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Abstract

Background: The t-distributed Stochastic Neighbour Embedding (t-SNE)
algorithm has emerged as one of the leading methods for visualising High
Dimensional (HD) data in a wide variety of fields, especially for revealing cluster
structure in HD single cell transcriptomics data. However, t-SNE often fails to
correctly represent hierarchical relationships between clusters and creates spurious
patterns in the embedding. In this work we generalized t-SNE using shape-aware
graph distances to mitigate some of the limitations of the t-SNE. Although many
methods have been recently proposed to circumvent the shortcomings of t-SNE,
notably Uniform manifold approximation (UMAP) and Potential of heat diffusion
for affinity-based transition embedding (PHATE), we see a clear advantage of the
proposed graph based method.

Results: The superior performance of the proposed method is first demonstrated
on simulated data, where a significant improvement compared to t-SNE, UMAP
and PHATE, based on quantitative validation indices, is observed when visualizing
imbalanced, nonlinear, continuous and hierarchically structured data. Thereafter
the ability of the proposed method compared to the competing methods to
create faithfully low dimensional embeddings is shown on two real-world data
sets, the single cell transcriptomics data and the MNIST image data. In addition,
the only hyper-parameter of the method can be automatically chosen in a
data-driven way, which is consistently optimal across all test cases in this study.

Conclusions: In this work we show that the proposed shape-aware stochastic
neighbor embedding method creates low dimensional visualisations that robustly
and accurately reveal key structures of high dimensional data.

Keywords: Data visualisation; Dimensionality reduction; Graph distance;
Dimensionality reduction validation

Background

Analysing high dimensional (HD) data is an important challenge in a wide vari-

ety of fields. In particular, Dimensionality Reduction (DR) techniques have been

increasingly used for visualising high dimensional data by projecting the data onto

a low dimensional (LD), usually 2D, space. The aim is to reveal the key hidden

structures in the HD data, such as clusters or other geometrical arrangements of

the data points. One of the most frequently used methods for this purpose is the

t-distributed Stochastic Neighbour Embedding (t-SNE) [1]. The t-SNE is able to

create compelling visualisations of data with hundreds of dimensions in fields rang-

ing from image processing [1], speech recognition [2], immuno-profiling of COVID-19

patients [3], etc. One further important area of application is cell biology where data

is collected on gene expressions in individual cells [4–7]. Cells are often characterised
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by expressions of thousands of different genes, where the t-SNE has enabled visual

analysis of the data in the LD embedding. One of the main successes of t-SNE is its

ability to capture discrete patterns even for data with very high dimensions com-

pared with traditional DR methods [1], such as principal component analysis (PCA)

[8], locally linear embedding [9], ISOMAP [10] and Laplacian eigenmaps [11], etc.

The approach taken by t-SNE focuses primarily on preserving local structures, usu-

ally characterised by Euclidean distances (ED), but not on the global arrangement

of points. Despite its merits, several drawbacks of t-SNE have been identified in the

literature. Specifically, the t-SNE requires users to define what is meant by local,

this is often difficult to assess in practise and an incorrect notion of locality can

result in spurious patterns appearing in the LD embedding. Furthermore, global

patterns are important in many cases, but they are not guaranteed to be preserved

by the t-SNE.

To alleviate these limitations, we propose to incorporate graph-based distances

into the framework of t-SNE. The first step of the method is to construct a graph

representing the HD data in a data-driven way by only connecting points in small lo-

cal neighborhoods. Information about the global structures of the constructed graph

are then captured by shape-aware graph distances (the biharmonic distance [12] in

this study). In contrast to conventional distance measures, such as the ED, shape-

aware graph distances are able to learn the global shapes of the underlying manifold

or structure on which the HD data reside. This has an advantage for dimensionality

reduction based on distance preservation. For example, if the underlying manifold

is a 2D structure embedded in a 3D Euclidean space, and ED based algorithm,

such as the t-SNE, would have to give up global distances to reduce dimension.

A DR technique based on a shape aware distance that respects the curvature of

the manifold, on the other hand, can reduce dimension without distorting global

structure. We term the t-SNE embedding shape-aware distances SASNE, short for

Shape-Aware Stochastic Neighbour Embedding. The original t-SNE that embeds

conventional distances, e.g., ED, is simply referred as t-SNE hereafter.

Some recent methods have also been proposed that claim to solve the shortcomings

of t-SNE, in particular the Potential of heat diffusion for affinity-based transition

embedding (PHATE) [13] and the Uniform manifold approximation (UMAP) [14,

15] methods. In this study, we compare SASNE to t-SNE, PHATE and UMAP

and show that these competing methods are not able to consistently (i) reveal

true discrete structures, (ii) avoid creating spurious discrete structures, and (iii)

preserve global and hierarchical structures as well as SASNE. In order to confirm

the advantages of SASNE compared to t-SNE, PHATE and UMAP, we apply the

methods to embed both synthetic and real data sets that demonstrate imbalanced,

nonlinear, hierarchical and developmental trajectory structures. The real data sets

are, respectively, the MNIST data set of handwritten digits and gene expressions

from cells of a mouse brain.

