-specified categorical variables. Moreover, these models can detect highly complex
dependencies which further strengthens their predictive capacity relative to traditional methods.
One distinctive feature of these risk models is that their predictions may fluctuate over time as
the patient’s raw data evolves. This suggests that screening regimes need to be flexibly
adjusted with changes in risk and be optimized over a patient's lifetime. We hypothesize that by
pairing AI-based risk models and agile AI-based screening regimes, we can improve early
detection, while lowering the overall cost of screening. This paper presents empirical findings
that support this hypothesis in the area of breast cancer screening.  The core methodology is
applicable to other disease areas and other types of risk models beyond imaging.

Results
Overview of Algorithm
In computational terms, we can view breast cancer screening as a sequential decision task,
where we wish to develop a policy, i.e., a screening guideline, that predicts a followup
recommendation for each patient to maximize their chances at early detection while minimizing
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their screening costs. Intuitively, such a policy should recommend infrequent screenings for low
risk patients, while prescribing a higher frequency for patients at increased risk. The question is
how to personalize screening intervals based on a patient’s risk profile. More formally, we can
cast the screening problem as a Markov Decision Process (MDP), where a patient's state is
their risk assessment, the possible actions are different follow-up recommendations (e.g., six
months, two years, etc.), and rewards are a combination of expected early detection benefits
minus screening costs. This formulation enables us to find the best possible policy for this MDP
with Reinforcement Learning (RL) algorithms [15, 16]. RL algorithms are commonly used in
game playing [17, 18] and robotics [19-23]. The closest to our work is research on predictive
maintenance [24-26] where the goal is to establish an optimal regime for prophylactic
maintenance of equipment while controlling for costs and the likelihood of failure.  We show how
to leverage these methods for determining effective cancer screening policies.

Applying RL in this context poses a unique challenge, namely the estimation of patient
trajectories from retrospective data. The training data pertaining to individual patients only
contains information about their risk at the time points when their mammogram was taken.
However,  to determine whether the algorithm makes the correct recommendation, we need to
know the risk assessment at intermediate points. Therefore, we design an algorithm that learns
to extrapolate a patient’s risk at unobserved time points from their observed screenings. This
estimation evolves as new mammograms of the patient become available.  With the access to
these predictions, we can guide our reinforcement learner to adjust its actions according to the
estimated risk. Using the retrospective trajectories as our simulation environment, we train
screening policies to maximize the future reward given the patient’s evolving risk assessments,
as illustrated in Figure 1. In doing so, our trained screening policies are specialized to the
dynamics and subtleties of the underlying risk model.

Our full framework, named Tempo, is depicted in Figure 2.  As described above, we first train a
risk progression neural network to predict future risk assessments given previous assessments.
This model is then used to estimate patient risk at unobserved timepoints. Next, we train a
screening policy neural network to maximize the expected future reward, i.e combination of
early detection and screening cost, using envelope-Q learning [27], a multiple objective
reinforcement learning algorithm.  The input of our screening policies is the patient's risk
assessment, and desired weighting between rewards (i.e screening preference). The output of
the policy is a recommendation for when to return for the next screen, ranging from six months
to three years in the future, in multiples of six months. Our reward balances two contrasting
aspects, one reflecting the imaging cost, i.e., the average mammograms a year recommended
by the policy, and one modeling early detection benefit relative to the retrospective screening
trajectory. Our early detection reward measures the time difference in months between each
patient's recommended screening date, if it was after their last negative mammogram, and their
actual diagnosis date. We evaluate screening policies by simulating their recommendations for
heldout patients. The exact reward details as well as the neural network architectures used are
elaborated in the Materials and Methods.
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Experimental Setup
We developed Tempo using the Massachusetts General Hospital (MGH) dataset, which consists
of 137,682, 16,634 and 17,119 exams from 43,749, 5,399 and 5,525 patients, for the training,
validation, and testing sets respectively. For each exam, we had access to Mirai [12] and TCv8
[8] risk assessments. Mirai [12] is a recently proposed mammography-based risk model which
predicts risk at multiple time points, and TCv8 [8] is a traditional risk model that combines a
variety of risk factors including age, family history, and hormonal factors. For Tempo to be
broadly applicable, its screening policies must be validated in new clinical environments and
patient populations. To this end, we also validated Tempo on representative datasets from
Emory in the US consisting of 22,094 exams from 10,369 patients,  Karolinska in Sweden
consisting of 14,356 exams from 7,191 patients and Chang Gung Memorial Hospital (CGMH) in
Taiwan consisting of 12,280 exams from 12,280 patients. For each exam in the Emory,
Karolinska and CGMH datasets, we obtained Mirai risk assessments. We note that the Emory,
Karolinska and CGMH datasets were only used for held-out testing. The demographics for all
test sets are reported in Table 1 and more detailed demographics for each dataset are shown in
Tables S1, S2, S3 and S4. All datasets are described in detail in the Materials and Methods .

Our primary objective was to develop personalized screening policies that would outperform
current guidelines, improving early detection while reducing screening costs. To this end, we
compared Tempo, developed with both TCv8 and Mirai risk assessments, to existing screening
guidelines, including annual screening, biennial screening, and a hybrid screening strategy
recommended by the USPSTF [11] which switches from annual screening to biennial screening
at age 55. We refer to Tempo with Mirai and TCv8 risk assessments as Tempo-Mirai and
Tempo-TCv8, respectively. We utilized a GRU to estimate risk progression for Tempo Mirai and
a deterministic model, Static risk, to estimate risk progression for Tempo-TCv8. Our risk
progression methods are described in detail in the Materials and Methods and are validated in
Table S5. To quantify the benefit of using our reinforcement learning approach to develop
screening policies, we also evaluated policies trained with supervised learning, named
Supervised-Mirai and Supervised-TCv8 respectively. We note that given full screening
trajectories, we can easily compute the optimal screening recommendations in hindsight.
Instead of maximizing the overall reward with reinforcement learning, Supervised-Mirai and
Supervised-TCv8 are trained to predict these optimal followup recommendations at each time
step.  These baselines are detailed in the Materials and Methods. For each policy, we measure
its screening cost in terms of the average number of mammograms it recommends per year and
its early detection benefit in months relative to historical screening. Our early detection metric
assumed that early screening, following a patient's last negative mammogram, could offer a
maximum early detection benefit of 18 months. We note that our early detection benefit metric is
local and institution specific, as different institutions have different screening patterns. To directly
compare policies that recommend differing numbers of mammograms, we also evaluated the
efficiency of each policy, as measured by the early detection benefit in months divided by the
number of mammograms per year recommended.