In some previous works [3–7], judging the embedding performance is often done

simply by visual inspection where the embedding quality is assessed by the amount

of discrete structures appearing in the LD embedding. However, the discrete struc-

tures that appear in the LD embedding may be spurious that do not necessarily

reflect the true underlying organization of the HD data due to, e.g., inappropriate
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choice of hyper-parameters or failure to capture global structures in the LD space.

Here, we scrutinize the embedding quality in terms of quantitative validation meth-

ods for both clustering (the silhouette indices and plots) and dimensionality reduc-

tion (rank-based methods). It was found that SASNE not only shows significant

improvement in preserving both clustering and hierarchical structures at all scales,

but also allows us to fix the hyper-parameter of the method in a data-driven way,

which is commonly chosen by default [4].

The outline of the paper is as follows. The theoretical concepts of the SASNE

are introduced in the Methods section. These include an overview of the t-SNE

method, the motivation and evaluation of graph based distances, and the validation

methods monitoring the quality of clustering and dimensionality reduction in the

LD embedding. In the Results section, we demonstrate the superior performances of

SASNE in capturing nonlinear and hierarchical structures compared to the original

t-SNE and UMAP based on ED, as well as the PHATE based on the potential

distance (PD), in terms of both synthetic and real data sets.

Methods

Overview of t-SNE The t-SNE [1, 2] is a dimensionality reduction method that

takes as input a HD data set X and returns the LD (usually 2D) coordinates Y for

the purpose of visualization of data patterns and organizations. The basic idea of the

method is to transform the distances between data points in both of the HD and LD

spaces into probability distributions. How well the distances are preserved are then

quantified in terms of a dissimilarity measure (or cost function), with the Kullback-

Liebler divergence commonly used, between the two distributions. Variants of t-SNE

[16–18] differ from each other in the probability distributions and the dissimilarity

measure used in the methods.

The t-SNE directly takes as inputs the distances between points without the need

to know the coordinates of the HD feature space. It proceeds by first converting

the HD distances into a probability distribution pij , usually defined by a Gaussian

kernel, over all pairs of points xi and xj , such that close points have high probability.

A key parameter to be set in t-SNE is the ‘perplexity’ which corresponds to the

effective number of neighbours covered by the Gaussian kernel (See Appendix for

details). The perplexity therefore controls the variable widths of the Gaussian kernel

(or the neighborhood ranges) around different data points in the HD space such that

points separated beyond this range are considered as faraway.

Another key idea of t-SNE is the use of long-tailed t-distribution for the proba-

bility distribution qij associated with yi and yj in the LD space. As a result of the

mismatching of the two distributions pij and qij at large distances, faraway points

beyond the neighbourhood ranges set by the perplexity in the HD space tend to

map to much larger distances in the LD space. This is a special claim of t-SNE

to mitigate the crowding problem in dimensionality reduction [1]. Moreover, points

within the neighbourhood ranges set by the perplexity in the HD space tend to

map to points also close in the LD space. These together amplify and better reveal

discrete cluster structures provided that an appropriate value of perplexity is cho-

sen. In practice, a default perplexity value of around 30 is often used with the hope

that it defines reasonable neighborhood ranges that match with the spatial extents

of clusters in the data.
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On the other hand, the Kullback-Leibler divergence, given by
∑

ij pij log
pij

qij
, as

the cost function is asymmetric in pij and qij . This means that short distances in the

HD space with large pij contribute significantly to the cost function, whereas long

distances with small pij contribute less. Consequently, this asymmetric property

of the cost function tends to prevent close points in the HD space from getting

separated in the LD space (i.e., extrusions are discouraged). However, it does not

prevent distant points in the HD space from being mapped close in the LD space

despite the mismatching of pij and qij at large distances mentioned above. (i.e.,

intrusions can occur). The optimisation of t-SNE to find the configuration of points

Y that minimizes the cost function are generally performed using gradient-based

methods. The mathematical details of t-SNE and its optimisation procedures are

given in the Appendix.

Graph distance motivation The t-SNE schemes [1, 4] are commonly employed to

embed HD data based on, e.g., the Euclidean distance (ED) in the HD space.

However, many conventional distance measures in the HD space, such as the ED,

Hamming distance for data string comparison [19], negative binomial distance for

comparison of gene count vectors in single cell RNA sequencing research [17], etc.,

are often good distance measures only in local neighbourhoods that are small com-

pared to the extents of nonlinear structures in the data. For instance, the ED can

only be used locally for data points lying on a hemi-sphere since it fails to cap-

ture the curved shape of the underlying manifold when comparing remote points.

In other words, conventional distance measures fail to capture the global shape

and organization of the data structures. This poses a problem when the common

perplexity value of 30, which can connect moderately remote points, is used to

produce LD embedding of distinct clusters, e.g., for the MNIST data set [1]. On

the other hand, a choice of small perplexity that focuses only on preserving small

local structures could result in a LD embedding composed of many small spurious

clusters that do not exist in the HD data [20]. Furthermore, global structure and

hierarchical organization of clusters are likely lost when a small perplexity is used

[4, 20].

It is therefore generally difficult to choose an appropriate perplexity that is small

enough for the convention distance measures to be useful, but large enough to be

able to capture global structures in the HD data. Here we propose to employ the

graph distances of the HD data as inputs to t-SNE to resolve the above shortcom-

ings. Graph distances, sometimes called shape-aware distances, that better capture

the global nonlinear structures where the HD data reside. As will be shown later

in the Results, this naturally leads to a choice of large perplexity value that can-

not only mitigate the problem with spurious clusters, but also largely preserve the

global and hierarchical structures of the HD data.

Graph construction The first step in evaluating the graph distances is to construct

a graph to represent the HD data, where a node in the graph corresponds to a data

point and edges represent the local relationships between points. We define local

neighborhoods by only connecting each data point xi to its k nearest neighbors

(kNN) based on, e.g., the ED. A graph similarity matrix wij with i, j = 1, · · · , n
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between data points xi and xj is defined as the inverse of the squared ED, 1/∥xi −

xj∥
2. Some studies also use the Gaussian kernel for wij . The inverse of squared ED

is suggested in this study to avoid introducing the Gaussian width as an additional

parameter. The similarities of disconnected data points are simply set to zero. With

the similarity matrix wij , the constructed graph can also be viewed as a Markov

network with transition probability wij/
∑

k wik for a transition from node i to node

j.

Different from the perplexity, the parameter k in the graph construction specifies

the extent of the local neighourhoods where conventional distance measures, e.g.,

ED, can be used. We therefore choose a value for k that is as small as possible,

just to keep the graph connected, that is, for each point xi one can reach any

other data point xj using only the local connections. Commonly k is found to be

around 5 with this method. If the data consists of highly disconnected regions, k

may end up being very large to maintain connectivity in the graph. Nevertheless,

this case can be handled by first finding the k just large enough for the graph to be

connected, then identifying the disconnected components for the (k − 1)NN graph,

which can be done efficiently in linear time by a depth-first search [21]. By keeping

the links between the components from the kNN graph, one can then re-run the

above algorithm recursively on the disconnected components until a lower value of

k, e.g. around 5, is reached.

Biharmonic distance Various graph distances, such as the geodesic distance [22],

commute time distance (CTD) [12], diffusion distance [23], etc., exist in defining

relationships between nodes that capture the intrinsic geometry of the data. In this

study, we employ the biharmonic distance (BHD) [12] to measure distances between

points.

Several advantages of employing the BHD are as follows: (i) The BHD between

points from the same clusters are usually very small due to the strong within-cluster

connectivity in the graph, whereas the BHD between points from different clusters

could be very large due to the weak connectivity between clusters. This property

of BHD makes discrete structure exaggerated and easier to detect. (ii) Compared

with the geodesic distance, the BHD is robust to random noise [12]. (iii) The BHD

can be expressed and computed in terms of the eigenvalues and eigenvectors of the

graph Laplacian, one of the most fundamental concepts in graph theory [24]. (iv)

Unlike, e.g., the diffusion distance, the BHD involves no additional parameter and

therefore reduces the subjective input from users. (v) The CTD is similar to the

BHD in its computation and points (i)-(iv) holds for the CTD as well. However, a

different weighting of the eigenvalues when computing the BHD compared to the

CTD leads to a higher stability in estimating large distances [12].

Validation of the low dimensional embedding In order to monitor the preservation

of cluster and hierarchical structures by SASNE, t-SNE, PHATE and UMAP, we

advocate the use of quantitative validation indices to compare and evaluate the

quality of the LD embedding. In previous studies [1, 2], quality of the embedding

are often carried out by simple visual inspections but this may lead to mislead-

ing conclusions about the data by interpreting spurious patterns created by the
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methods. To provide a quantitative account of the merits of SASNE compared with

the competing methods at the point-wise, cluster-wise (or intermediate), and inter-

cluster (or global) scales, we introduce two complementary validation indices, one

for clustering and another for dimensionality reduction as follows.

Cluster validation In this study, we evaluate how faithfully the embedding pre-

serves the underlying clusters using the silhouette index [25]. For a given point xi

assigned to the cluster Ck (k = 1, · · · ,K with K the number of clusters) containing

Nk points, the cohesion ai is defined as ai =
1
Nk

∑

j:j∈Ck
δij where δij denotes the

distances between points xi and xj and the sum runs over all points in the same

cluster Ck. Here δij is the conventional distance measure, e.g. ED, when the t-SNE

or UMAP are used, the BHD when the SASNE is used and the PD when PHATE

is used.

To quantify separation, we first define a point-to-cluster distance δ(xi, Cl) =
1
Nl

∑

j:j∈Cl
δij where the sum runs over all points in the cluster Cl. For a given

point xi in the cluster Ck, the separation bi is defined as the distances from xi to

the closest cluster that xi does not belong to, i.e., bi = minl ̸=k δ(xi, Cl). Combining

the cohesion and separation, the point-wise silhouette value si for point xi can then

be defined as

si =
bi − ai

max(ai, bi)
. (1)

One can see that −1 ≤ si ≤ 1 and si is close to 1 (−1) for a good (bad) clustering

with large (small) separation bi and small (large) cohesion ai. Furthermore, the

cluster-wise silhouette score sk can be naturally evaluated as the average silhouette

value over all points in the cluster Ck,

sk =
1

Nk

∑

i:xi∈Ck

si (2)

Finally, an overall silhouette coefficient S is evaluated by averaging over all clusters,

S =
1

K

K
∑

k=1

sk. (3)

We first note that the silhouette index is primarily designed to validate clustering

(i.e., unsupervised learning) methods in which the data do not come with labels.