Evaluating personalized screening policies
The results of all screening policies across the MGH, Emory, Karolinska and CGMH test sets
are illustrated in Table 2. We utilized the same Tempo-Mirai operating point across all test sets.
We illustrate the performance of Tempo across different operating points, i.e screening
preferences, in all test sets in Figure 3.
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On the MGH test set, the annual and USPSTF guidelines obtained screening efficiencies, i.e
early detection benefit per screening cost, of 1.58 (95% CI 0.54, 2.58) and -4.42 (95% CI -5.83,
-3.12).  In contrast, Tempo-Mirai, Tempo-TCv8, and Supervised-Mirai obtained screening
efficiencies of 4.29 (95% CI 3.17, 5.25), 2.16 (95% CI 1.18, 3.40), and 0.80 (95% CI -0.58, 2.12)
respectively. We found that Tempo-Mirai was significantly more efficient than Tempo-TCv8,
Supervised-Mirai and annual screening (p<0.001, p<0.001, p<0.001), obtaining higher early
detection per screening cost. Specifically, Tempo-Mirai obtained an early detection benefit of
4.10 (95% CI 3.06, 4.96) months while recommending 0.96 (95% CI 0.94, 0.96) mammograms
per year, while the annual guideline obtained an early detection benefit of 1.58 (95% CI 0.54,
2.58) months while recommending 1.0 mammograms per year.

In addition to overall performance on the test sets, we also studied the histogram of early
detection benefits in Figure S1, and the histogram of recommended screening frequencies in
Figure 4 and Figure S2.  We note that all trained policies (e.g Tempo-Mirai, Supervised-Mirai)
have the same set of possible recommendations ranging from a six month to three year
screening followup, but we found that Supervised-Mirai only selected two options,
recommending either 6 months or three years of followup. In contrast, Tempo-Mirai at our
chosen operating point leveraged follow up recommendations of 6 months, one year and two
years. As shown on Figure 4, we found that Tempo-Mirai offers a wider range of recommended
frequencies than other methods, reflecting a larger degree for personalization. This reflects the
optimization differences between the two policies. Tempo-Mirai is optimized to maximize overall
reward across patient trajectories, as measured by early detection and screening cost, and does
not receive any explicit guidance on the correct recommendation given a specific risk
assessment. As a result, Tempo-Mirai has the flexibility to explore a wide range of possible
recommendations during training to identify high performing policies.  In contrast,
Supervised-Mirai has a rigid modeling objective; it is instead trained to predict the optimal (i.e
correct in hindsight) screening recommendation from each risk assessment which is difficult
given the uncertainty of real world risk models.

To understand the flexibility of Tempo-based policies, we plotted the performance of each policy
in Figure 3 while varying the screening preference (i.e operating point), which specifies the
desired balance between early detection and screening cost. Across a wide range of possible
operating points, Tempo-Mirai outperformed other policies in increasing early detection and
reducing screening costs, demonstrating that the policy can be easily adapted to suit clinical
requirements without retraining.

Next, we analyzed Tempo-Mirai’s ability to generalize to new populations. To this end, we tested
Tempo-Mirai, which was trained on MGH data, on test sets from Emory, Karolinska and CGMH.
In the Emory test set, Tempo-Mirai, Supervised-Mirai and annual screening obtained efficiencies
of 5.92 (95% CI 5.06, 6.54), 1.76 (95% CI 0.41, 2.86) and 3.21 (95% CI 2.37, 3.88) respectively.
In the Karolinska test set, Tempo-Mirai, Supervised-Mirai and annual screening obtained
efficiencies of 9.63 (95% CI 8.53, 10.72), 0.56 (95% CI -0.98, 1.55) and 6.29 (95% CI 5.76,
6.85) respectively. In the CGMH test set, Tempo-Mirai, Supervised-Mirai and annual screening
obtained efficiencies of 12.92 (95% CI 11.54, 14.41), 8.17 (95% CI 6.30, 10.53) and 11.00 (95%
CI 9.86, 12.28) respectively. Tempo-Mirai was significantly more efficient than Supervised-Mirai
and annual screening in all test sets with p<0.001, p<0.001 at Emory, p<0.001, p<0.001 at
Karolinska and p<0.001, p=0.02 at CGMH.
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While the above results show that Tempo-Mirai consistently improved over alternate policies in
screening efficiency, we also observed that the absolute magnitude of early detection varied
substantially across different datasets. For instance, annual screening obtaining early detection
benefits of 1.58 (95% CI 0.54, 2.58), 3.21 (95% CI 2.37, 3.88), 6.29% (95% CI 5.76, 6.85) and
11.0 (95% CI 9.86, 12.28) months in the MGH, Emory, Karolinska and CGMH test sets
respectively. This difference can be attributed to the different rates of screening across the
datasets; patients with future cancer at MGH, Emory, Karolinska and CGMH obtained an
average of 0.93, 0.94, 0.80, and 0.66 mammograms per year. These differences are further
detailed in Tables S1, S2, S3 and S4, which report detailed demographics of each dataset.

We also noted that Tempo-Mirai recommended different amounts of screening across the MGH,
Emory, Karolinska and CGMH test sets, recommending an average of 0.96 (95% CI 0.94, 0.97),
1.08 (95% CI 1.07, 1.08), 0.75 (95% CI 0.74, 0.76), 0.88 (95% CI 0.87, 0.89) mammograms per
year respectively. This difference can be attributed to differences in cancer incidence between
the different centers. The five-year cancer incidence at MGH, Emory and CGMH are 2.2%, 3.0%
and 1.8% respectively, and we expect Tempo to recommend higher rates of screening for higher
risk populations. However, the model can offer a diverse set of possible operating points across
all test sets, as illustrated in Figure 3, our results indicate that different hospitals may need to
input different operating points to obtain the same average screening volume.

Subgroup Analysis
We also investigated how our policies performed for different patient subgroups by age and
breast density on the MGH test set in Table S6. We highlight the results of Tempo-Mirai, which
obtained an efficiency of 4.29 (95% CI 3.17, 5.25) on the entire MGH test set. When grouping
patients by age, Tempo-Mirai obtained efficiencies of 3.41 (95% CI 1.44, 5.53) and 4.45 (95% CI
3.49, 6.03) for patients aged below and above 55 respectively. When grouping patients by
breast density category, Tempo-Mirai obtained efficiencies of 4.10 (95% CI 2.85, 5.48)  and 4.49
months (95% CI 2.86, 6.35) for patients with non-dense and dense breasts respectively, where
non-dense refers to the BI-RADS categories of almost entirely fatty or scattered areas of
fibroglandular tissue and dense refers to the BI-RADS categories of heterogeneously dense or
extremely dense.

Robustness to Assumptions
Our empirical results across the different test sets depend on the exact choice of assumptions of
our early detection metric. As illustrated in Figure 1, our early detection metric, measured the
time difference in months between each patient’s recommended screening date, and their
diagnosis date. Our metric assumed that the maximum early detection benefit obtained through
earlier screening was 18 months. To test our models robustness to this assumption, we also
evaluated Tempo-Mirai, Supervised-Mirai and annual screening across all test sets when setting
our maximum early detection benefit assumption to 6 months, 12 months, 18 months and 24
months. We note that we did not re-train Tempo-Mirai for this analysis, and that Tempo-Mirai
was originally trained using the 18 month assumption. For each policy, we measured its
screening efficiency, i.e the early detection benefit divided by the number of mammograms per
year recommended, to enable head-to-head comparison between policies that recommend
different screening volumes. As shown in Figure S3, Tempo Mirai is more efficient than annual
screening across all datasets across all assumptions. This result is further supported by the
histogram of early detection benefits shown in Figure S1.
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Discussion
We developed a reinforcement learning framework for personalized screening, Tempo, to
predict followup recommendations from patient risk assessments. We demonstrated that a
Tempo policy based on Mirai risk assessments was significantly more efficient than annual
screening, achieving earlier detection per screening cost. Moreover, we showed that the same
Tempo policy can be adapted to a wide range of possible screening preferences, and that
policies that leverage more accurate risk models, i.e Mirai, outperform those based on less
accurate risk models, i.e Tyrer-Cuzick. We found that policies developed on data from MGH
USA generalized to held-out test sets in Emory USA, Karolinska Sweden and Chang Gung
Memorial Hospital Taiwan, and significantly outperformed annual screening and our supervised
learning baseline there as well. Finally, we demonstrated our results were robust across a range
of possible assumptions for our early detection metric.

Our screening policies can be easily implemented in any screening clinic where Mirai risk
assessments are collected. Clinicians can retrospectively validate our trained screening policies
across a wide range of possible operating points on their own screening population and choose
an operating point to achieve the desired balance between screening volume and early
detection benefit. The installed policy can then offer clinicians suggested risk-based followup
intervals immediately following a patient's risk assessment. Depending on clinical requirements,
Tempo can be utilized to significantly reduce the volume of screening for a fixed early detection
target or to significantly improve early detection for a fixed screening budget. For instance, we
showed that Tempo-Mirai could obtain better early detection than annual screening at
Karolinska and CGMH while reducing screening by 25% and 12% respectively. Due to the scale
and cost of breast cancer screening, even modest improvements in screening guidelines have
the potential to benefit a wide patient population.

Our study is complementary to a rich body of work surrounding risk-based screening [7, 28-30].
Several guidelines already recommend supplemental imaging or chemo-prevention based on
risk assessments [29, 31, 32] and recent results from the DENSE trial [33] have shown that a
breast density based screening strategy could significantly reduce interval cancers compared to
current screening. Our work is most closely related to the MyPeBS trial [34], which prospectively
compares a personalized screening followup strategy based either Tyrer-Cuzick [8] or
MammoRisk [35] risk assessments to current national recommendations. These studies point to
substantial clinical interest in risk-based screening, however, current methods for devising
screening policies rely on categorizing patients into a few coarse categories (e.g low and high
risk), limiting personalization. Our study provides a data-driven alternative for clinical decision
making and can be easily integrated into a screening trial and routine patient care.

Our work is also related to a large volume of modeling studies focused on breast cancer [36-42].
Typically, these approaches operate over a model of disease progression that characterizes
how patients transition between healthy and disease states. The transitions are informed by
patient features and impact the likelihood of different observations, such as a palpable lump.
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Their probabilities can be estimated from retrospective data or retrieved from the literature. The
approaches then work to identify the optimal screening policy under the specified disease
progression model. While these approaches were first to demonstrate the feasibility of
developing personalized screening policies, they have several limitations that restrict their
practical use in clinical settings. First, the postulated disease progression model does not
capture the full complexity and uncertainty in our understanding of cancer.  Second, the
methods generally assume that a patient’s features are fixed and do not evolve over their
lifetime [42]. This assumption does not hold in general and is not applicable to modern AI-based
risk models that are sensitive to changes in patient health.  In contrast, our framework does not
assume a complete disease progression model; instead, it assumes access to a risk model
(rather than discrete set of states) and to a reward function that measures the performance of a
screening trajectory given observational data. This relaxed assumption allows us to optimize
screening policies directly on observed patient trajectories, which contain the full diversity of
cancer diagnoses, and to validate our policies on held-out patient populations, which may differ
in their cancer characteristics, such as Emory, Karolinska and CGMH. Moreover, because our
policies are optimized across a large set of longitudinal patient trajectories, they are adapted to
dynamics of the underlying risk models.

This study focuses on breast cancer screening using image-based risk models. However, our
framework is flexible and can be readily utilized for other diseases, other forms of risk models,
and other definitions of early detection benefit. For instance, it can easily incorporate richer
representations of the cancer outcomes. Recent work has highlighted concerns about the
potential over-treatment of ductal carcinoma in-situ [43]. Tempo policies can take these
differences into account by leveraging separate reward metrics for the early detection of
invasive and in-situ cancers. In this scenario, Tempo policies would be trained using three
reward metrics, i.e early detection of invasive cancers, early detection of in-situ cancers and
screening cost, and clinicians would select a Tempo operating point (i.e screening preference)
that achieves the desired balance between the three metrics.  In a similar fashion, our
framework can be used to optimize more refined definitions of early detection benefit that
account for properties of the cancer (e.g tumor size, grade) at the time of diagnosis. For
instance, given access to a patient’s tumor properties, a cancer mortality model and a cancer
growth model, a sophisticated early detection metric could directly estimate the reduced
mortality risk if the patient’s cancer had been at an earlier time point. Given a patient’s age, this
metric could also directly be tried to Quality Adjusted Life Years (QALYs). Similarly, more
sophisticated measures of screening cost, that take into account varying false positive risks
depending on patient characteristics such as breast density, could be used to further refine
screening policies.  In this sense, prior work in modeling cancer mortality and screening benefits
[36-41], is complementary to our own. We expect that the utility of Tempo, which is agnostic to
the underlying choice of screening metrics and risk model, will increase as risk models and
outcomes metrics are further refined across more diseases.

There are multiple future directions that can further improve personalized screening algorithms.
While our policies were trained to maximize the average early detection across the population,
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one could instead optimize the model to also minimize the worst case risk of delaying a
diagnosis; in this sense, the diverse work in optimization literature [44, 45] can be
complementary as well. There also are opportunities to leverage more rich patient information in
developing personalized screening policies. While our method focused on predicting followup
recommendations given risk estimates from established risk models, one could instead directly
input rich patient information such as a patient's mammograms and family history, into the
screening policy. Directly learning to interpret this information for the purpose of personalized
screening in an end-to-end fashion may result in more accurate policies. Moreover, the action
space of our method could be expanded to also include different types of screening
recommendations, such as leveraging MRI or mammograms, and future work could separately
model the costs and benefits of each modality. Finally, given improved screening policies, future
work could also recalculate the earliest and latest age such that screening is still cost-effective
for a patient.