Nevertheless, we will apply the silhouette index in Results below to our test and real

data sets whose clusters Ck are known, to evaluate how well clustering structures

are preserved from the HD space to the LD embedding.

To correctly evaluate clustering results with non-spherical clusters, conventional

distance measures, e.g., the ED, which does not contain any shape information,

should not be used as the distances δij in the silhouette index. Instead, we will

show in Results that the use of the BHD is more appropriate. On the other hand,

the separation bi in the silhouette index only considers the closest cluster to the data

point under consideration. This means that the silhouette index cannot validate how
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well hierarchical organizations of clusters at the inter-cluster scales are preserved

by the LD embedding. This leads us to introduce a complement validation method

that takes the relative placement of the data points into account.

Dimensionality reduction validation We complement the silhouette index by quan-

tifying how well the relative placement of points in the LD space agrees with those

in the HD space. In dimensionality reduction, preservation of exact distances is

too restrictive that can seriously hamper the flexibility of the nonlinear mapping

from the HD to the LD space [26]. Instead, it is more desirable for the embedding

to only impose a monotonic relationship between the HD and LD distances that

corresponds to the preservation of distance rank ordering [27–29]. Unlike classical

methods such as PCA and multidimensional scaling, t-SNE and UMAP do not aim

at preserving exact distances.

In this study, a rank-based validation scheme for dimensionality reduction is for-

mulated as follows. For each point xi in the HD space, the rank vector ri
x = (rxij)j ̸=i

is defined, where rxij = r if xj is the rth closest point to xi. The rank vector r
y
i

is defined in the same way for the LD space. We then define a point-wise quality

measure, ri, for the point xi as the mean absolute rank error (MARE),

ri =
1

n− 1

∑

j:j ̸=i

| rxij − ryij |

n− 1
, (4)

to quantify how well the embedding from the HD to LD space preserves the distance

ordering relative to the point xi. Here the MARE is normalised to lie between 0

(perfect rank preservation) and 1 (complete distortion of ranks). Likewise, an overall

quality measure of preservation of rank ordering that we term ‘average rank error’,

R, can be evaluated by averaging the point-wise quality over all data points,

R =
1

n

n
∑

i=1

ri. (5)

In addition to the quality measures, it is informative to create the rank residual

plot (RRP) that allows us to visually inspect the distribution of the rank residuals

rxij − ryij . The RRP is a 2D density plot whose ordinate and abscissa are the value

of the normalised rank residuals (rxij − ryij)/(n − 1) and the normalised original

rank index j/(n− 1) (j = 1, · · · , n− 1), respectively. As we will see in the Results,

the RRP also tells us at what scale and to what degree the distance orderings are

distorted in the embedding.

Results

Simulation studies

To demonstrate the advantages and provide insights for our graph based approach,

we apply the t-SNE, PHATE, UMAP and the SASNE to four simulated test data

sets whose clustering structures are known beforehand. These test sets aim to repre-

sent different types of data with features that are often found in real data, allowing
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us to highlight the merits of using graph distances in cluster separation, dimension-

ality reduction quality and visual clarity.

We show in Fig. 1a the first test case of ‘imbalanced clusters’. Two clusters are

generated from 3D Gaussian distributions with the same variance but with different

means and number of points. A good LD (2D) embedding is expected to clearly

separate the two clusters.

The second test case where clusters have ‘nonlinear structure’ is shown in Fig. 1b.

Each cluster contains 400 points that are sampled along the two underlying 1D

curves with Gaussian noise added. A good LD embedding is expected to not only

reveal the 1D underlying structures, but also place the data correctly into two

distinct groups.

The third test case shown in Fig. 1c simulates a data set with ‘hierarchical struc-

ture’, where clusters 1 to 3 and clusters 4 to 6 form two distinct ‘super-clusters’,

respectively. A good LD embedding is expected to reveal this hierarchical structure

where the rank ordering of the distances between the six cluster centers is preserved.

We show silhouette plots in Fig. S1 for the three test cases above comparing the

BHD, ED and PD before any embedding. It is informative to see the advantage of

using the BHD over ED and PD in highlighting clustering structures.

The fourth test case, also studied by Moon et al. [13], is illustrated in Fig. 1d.

This data set contains no discrete structure. Instead, the data mimics continuous

developmental trajectories that branch off in various directions. This structure is

common in single cell data, for example, where cell types continuously differentiate

into other kinds of cells. A good LD embedding should therefore reveal the different

developmental branches and correctly maintain their continuous structures.

Figure 1 Four synthetic data sets. a Data sampled from two Gaussians with equal covariance
matrix but different means. The red and blue clusters contains 1000 and 50 points, respectively. b
Data sampled uniformly along two non-overlapping 1D nonlinear curves with Gaussian noise
added. Each cluster contains 400 points. c Data contains 6 clusters with 100 points each. Data
are sampled from Gaussians with equal covariance. The cluster means are arranged in two major
groups, each containing 3 sub-clusters. The green lines are included for clarity. The numbers next
to the lines indicate the ED between the cluster means. d Schematic illustration of data set
containing 1440 points sampled on piece-wise linear manifolds in 60 dimensional space with
Gaussian noise added to all the 60 dimensions.