This study has several limitations. Our early detection metric assumed that cancer is detectable
up to a fixed time (18 months) before diagnosis. While we found that the trends reported in our
study were robust to different values of this assumption, ranging from six months to 24 months,
none of these assumptions are individually correct across all cancers as the early detection
potential of a tumor depends on that tumor's characteristics at the time of diagnosis.  Our
simulations also did not account for the sensitivity of screening mammography or the probability
of a patient entering the clinic with a palpable lump if their diagnosis is overly delayed.
Moreover, our early detection metric is defined relative to historical screening, which is institution
specific. As a result, it is not possible to directly compare a screening policy's performance
across multiple sites. While our framework is agnostic to the specifics of how the rewards are
formulated, further research using more refined early detection metrics, such as QALY’s, that
explicitly model tumor characteristics at the time of detection and tumor growth is needed.
Finally, prospective trials are necessary to assess the efficacy of these models in clinical care
before wide-spread adoption.

Materials and Methods
Study Design
The primary objective of this study was to develop a new algorithm to create flexible
personalized screening policies. We hypothesized that our Tempo policies could offer improved
early detection benefits over annual screening without requiring more screening. Moreover, we
hypothesized that these policies would generalize to new institutions.

Dataset Description
To develop Tempo, we collected consecutive screening mammograms and detailed risk
information at the time of mammography from 80,134 patients screened between January 1st,
2009 and December 31st, 2016 at Massachusetts General Hospital (MGH) under approval of
MGH’s Institutional review board with a waiver for written informed consent and in compliance
with the Health Portability and Accountability Act. We obtained outcomes through linkage to a
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local five-hospital registry in the Massachusetts General Brigham healthcare system, alongside
pathology findings from MGH’s mammography electronic medical record. We excluded patients
who were diagnosed with other cancers (e.g., sarcoma, etc.) in the breast, or did not have all
four views (L CC, L MLO, R CC, R MLO). For patients who develop cancer, we excluded exams
within six months of diagnosis. For patients who did not develop cancer, we excluded exams
within three years of the last followup screen. We note that six months and three years are the
minimum and maximum follow up recommendations for Tempo, and so this exclusion enabled
us to ensure that simulations always occur within the bounds of observed data. This resulted in
54,673 patients who were randomly split into 43,749 for training, 5,399 for development, and
5,525 for testing. We note that this dataset was also used to develop Mirai [12],  and so we used
the same training, development and testing splits. Since each patient had multiple exams, this in
turn resulted in 137,682, 16,634, and 17,119 exams of training, development, and testing,
respectively. All mammograms were acquired on Hologic machines. For each exam, we
obtained Mirai [12] risk assessments, as well as Tyrer-Cuzick version 8 (TCv8) risk
assessments.  Detailed demographics of this dataset are available in Table S1 and the dataset
construction procedure is shown in Figure S4.

To evaluate the ability of Tempo policies to generalize to new populations, we collected the
Emory, Karolinska and CGMH datasets under approval of the relevant Institutional Review
Boards with a waiver for written informed consent. To create the Emory test set, which contains
a large representation of african american women, we extracted eight years of mammograms
from an institutional database of all comers for screening mammography from 2013-2020 and
randomly selected 30% of women, totalling 28,994 patients. All mammograms were acquired
on Hologic machines.  We collected outcomes from pathology findings from Emory’s
mammography electronic medical record. We obtained Mirai risk assessments for each exam.
As with the MGH dataset, we excluded exams within six months of diagnosis. For patients who
did not develop cancer, we excluded exams within three years of the last followup screen. This
resulted in a total of 22,030 exams from 10,340 patients. Detailed demographics of this dataset
are shown in Table S2 and the dataset construction procedure is shown in Figure S4.

The Karolinska test set was extracted from the Cohort of Screen-Aged Women (CSAW) [46]. All
women aged 40-74 within the Karolinska University uptake area who had attended screening
and were diagnosed with breast cancer, without implants and without prior breast cancer, from
2008-2016 were included, as well as a random sample of controls with at least two years
follow-up, from the same time period. The full Karolinska case-control and validation datasets
included 11,301 and 2,580 women, respectively. A random subset of 9,484 patients in total were
selected for inclusion in this study. We included all mammograms, acquired on Hologic
machines, from 2008-2016 for the included women that contained all four views (L CC, L MLO,
R CC, R MLO), resulting in 14,362 exams from 7,193 patients. We excluded exams within six
months of a cancer diagnosis. For patients who did not develop breast cancer, we excluded
exams within three years of the last screening followup. Because of the case-control dataset
design, this dataset has a much higher ratio of patients that develop cancer, relative to the 1.9%
incidence reported in the CSAW cohort [45]. To take this into account, we randomly resampled
patients who did not develop cancer from our cohort to produce a larger dataset with a 1.9%
cancer incidence, resulting in a total of 93,052 exams from 7,193 patients. Detailed
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demographics of this dataset are shown in Table S3 and the dataset construction procedure is
shown in Figure S4. For each exam, we obtained Mirai [12] risk assessments.

To create the CGMH test set, which consisted of 12,280 exams from 12,280 patients, we
selected random women undergoing screening mammography there between 2010-2011 that
were aged 45-70. Women aged 40-44 were also included if they had a family history of breast
cancer, following local screening guidelines. All mammograms were acquired on Hologic
machines. Cancer outcomes were obtained from the national cancer registry. More details for
this dataset is available in Table S4 and Figure S4. We excluded patients with unknown age.
For each patient that developed cancer, we also manually collected all the dates of their future
screenings from 2010-2020 through chart review. This allowed us to estimate early detection
benefits relative to historical screening. We did not collect future screening dates for patients
who did not develop cancer. For patients who developed cancer, we excluded exams within six
months of diagnosis, while for patients who did not develop cancer, we excluded exams within
three years of the last followup screen. For each exam, we obtained Mirai [12] risk
assessments.

For patients with multiple exams in a dataset, we considered each exam as a possible trajectory
starting point and evaluated screening policies across all starting points. We account for patients
contributing multiple correlated trajectories in our statistical analysis by using a clustered
bootstrap procedure with 5000 samples. For each trajectory, we considered its censor time as
either the date of cancer diagnosis via biopsy or the date of last screening follow up.  We
designed our screening policies to offer a minimum followup recommendation of six months and
a maximum followup recommendation of three years. Because our followup intervals were in
increments of six months, we discretized time across all trajectories into six month timesteps. To
ensure that our simulations always occurred within the time frame of the observed data, we
excluded starting points where cancer was diagnosed in less time than the minimum action (six
months). For screening trajectories without a cancer diagnosis, we excluded starting points
where the time to the last screening followup was less than the maximum action (three years).

Reward Design
We considered two rewards in our simulation environment, one measuring imaging cost and
early detection benefit respectively. We modeled our imaging cost reward as the negative
amount of mammograms per year recommended by a policy. To model early detection benefits,
we measured the time difference in six-month timesteps between each patient's recommended
screening date, if it was after their last negative mammogram, and their actual diagnosis date.
We then converted this value into months. We defined a patient's diagnosis date as the date of
their positive biopsy. Negative values of this reward imply a delayed diagnosis, and positive
values imply relative screening benefit over the retrospective trajectory. We capped maximum
early detection benefit for any patient to be 18 months and did not cap the possible screening
delay. As a result, if a patient's last negative mammogram was three years before their cancer
diagnosis, and a screening policy recommended a mammogram two years and one year before
a patient’s cancer diagnosis, we assigned this trajectory an early detection benefit of 18 months.
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We provide additional analysis for different possible assumptions for the maximum screening
benefit in Figure S3.

Risk Progression Models
We considered two possible methods to estimate risk progression, namely Static Risk, which
always predicted that a patient's risk at the next time step would be the same as at the last time
step, and a Recurrent Neural Network (RNN). For our RNN model, we utilized a Gated
Recurrent Unit (GRU) [47] with an additive hazard layer [12] to estimate future risk. The GRU
was trained to take previous risk observations, observed or predicted, to predict risk at the next
time step, and minimize the Kullback-Leibler (KL) divergence between predicted risk
assessments and observed ones on the MGH training set. We experimented with different
learning rates, hidden sizes, numbers of layers and dropout, and chose the model that obtained
the lowest validation KL divergence on the MGH validation set. Our final risk progression GRU
had two layers, a hidden dimension size of 100, a dropout of 0.25, and was trained for 30
epochs with a learning rate of 1e-3 using the Adam optimizer. The outputs of our risk
progression model for Tempo-Mirai are visualized in Figure S5. Given a trained risk progression
model, we can now estimate unobserved risk assessments auto-regressively. At each time step,
the model takes as input the previous risk assessment, the prior hidden state, using the
previous predicted assessment if the real one is not available, and predicts the risk assessment
at the next time step.  We validated our risk progression network on the MGH, Emory and
Karolinska test sets in Table S5 and note that our GRU outperformed the static risk baseline in
all datasets. Since we only collected only one exam for each patient in the CGMH test set, we
could not validate the risk progression network on that test set. The implementation for each risk
progression as well as our hyper-parameter search is available in our code release.

Personalized Screening Models
We implemented our personalized screening policy as multiple layer perceptron, which took as
input a risk assessment and weighting between rewards and predicted the Q-value for each
action, i.e follow up recommendation, across the rewards. This network was trained using
Envelope Q-Learning [27]. Following recent work in deep reinforcement learning [17, 48], we
used an experience replay buffer to reduce correlation between our training batches, and we
utilized a target Q-network [17] to stabilize training updates. We experimented with different
numbers of layers, hidden dimension sizes, learning rates, dropouts, exploration epsilons, target
network reset rates and weight decay rates. We note that we conducted the same grid searches
for Tempo-Mirai and Tempo-TCv8, and chose each model to maximize the average reward on
the MGH validation set. Our final Tempo-Mirai model had 6 layers, each with 256 hidden units,
followed by ReLU nonlinearities. It was trained for 30 epochs using a learning rate of 1e-3, a
dropout of 0.25 and a weight decay of 0.01 using the Adam optimizer, and the target network
was reset every 1000 batches.  Our final Tempo-TCv8 model had 4 layers, each with 256
hidden units, followed by ReLU nonlinearities. It was trained for 30 epochs using a learning rate
of 1e-3, a dropout of 0.25 and a weight decay of 0 using the Adam optimizer, and the target
network was reset every 1000 batches. The implementation of each risk policy, the training code
as well as our hyper-parameter searches are available in our code release. For both
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Tempo-Mirai and Tempo-TCv8, we chose a reward weighting to approximately match the
screening cost of annual screening on the MGH development set. We used reward weights for
screening cost and early detection benefit of (0.50, 3.0) and (0.77, 3.0) for Tempo-Mirai and
Tempo-TCv8 respectively. For Tempo-TCv8, this resulted in a reward weight  of 0.77 and 3.0. for
Tempo-TCv8. We utilized the same reward weighting across all test sets.

Supervised Learning Baseline
We implemented our supervised learning baselines, Supervised-Mirai and Supervised-TCv8, as
a multiple layer perceptron, which took as input a risk assessment and predicted a probability
distribution across followup recommendations. This network was trained to minimize the cross
entropy loss between its actions, and the optimal sequence of actions. We computed optimal
actions for each patient to maximize our rewards metrics. For patients who did not develop
cancer within the time period of the maximum follow up recommendation, the optimal action was
the maximum followup recommendation of three years. For patients who developed cancer, the
optimal action was to recommend a screening followup in the time step following the last
negative mammogram. Unlike Tempo-Mirai which is trained to maximize trajectory level rewards
using reinforcement learning, Supervised-Mirai is trained to maximize the likelihood of the
optimal sequence of actions. As a result, Supervised-Mirai does not benefit from observing how
its own errors compound across the trajectory at training time. For each supervised model, we
experimented with different numbers of layers, hidden dimension sizes, learning rates, dropouts,
and weight decays. To enable fair comparison against Tempo models, we searched the same
space of hyper-parameters and selected the hyper-parameters that achieved the best average
reward on the MGH validation set. Our final Supervised-Mirai model had 8 layers, each with 512
hidden units, followed by ReLU nonlinearities. It was trained for 30 epochs using a learning rate
of 1e-3, a dropout of 0.25 and a weight decay of 0.1 using the Adam optimizer. Our final
Supervised-TCv8 model also had 8 layers, each with 512 hidden units, followed by ReLU
nonlinearities. It was trained for 30 epochs using a learning rate of 1e-4, a dropout of 0.25 and a
weight decay of 0.1 using the Adam optimizer. The implementation of each risk policy, the
training code as well as our hyper-parameter searches are available in our code release.

Statistical Analysis
To calculate confidence intervals while accounting for patients having multiple trajectories, we
used a clustered bootstrap approach with 5000 samples. To assess significance in the
difference between two metrics, we used a two-tailed t-test with a predefined p-value of 0.05 for
significance.
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Tables

   MGH Emory Karolinska CGMH

All
exams 17119 (608) 22030 (723) 14362 (1768) 12280 (235)

Age

<40 120 (2) 237 (7) 0 (0) 0 (0)

40-50 4710 (91) 4523 (114) 5921 (558) 3656 (74)

50-60 5271 (187) 6210 (162) 4200 (499) 5816 (109)

60-70 4728 (198) 7018 (231) 3903 (652) 2801 (52)

70-80 1997 (96) 3532 (195) 338 (59) 7 (0)

80< 313 (34) 510 (14) 0 (0) 0 (0)

Table 1: Demographics of Massachusetts General Hospital (MGH), Emory, Karolinska, and
Chang Gung Memorial Hospital (CGMH) test sets. Each number is followed by the number of
exams eventually followed by a cancer diagnosis.
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Screening
Policy

Risk
model

Average
number of
Mammograms
per Year

Earlier Detection
in Months

Efficiency

MGH Test Set: 17,119 exams from 5,525 patients. 210 patients develop cancer.