Choice of hyperparameters The usual rationale in choosing low perplexity around

30 in the t-SNE is to preserve the local neighborhoods as well as possible. It was

also claimed that the t-SNE results are fairly robust against a change of perplexity

value [1]. However in terms of distance rank preservation, a low perplexity is in

fact a poor choice, whereas choosing large perplexity value, such that the Gaussian

kernel can cover remote points, consistently results in significant improvements

(see Fig. S2), especially for the SASNE. We therefore propose a natural choice of

perplexity to be around 90% of the number of points for SASNE, and use this large

perplexity value in all the following analyses as a default value. Choosing 90% also

allows us to exclude outliers that can result in extremely wide Gaussian kernels.

We also note that perplexity equal to the number of points is not possible since this

would correspond to an infinite bandwidth of the Gaussian kernel with all neighbors

weighted equally (see Appendix).
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As apparent cluster structures frequently appear in the LD embedding, it may be

tempting to choose a lower perplexity when assessing the performance of t-SNE or

SASNE qualitatively by eye. However, due to the possible appearance of spurious

clusters and the loss of relative placement of clusters, we do not suggest for such

choice to avoid making misleading conclusions about the data. For t-SNE, UMAP

and PHATE, we follow the default hyperparameter settings proposed in the original

works (see Appendix).

Dimensionality reduction validation Fig. 2 shows the RRPs and the average rank

errors, R, for the four test cases embedded by the methods. The RRPs show the

distance rank preservation at all scales. In particular, distortion of small (large)

ranks corresponds to error on the local (global) scale. The local and global scales

locate on the left and right sides in the RRP, respectively.

In case of the imbalanced data set (first column in Fig. 2), many rank orderings,

especially at the intermediate scales located in the middle portion of the abscissa

in the RRP, are not accurately preserved. This is expected since three variables

are required to describe the relationship between the points from a 3D Gaussian

distribution. Nevertheless, the SASNE and PHATE show high rank preservation

at the large (inter-cluster level) and small scales are comparable in this test case

with simple spherical cluster structures. In contrast, UMAP and t-SNE show poor

rank preservation for the larger distances with slightly better preservation for the

local neighborhoods. They have a high average rank error compared to SASNE and

PHATE.

From the second column of Fig. 2, we observe for the nonlinear case a significant

improvement of the distance rank preservation in the SASNE compared to all other

methods, especially t-SNE and UMAP. The RRP shows that the rank ordering at

all scales are highly preserved in SASNE (Fig. 2b). This is a direct consequence

of using the shape-aware distance, BHD, that is able to capture the underlying

nonlinear structure where the data points reside on.

The RRPs of the embeddings of the hierarchical data set by t-SNE, PHATE and

UMAP (Fig. 2g, k and o) show that mainly the small ranks are preserved while

the large ranks are distorted to a higher degree. This means that the hierarchical

organization of the clusters is lost in these embeddings. On the other hand, the high

preservation of distance ranks by SASNE is shown in Fig. 2c. The main improvement

is from the preservation of the large distance ranks, meaning that the hierarchical

organizations of the clusters are well preserved in the embedding. This also results

in a significantly lower average rank error compared to the other methods.

The RRPs evaluating the embeddings of the artificial tree test are shown in the

fourth column of Fig. 2. The t-SNE and UMAP preserve mainly the small distance

ranks with poorer preservation of the large distance ranks compared to SASNE

and PHATE, which results in the higher average rank errors. The SASNE achieves

the lowest average rank error with slightly better preservation of the large distance

ranks compared to PHATE.

Evaluation of the LD embeddings The RRPs in Fig. 2 show that the preservation

of the distance rank is best for SASNE compared to other methods in all test cases.



Wängberg et al. Page 10 of 19

Figure 2 Rank residual plots (RRP) for the four simulated test cases. The perfect situation in
which all distance rank orderings are preserved in the embedding implies that all residuals equal to
zero. In that case, the RRP shows a shape peak along the horizontal line in the middle of the plot.
The residuals are visualised via a 2D histogram, where each bin is colored according to the relative
density of points, according to the color bar at the bottom of the plot. Unreachable regions are
colored white. The values on the top of each RRP correspond to the average rank error R. The
test cases are arranged per column with the same order as in Fig. 1.

Next we gain more insights on this superior performance by looking at the corre-

sponding LD embeddings. The resulting LD embeddings of the imbalanced data is

shown in the first column of Fig. 3. The SASNE gives very distinct cluster separa-

tion that clearly reveals the discrete structure. Indeed, the silhouette coefficient and

average silhouette value shown in Fig. 4a for the embedding confirm the superior

ability of SASNE in highlighting clusters. Furthermore, the cluster separation in

the UMAP plot is comparable to SASNE. The t-SNE and PHATE demonstrate

less clear separation of the clusters, where it could be difficult to visually identify

the clusters and distinguish it from spurious patterns created by the algorithm.

For the nonlinear data set shown in the second column of Fig. 3, one can see one

limitation of the t-SNE that it fragments one of the two clusters into two spurious

clusters. This results in a low silhouette score and average silhouette value shown

in Fig. 4b. The SASNE, UMAP and PHATE successfully untangle the two shapes.

Furthermore, the SASNE (Fig. 3b) achieves better denoising of the data, thereby

clearly revealing the underlying 1D structures of the clusters. This improvement in

the clustering quality is further confirmed by the silhouette coefficient in Fig. 4b.