Annual Age 1.0 (1.00, 1.00) 1.58 (0.54, 2.58) 1.58 (0.54, 2.58)

Biennial Age 0.5 (0.50, 0.50) -5.17 (-6.22, -4.13) -10.34 (-12.44, -8.26)

USPSTF Age 0.72 (0.71, 0.73) -3.18 (-4.23, -2.22) -4.42 (-5.83, -3.12)

Supervised
TCv8 1.66 (1.65, 1.69) 4.55 (3.51, 6.08) 2.74 (2.08, 3.70)

Mirai 0.94 (0.92, 0.96) 0.75 (-0.55, 1.94) 0.80 (-0.58, 2.12)

Tempo
TCv8 0.96 (0.94, 0.97) 2.06 (1.14, 3.20) 2.16 (1.18, 3.40)

Mirai 0.96 (0.94, 0.97) 4.10 (3.06, 4.96) 4.29 (3.17, 5.25)

Emory Test Set: 22,030 exams from 10,340 patients. 333 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 3.21 (2.37, 3.88) 3.21 (2.37, 3.88)

Biennial Age 0.5 (0.5, 0.5) -4.03 (--5.07, -3.22) -8.07 (-10.14, -6.5)

USPSTF Age 0.68 (0.67, 0.69) -2.11 ( -2.97, -1.40) -3.12 ( -4.36, -2.08)

Supervised Mirai 1.16 (1.15, 1.18) 2.05 (0.48, 3.29) 1.76 (0.41, 2.86)

Tempo Mirai 1.08 (1.07, 1.08) 6.39 (5.49, 6.99) 5.92 (5.06, 6.54)

Karolinska Test Set: 14,353 exams from 7,191 patients. 919 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 6.29 (5.76, 6.85) 6.29 (5.76, 6.85)

Biennial Age 0.5 (0.5, 0.5) -2.04 (-2.66, -1.41) -4.07 ( -5.32, -2.82)

USPSTF Age 0.79 (0.79, 0.80) 1.02 (0.37, 1.63) 1.28 (0.46, 2.08)

Supervised Mirai 0.60 (0.59, 0.61) 0.34 (-0.60, 1.24) 0.56 (-0.98, 2.11)

Tempo Mirai 0.75 (0.74, 0.76) 7.23 (6.46, 7.97) 9.63 (8.53, 10.72)

CGMH Test Set: 12280 exams from 12280 patients. 235 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 11.00 (9.86, 12.28) 11.00 (9.86, 12.28)
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Biennial Age 0.5 (0.5, 0.5) 5.59 (4.11, 7.05) 11.18 (8.22, 14.09)

USPSTF Age 0.78 (0.77, 0.78) 8.63 (7.15, 10.06) 11.10 (9.14, 13.01)

Supervised Mirai 0.98 (0.97, 0.99) 8.02 (6.23, 10.21) 8.17 (6.30, 10.53)

Tempo Mirai 0.88 (0.87, 0.89) 11.36 (10.21, 12.59) 12.92 (11.54, 14.41)

Table 2:  Results for all screening policies on the MGH, Emory, Karolinska and CGMH test sets.
For each policy, we report the average number of mammograms per year, the early detection
benefit in months relative to historical screening (higher positive number means earlier), and the
screening efficiency (higher positive number is better). We defined screening efficiency as the
early detection benefit divided by the average number of mammograms per year. All metrics are
followed by their 95% confidence interval.
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Figures:

Figure 1: Retrospective patient trajectory from MGH test set compared to recommended
trajectories by different guidelines.  This patient was screened every year, from years zero to
year three, and was diagnosed with breast cancer in year three. The red “x” and red line
indicate the known time of cancer diagnosis. The green check marks indicate screening
negative mammograms, and the green line indicate the last known negative time-point, i.e year
two. For each recommended trajectory, we can compute the screening cost and early detection
benefit relative to the historical screening.  We measure the early detection benefit of a policy,
by comparing it’s recommended screening dates to the last known negative date and the known
cancer date. In our simulation, Tempo-Mirai, annual screening and biennial screening obtained
an early detection benefit of 6.0 months, 0 months and -12.0 months respectively while
recommending an average of 1.0, 1.0 and 0.5 mammograms per year for this patient.
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Figure 2: Overview of Tempo.  Each screening policy, e.g Tempo-Mirai, takes as input a risk
assessment and a weighting between rewards, and outputs a recommended followup time. We
refer to the weighting between rewards as the screening preference.  If a risk assessment is not
available at the next recommended time-step, we estimate the risk assessment using our risk
progression network.
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Figure 3: Early detection vs the number of mammograms per year at MGH (top left), Emory (top
right), Karolinska (bottom left), CGMH (bottom right). Each point for a Tempo model (e.g
Tempo-Mirai) corresponds to an alternative preference in the trade-off between early detection
and screening frequency.  Tempo policies (i.e Tempo-Mirai, Tempo-TCv8) are all trained using
our reinforcement learning framework and Supervised policies (i.e Supervised-Mirai,
Supervised-TCv8) are trained using a supervised learning baseline. Mirai and TCv8 policies
refer to policies that leverage Mirai[12], and Tyrer-Cuzick version 8 [8] risk assessments
respectively.
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Figure 4: Histograms of screening frequency, i.e average number mammograms per year, as
recommended by each screening policy for patients across the MGH (top), Emory (middle),
Karolinska (bottom left) and CGMH (bottom right) test sets.
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Supplementary Tables

   MGH Train Set MGH Validation  Set MGH Test Set

Characteristics All Cancer All Cancer All Cancer

All exams 137682
(100.0) 5202 (3.8) 16634 (100.0) 613 (3.7)

17119
(100.0) 608 (3.6)

Age

<40 948 (0.7) 28 (3.0) 114 (0.7) 2 (1.8) 120 (0.7) 2 (1.7)

40-50 36971 (26.9) 1051 (2.8) 4483 (27.0) 151 (3.4) 4710 (27.5) 91 (1.9)

50-60 42425 (30.8) 1331 (3.1) 5153 (31.0) 155 (3.0) 5271 (30.8) 187 (3.5)

60-70 37715 (27.4) 1763 (4.7) 4585 (27.6) 181 (3.9) 4728 (27.6) 198 (4.2)

70-80 16663 (12.1) 798 (4.8) 1958 (11.8) 107 (5.5) 1977 (11.5) 96 (4.9)

80< 2960 (2.1) 231 (7.8) 341 (2.1) 17 (5.0) 313 (1.8) 34 (10.9)

Density

Almost entirely
fatty 12639 (9.2) 294 (2.3) 1499 (9.0) 47 (3.1) 1569 (9.2) 30 (1.9)

Scattered areas
of fibroglandular
tissue 65353 (47.5) 2496 (3.8) 8007 (48.1) 250 (3.1) 8112 (47.4) 293 (3.6)

Heterogeneously
dense 52991 (38.5) 2171 (4.1) 6255 (37.6) 276 (4.4) 6633 (38.7) 265 (4.0)

Extremely dense 6623 (4.8) 239 (3.6) 867 (5.2) 39 (4.5) 797 (4.7) 20 (2.5)

Race

White 112055
(81.4) 4495 (4.0) 13432 (80.8) 518 (3.9)

13932
(81.4) 534 (3.8)

African American 6585 (4.8) 204 (3.1) 792 (4.8) 27 (3.4) 807 (4.7) 26 (3.2)

Asian or Pacific
Islander 6055 (4.4) 136 (2.2) 779 (4.7) 16 (2.1) 817 (4.8) 21 (2.6)
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Hispanic 1542 (1.1) 52 (3.4) 181 (1.1) 5 (2.8) 145 (0.8) 4 (2.8)

Other Race 11445 (8.3) 315 (2.8) 1450 (8.7) 47 (3.2) 1418 (8.3) 23 (1.6)

Time to Next Exam

< 1 year 1313 (1.0) 295 (22.5) 172 (1.0) 50 (29.1) 159 (0.9) 32 (20.1)

1-2 years 114503
(83.2) 4264 (3.7) 13791 (82.9) 486 (3.5)

14192
(82.9) 514 (3.6)

2-3 years 12377 (9.0) 429 (3.5) 1489 (9.0) 58 (3.9) 1536 (9.0) 41 (2.7)

>= 3 years 9489 (6.9) 214 (2.3) 1182 (7.1) 19 (1.6) 1232 (7.2) 21 (1.7)

Time to Cancer

0-1 year 61 (0.0) 61 (100.0) 8 (0.0) 8 (100.0) 13 (0.1) 13 (100.0)

1-2 years
298 (0.2) 298 (100.0) 40 (0.2)

40
(100.0) 34 (0.2) 34 (100.0)

2-3 years
508 (0.4) 508 (100.0) 50 (0.3)

50
(100.0) 60 (0.4) 60 (100.0)

3-4 years
632 (0.5) 632 (100.0) 80 (0.5)

80
(100.0) 97 (0.6) 97 (100.0)

4-5 years
724 (0.5) 724 (100.0) 92 (0.6)

92
(100.0) 94 (0.5) 94 (100.0)

5-10 years
2979 (2.2)

2979
(100.0) 343 (2.1)

343
(100.0) 310 (1.8) 310 (100.0)

Table S1:  Detailed demographics of MGH dataset.
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Emory Dataset

Characteristics All Cancer

All exams 22,030 (100.0) 723 (3.3)

Age

<40 237 (1.1) 7 (3.0)

40-50 4,523 (20.5) 114 (2.5)

50-60 6,210 (28.2) 162 (2.6)

60-70 7,018 (31.9) 231 (3.3)

70-80 3,532 (16.0) 195 (5.5)

80< 510 (2.3) 14 (2.7)

Race

White 9,780 (44.4) 348 (3.6)

African American 10,436 (47.4) 343 (3.3)

Asian 994 (4.5) 15 (1.5)

Native Hawaiian or Other

Pacific Islander 122 (0.6) 9 (7.4)

American Indian or Alaskan

Native 21 (0.1) NA

Multiple 47 (0.2) NA

Time to Next Exam

< 1 year 529 (2.4) 48 (9.1)

1-2 years 16,557 (75.2) 546 (3.3)

2-3 years 2,628 (11.9) 82 (3.1)

>= 3 years 2,316 (10.5) 47 (2.0)

Time to Cancer

0-1 year 16 (0.1) 16 (100.0)

1-2 years 96 (0.4) 96 (100.0)
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2-3 years 124 (0.6) 124 (100.0)

3-4 years 110 (0.5) 110 (100.0)

4-5 years 132 (0.6) 132 (100.0)

5-10 years 245 (1.1) 245 (100.0)

Table S2. Detailed demographics of Emory test set
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Karolinska Dataset before
resampling

Karolinska Dataset after
resampling

Characteristics All Cancer All Cancer

All exams 14362 (100.0) 1768 (12.3) 93052 (100.0) 1768 (1.9)

Age

40-50 5921 (41.2) 558 (9.4) 39433 (42.4) 558 (1.4)

50-60 4200 (29.2) 499 (11.9) 27514 (29.6) 499 (1.8)

60-70 3903 (27.2) 652 (16.7) 24010 (25.8) 652 (2.7)

70-80 338 (2.4) 59 (17.5) 2095 (2.3) 59 (2.8)

Time to Next Exam

< 1 year 90 (0.6) 84 (93.3) 134 (0.1) 84 (62.7)

1-2 years 5421 (37.7) 618 (11.4) 35380 (38.0) 618 (1.7)

2-3 years 7087 (49.3) 912 (12.9) 45844 (49.3) 912 (2.0)

>= 3 years 1764 (12.3) 154 (8.7) 11694 (12.6) 154 (1.3)

Time to Cancer

0-1 year 25 (0.2) 25 (100.0) 25 (0.0) 25 (100.0)

1-2 years 94 (0.7) 94 (100.0) 94 (0.1) 94 (100.0)

2-3 years 257 (1.8) 257 (100.0) 257 (0.3) 257 (100.0)

3-4 years 204 (1.4) 204 (100.0) 204 (0.2) 204 (100.0)

4-5 years 352 (2.5) 352 (100.0) 352 (0.4) 352 (100.0)

5-10 years 836 (5.8) 836 (100.0) 836 (0.9) 836 (100.0)

Table S3:  Detailed demographics of Karolinska test set. Because the Karolinska dataset was
collected in a case-control design, it has a much higher cancer incidence than reported in the
CSAW cohort [46]. To take this into account, we randomly resampled this dataset to produce a
larger dataset with 1.9% cancer incidence.
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CGMH Dataset

Characteristics All Cancer

All exams 12280 (100.0) 235 (1.9)

Age

40-50 3656 (29.8) 74 (2.0)

50-60 5816 (47.4) 109 (1.9)

60-70 2801 (22.8) 52 (1.9)

70-80 7 (0.1) NA

Time to Next Exam

< 1 year NA 13 (100.0)

1-2 years NA 31 (100.0)

2-3 years NA 50 (100.0)

>= 3 years NA 141 (1.2)

Time to Cancer

0-1 year 11 (0.1) 11 (100.0)

1-2 years 24 (0.2) 24 (100.0)

2-3 years 42 (0.3) 42 (100.0)

3-4 years 26 (0.2) 26 (100.0)

4-5 years 36 (0.3) 36 (100.0)

5-6 years 96 (0.8) 96 (100.0)

Table S4:  Detailed demographics of CGMH test set.
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Risk Model Progression Model KL Divergence on Test Set (95% Confidence
interval)

MGH Test Set: 17,119 exams from 5,525 patients. 210 patients develop cancer.