Figure 3 2D embeddings of the test cases in Fig. 1. The color scheme of the clusters are the same
as in Fig. 1. The insets in c magnify the cluster structures separated far apart from the embedding.

The embeddings of the hierarchical data set are shown in the third column of

Fig. 3. At first glance, the t-SNE and UMAP may be preferred as the spherical

shapes of the clusters from the original 3D data (Fig. 1c) are retained. However, the

RRPs in Fig. 2g and o show that both t-SNE and UMAP introduces distortions

in distance ranks at most scales except for the very local scale, implying their

failure in retaining the global arrangements of the clusters. On the other hand, the

SASNE achieves much lower distance rank distortion at all scales as shown in the

third column of Fig. 2b, implying that the hierarchical structure of the clusters

is well preserved. In terms of cluster validation, the t-SNE correctly separates the

individual clusters within each group. The method is however not able to clearly

distinguish the reddish group (clusters 1 to 3) from the bluish group (clusters 4-6)

as shown in Fig. 3g. The UMAP is also not able to preserve well the distance ranks

of cluster separations when comparing to Fig. 1c. Similarly, PHATE depicts the two

groups symmetrically that does not reflect the true structure. A better separation of

the clusters within each group is obtained by the SASNE. The improved clustering

quality for SASNE is confirmed by the silhouette coefficient shown in Fig. 4c.

The embeddings of the artificial tree data is found in the fourth column of Fig. 3.

The SASNE embedding clearly shows the different branches of the tree while also

keeping the trajectories intact. Furthermore SASNE denoises the data and clearly
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shows the 1D structure of the trajectory. Despite having less denoising compared to

SASNE, the t-SNE also performs well on this data set by keeping the tree connected.

Crucially, UMAP shatters the tree and produces several spurious clusters. Although

PHATE is able to keep the tree connected, some branches are merged together,

meaning that the relative positioning of the branches is lost from the embedding.

In summary, the above test cases demonstrate that the SASNE can reliably embed

and reveal clusters with imbalanced, arbitrarily shaped and hierarchical structures

based on the qualities of both clustering and preservation of distance ranks. It also

prevents creating spurious discrete structures that shatter continuous trajectories in

the developmental data. Since the shape-aware BHD provides us with a valid global

distance measure, the choice of a larger perplexity value, e.g., 90% of the number

of points, allows us to consistently fix the only hyper-parameter of the embedding

method in a data-driven way. To demonstrate the superior performance of SASNE

for real HD data, we consider the following two data sets.

Figure 4 Barplot showing the average silhouette value for each of the simulated test cases, where
clusters are present, and for each method. The dashed lines corresponds to the silhouette
coefficient. a Barplot showing average silhouette value together with silhouette coefficient for each
method for the imbalanced test. b Barplot showing average silhouette value together with
silhouette coefficient for each method for the nonlinear test. c Barplot showing average silhouette
value together with silhouette coefficient for each method for the hierarchical test.

Gene expression data

We consider a data set of gene expressions from 3663 cells taken from the hippocam-

pal area of a mouse brain [17]. Each cell is characterised by a gene count vector,

indicating the expression frequency of the sequenced genes. With the gene count

vector as coordinates of the HD space, the data set allows us to identify groupings

of cells that correspond to distinct cell types based on their gene expression pro-

files. In contrast to the simulated data sets and the MNIST data discussed in the

next section, the gene expression data is unlabelled, i.e., the corresponding clusters,

or cell types, to which the cells belong to are unknown beforehand. Therefore, an

additional clustering procedure (not performed here) is needed to group the data

points in the LD embedding. Since no cluster label is available, we focus only on

how well distance ranks are preserved in the LD embedding and do not consider

cluster validation in this case.

Before applying the methods, we follow the same procedures performed by Kobak

et al. [4] to reduce the number of features that produce comparable results to those

reported by the original works [17] where the data set was obtained. Specifically,

we select 1000 representative genes out of 27998 in total that show high expression

levels in a smaller subset of cells, indicating their capability of being good molecular

features to distinguish cell types (see Appendix). The resulting embeddings of the

gene expression data are shown in Fig. 5a-d. For comparison, the data is colored

according to a previous clustering result performed by Harris et al. [17] that gave

rise to a total of 49 clusters by fitting a mixture of binomial distributions using the

expectation maximisation algorithm. It has been reported that these cell clusters

form hierarchies, where clusters close to each other are indicated by similar colors,
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often with continuous transitions between clusters. Therefore, a better preservation

of distance ranks in the LD embedding is important to correctly embed these hi-

erarchies and to preserve continuous developmental trajectories in order to provide

meaningful biological interpretations.

From Fig. 5a, the SASNE corroborates the previous clustering result that cell

groups colored similarly also fall into nearby regions in the SASNE space. For

the preservation of hierarchical structures, the RRP shown in Fig. 5e confirms a

relatively low degree of rank distortion across all scales. Moreover, SASNE shows a

pronounced improvement compared to the t-SNE and UMAP according to the RRPs

and average rank errors shown in Fig. 5f and h. Although clustering validation was

not performed for this data set, one can still see from Fig. 5b and d that the t-SNE

and UMAP displays better discrete data structures, but with a large distortion

of distance ranks across all scales, likely shattering continuous transitions between

clusters. Moreover, the PHATE achieves a comparable average rank error, but with

a higher distortion of the intermediate distance ranks, as can be seen in Fig. 5e

and g. By examining the PHATE embedding in Fig. 5c, we note the similar shape

compared to the artificial tree embedding in Fig. 3q, i.e., some trajectories appear

to be merged by the PHATE. On the other hand, the SASNE shows more distinct

developmental trajectories in the LD embedding indicated by Fig. 5a and c, while

simultaneously achieving slightly higher preservation of distance ranks as seen by

comparing Fig. 5e and g.

Figure 5 Results of applying SASNE, t-SNE, PHATE and UMAP to the single cell data set. a-d
Resulting LD projections by SASNE, t-SNE, PHATE and UMAP, respectively. Each data point is
colored according to the clustering results of Harris et al. [17]. e-h RRPs for each of the LD
embeddings.

MNIST handwritten digit data set

We now apply the methods to the MNIST data set consisting of gray scale images

of handwritten digits [30]. Each image is represented by a 784 (28×28) dimensional

vector whose entries correspond to the pixels of the image. The images are labelled

based on which digit, from 0 to 9, it corresponds to. This enables us to evaluate

how well the images are grouped according to their labels in the LD embedding

without the need for extra clustering procedures.

The MNIST data set has known hierarchical structures. For example, digits 4 and

9 look more alike to each other compared to digits 4 and 1. This is confirmed by

examining the overlaps between the digits (see Fig. S3). Moreover, all digits overlap

with the other digits to some extent, with only digits 0, 1 and 6 showing relatively

clear separations from the other digits. The continuous overlapping between images

from different digits should be reflected in the LD embedding. Moreover, some digit

clusters are non-spherically shaped (see Fig. S4) indicating the advantage of using

shape-aware distance measures.

By examining the silhouette plots of different distance measures in the original HD

space (see Fig. S5), one sees a low silhouette coefficient for all distance measures,

again indicating significant overlap between the digits. In particular, the silhouette

plots for BHD indicate that digits 0, 1, and 6 have relatively large (digit-wise)
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silhouette values, consistent with the overlapping analysis in Fig. S3 showing that

these digits are the most distinct. The remaining digits do not show clear separation

according to the silhouette plot, consistent again with the overlapping analysis (Fig.

S3). On the other hand, the ED gives a silhouette coefficient close to 0, indicating

that the digits do not form discrete clusters according to the ED. The PD has a

comparable silhouette coefficient to the BHD (Fig. S5) that confirms the advantage

of using graph distances when handling clusters with arbitrary shapes. Nevertheless,

the silhouette plots of PD indicate that all digits separate roughly equally in the

HD space. For example, digit 1 and 2 have similar silhouette values, inconsistent

with the overlapping analysis (Fig. S3).

The resulting 2D SASNE with an appropriate perplexity chosen to be 90% of

the number of data points (see Fig. S7) is shown in Fig. 6a. The embedding shows

that digits 0, 1 and 6 form relatively distinct clusters, whereas, e.g., digit 2 overlaps

with digits 1, 3, 7 and 9, which is consistent with the overlapping analysis (Fig.

S3). Indeed, the RRPs in Fig. 6e-h show the significant improvement by SASNE

in preservation of the relative placement of the clusters in the LD embedding by

SASNE compared to the other methods. On the other hand, although the UMAP

embedding shows clearly separated clusters (Fig. 6d), it fails to capture the overlaps

between digits. This can be seen by both the UMAP and t-SNE embedding (Fig.

6b and d) of the digit 2 that is incorrectly separated from the digit 7. The PHATE

captures the overlap between digits more accurately compared to UMAP and t-

SNE. Nevertheless, digits that are relatively well separated are not reflected in the

PHATE embedding. For example in Fig. 6c, digit 0 and 6 are merged, and digit 1 is

not separated from digit 2 and digit 7, which are inconsistent with the overlapping

analysis (Fig. S3).

In terms of the clustering quality, all methods result in a relative low overall sil-

houette coefficient compared to the test case (see Fig. 6i). This is expected due to

the small separations, bi, in the point-wise silhouette value in Eq. (1). The slightly

higher silhouette coefficients of the UMAP and t-SNE indicate that discrete struc-

tures are more profound in the embedding (Fig. 6b and d). However, the profound

discrete structures appeared in these embedding are likely to be spurious that do

not reflect the true data structures revealed by the overlapping analysis (Fig. S3)

and the grouping of the digits in the original HD space (Fig. S5). The PHATE has

the lowest cluster separation and does not clearly reveal the distinct separation of

digits 0, 1 and 6. In contrast, for digits 0, 1 and 6 the digit-wise silhouette scores

are higher in the SASNE than in all other methods (see Fig. S6). These all together

demonstrate the ability of the SASNE to amplify true discrete structures in the

data and preserve the relative organizations among these discrete patterns.

Figure 6 Results of LD embeddings by SASNE, t-SNE, PHATE and UMAP. a-d 2D projections of
the MNIST data set using SASNE, t-SNE, PHATE and UMAP respectively. Each point is
coloured according to what digit it represents. e-f RRPs for the LD embeddings by SASNE,
t-SNE, PHATE and UMAP respectively. i Barplot showing the silhouette coefficient evaluated on
the LD embedding on the MNIST data set for each method.