Mirai Static Risk 0.038 (0.036, 0.040)

RNN 0.028 (0.026, 0.029)

Emory Test Set: 22,094 exams from 10,369 patients. 333 patients develop cancer.

Mirai Static Risk 0.035 (0.034, 0.036)

RNN 0.029 (0.028, 0.030)

Karolinska Test Set: 14,353 exams from 7,191 patients. 919 patients develop
cancer.

Mirai Static Risk 0.029 (0.027, 0.031)

RNN 0.026 (0.025, 0.027)

Table S5:  Testing risk progression models on the MGH, Emory and Karolinska test sets. Static
Risk assumes that patient risk does not change, i.e risk assessments at future time steps will
equal the last observed risk assessment. RNN is an auto-regressive recurrent neural network
that was trained to predict future risk assessments from prior assessments on the MGH training
set. For each model, we report the Kullback-Leibler (KL) divergence (lower is better), between
the risk progressions model predicted risk and the observed risk. All metrics are followed by
their 95% confidence interval.
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Screening
Policy

Risk
model

Average
Mammograms
per Year

Early Detection in
Months

Efficiency

Age: <=55.  8,038 exams from 3,016 patients. 84 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 1.16 (-0.34, 2.62) 1.16 (-0.34, 2.62)

Biennial Age
0.5 (0.5, 0.5) -5.50 (-7.11, -3.90)

-11.00 (-14.22,
-7.80)

USPSTF Age 0.97 (0.96, 0.97) 0.848 (-0.76, 2.29) 0.88 (-0.78, 2.37)

Supervised
TCv8 1.45 (1.42, 1.48) 2.17 (0.39, 4.30) 1.50 (0.26, 3.03)

Mirai 0.769 (0.75, 0.80) -2.17 (-4.83, 1.01) -2.82 (-6.08, 1.35)

Tempo
TCv8 0.96 (0.94, 0.99) 1.76 (0.21, 3.77) 1.83 (0.21, 4.01)

Mirai 0.86 (0.84, 0.87) 2.92 (1.25, 4.63) 3.41 (1.44, 5.53)

Age: > 55. 9081 exams from 2959 patients. 148 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 1.77 (0.68, 2.83) 1.77 (0.68, 2.83)

Biennial Age
0.5 (0.5, 0.5) -5.02 (-6.23, -3.89)

-10.04 (-12.47,
-7.78)

USPSTF Age
0.5 (0.5, 0.5) -5.02 (-6.23, -3.88)

-10.04 (-12.47,
-7.78)

Supervised
TCv8 1.85 (1.83, 1.87) 5.64 (4.28, 7.44) 3.06 (2.30, 4.07)

Mirai 1.08 (1.06, 1.12) 2.09 (0.38, 3.93) 1.92 (0.34, 3.72)

Tempo TCv8 1.72 (1.70, 1.74) 4.84 (3.20, 6.80) 2.82 (1.84, 4.02)

Mirai 1.04 (1.03, 1.06) 4.63 (3.49, 6.03) 4.45 (3.29, 5.88)

Density: Non-dense. 9681 exams from 3370 patients. 120 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 1.54 (0.21, 2.65) 1.54 (0.21, 2.65)

Biennial Age
0.5 (0.5, 0.5) -5.26 (-6.64, -3.97)

-10.51 (-13.28,
-7.95)

USPSTF Age 0.67 (0.66, 0.67) -4.05 (-5.43, -2.80) -6.08 (-8.05, -4.27)

Supervised
TCv8 1.62 (1.6, 1.65) 4.29 (2.26, 6.31) 2.65 (1.38, 3.95)

Mirai 0.87 (0.84, 0.90) 0.07 (-1.86, 2.03) 0.09 (-2.07, 2.42)
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Tempo
TCv8 0.96 (0.93, 0.97) 1.56 (0.52, 2.48) 1.64 (0.54, 2.67)

Mirai 0.94 (0.91, 0.95) 3.83 (2.70, 5.00) 4.10 (2.85, 5.48)

Density: Dense. 7430 exams from 2839 patients. 116 patients develop cancer.

Annual Age 1.0 (1.0, 1.0) 1.621 (0.28, 2.95) 1.621 (0.28, 2.95)

Biennial Age
0.5 (0.5, 0.5) -5.07 (-6.50, -3.61)

-10.15 (-12.98,
-7.21)

USPSTF Age 0.79 (0.78, 0.80) -2.19 (-3.80, -0.69) -2.78 (-4.77, -0.89)

Supervised
TCv8 1.72 (1.70, 1.74) 4.84 (3.20, 6.80) 2.82 (1.84, 4.02)

Mirai 1.02 (0.98, 1.05) 1.52 (-0.17, 4.00) 1.49 (-0.15, 4.08)

Tempo
TCv8 0.96 (0.93, 0.98) 2.63 (1.34, 4.54) 2.77 (1.37, 4.89)

Mirai 0.98 (0.96, 1.0) 4.4 (2.86, 6.08) 4.49 (2.86, 6.35)

Table S6:  Results for all screening policies on subgroups of the MGH test set. For each policy,
we report the average number of mammograms per year, the early detection benefit in months
relative to historical screening (higher positive number means earlier), and the screening
efficiency (higher positive number is better). We defined screening efficiency as the early
detection benefit divided by the average number of mammograms per year. All metrics are
followed by their 95% confidence interval.
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Supplementary Figures

Figure S1. Histogram of early detection benefit in months relative to historical screening  for
patients who developed cancer in the MGH (top left), Emory (top right), Karolinska (bottom left),
and CGMH (bottom right) test sets.
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Figure S2: Histogram of screening recommendations for each screening policy. MGH (top left),
Emory (top right), Karolinska (bottom left), CGMH (bottom right).
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Figure S3. Our early detection metric assumed that a cancer could be caught up to 18 months
before diagnosis. To test the robustness of our results to this assumption, we also evaluated our
screening policies when changing this assumption to six months, 12 months and 24 months. For
each policy, we report its screening efficiency, which is defined as its early detection benefit in
months divided by the amount of mammograms it recommends per year. We use a * to denote
the policy with the highest screening efficiency.
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`

Figure S4: Dataset construction flow chart for the MGH dataset (top left), Emory (top right),
Karolinska test set (bottom left), and CGMH test set (bottom right).

36



Figure S5: Estimated (circle) and observed (square) Mirai five-year risk for two random patients
in the MGH test set. We estimated unobserved risk observations using a recurrent neural
network, which was optimized to predict future risk assessments from past risk assessments on
the MGH training set.
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