To sum up the analyses of the MNIST data set, the SASNE performs well simul-

taneously in clustering quality and preservation of distance ranks and hierarchical
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structure. Although UMAP and t-SNE show discrete structures, this is often not

an accurate representation of the HD data, where overlaps and hierarchical struc-

ture may be lost in the LD embedding. The PHATE shows better preservation of

distance ranks compared to t-SNE and UMAP, but is relatively weak in revealing

discrete structures in the data.

Discussion and conclusions

By incorporating the concept of shape-aware distances, we proposed in this study

the SASNE and showed how it can mitigate some of the shortcomings of the t-

SNE, UMAP and PHATE methods in a data-driven way that can consistently fix

the hyper-parameter, perplexity, of the method. In terms of quantitative validation

methods in both clustering and dimensionality reduction, the advantages of SASNE

were exemplified with synthetic imbalanced, nonlinear, hierarchically structured

data, and developmental trajectories where the ground-truth is known. The methods

were then applied to two HD real data sets, the single cell gene expression data and

the MNIST handwritten digits data set. In both the synthetic and real data sets,

the SASNE demonstrates superior performance compared with the current state of

the art methods t-SNE, UMAP and PHATE in capturing discrete and hierarchical

structures hidden in the HD feature spaces.

It has been claimed in certain cases that the UMAP can outperform t-SNE in

computational speed and preservation of global structures [14, 15]. Nevertheless,

it was found [4] that the performance of the two methods depends highly on the

hyper-parameter settings, and their results could be similar for certain choices of

hyper-parameters. Moreover, distortion of large distance ranks by both t-SNE and

UMAP is expected as both methods do not attempt to preserve global distances.

The PHATE method is similar to SASNE in that it aims at preserving the graph

distance, PD, that can correctly estimate long range distances. As our experiments

show, however, the PHATE embedding do not accurately reveal the discrete struc-

tures to the same extent as the SASNE. We identify two potential reasons for this.

First, the PD is defined as the logarithmic transformed diffusion distance that in-

troduces a hyper-parameter t controlling the time-scale of the diffusion. A single

time-scale t often cannot capture both local and global scales and therefore multiple

values of t should be examined to get a complete picture [12, 23]. Second, PHATE

relies on the metric multidimensional scaling (MDS) to embed the PD into the LD

space. However, the MDS aiming to preserve all distances as much as possible has

been shown to perform poorly compared to t-SNE due to its inability to handle the

crowding problem in the LD embedding [1].

Some other related studies making use of graph-based methods to improve the

performance of t-SNE also exist. In particular, Parviainen et al. proposed the Graph-

SNE (GSNE) [31] that considers the probability for a random walker to reach data

point i from point j and vice versa in a fixed time τ . This probability was then used

as the HD distribution pij in the t-SNE procedures. GSNE has the advantage that

speeds up the evaluation of pij without the need to perform matrix diagonalisation

as in the SASNE. Similar to the PHATE, there is no good strategy in choosing the

hyper-parameter τ that is crucial in determining the ‘scale’ of the regions explored

by the random walker in the graph. Therefore, it was suggested [31] to examine a
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wide range of diffusion times τ when using GSNE to capture hierarchical structures

in the data, which in turn requires several runs of the t-SNE optimisations with

increasing computational cost. Another variant of t-SNE is the Hierarchical-SNE

(HSNE) [32]. The method speeds up the computations by a landmarking strategy

where transition probabilities pij are approximated by Monte Carlo estimation of

simulated random walks on the graph representation of the data. Although there are

computational benefits to the approach, there are a multitude of hyperparameters

that needs to be determined for the graph construction and estimation of pij .

We finally note that the computational cost of SASNE may become demanding

when the data size n becomes large, which is an important direction for future

improvement. The main computational bottlenecks of SASNE are (i) computation

the BHDmatrix and (ii) the gradient based optimisation method used in the original

t-SNE implementation which creates the LD embedding from the BHD matrix. Both

(i) and (ii) are in the order of O(n2). As for (i), one approach to reduce the time

complexity is to coarse grain the weighted graph [33]. Regarding (ii), numerical

approximations have already been proposed to speed up the t-SNE optimisation in

which the computational time can be reduced to O(n log n) by tree-based methods

[2], and even to O(n) by fast Fourier transform and polynomial interpolation [34].

These approximations do, however, rely on the use of low perplexity values that

would sacrifice preservation of global structure. Instead we suggest using a stochastic

gradient descent method such as Adam [35] to speed up the optimisation.

Appendix

Formalism of t-SNE Here we provide some mathematical details of the t-SNE

method. Suppose there are n data points, the first step is to transform the distances

in the HD space into a probability distribution. Specifically, a ‘directed’ measure

of similarity from point xi to point xj in the HD space (with i, j = 1, . . . , n) is

defined as a conditional probability in terms of the Gaussian kernel and the softmax

function,

pi|j = exp

(

−
δ2ij
2σ2

j

)

/

∑

k ̸=j

exp

(

−
δ2kj
2σ2

j

)

, i ̸= j. (6)

The self similarity pi|i is set to 0. Here δij denotes the distance between points xi

and xj , which is the conventional distance measure, e.g. ED, in the t-SNE and the

BHD in the SASNE. The variable standard deviations σj (with j = 1, · · · , n) can

be fixed by choosing a constant value for the perplexity, P, defined by

P = 2H(p·|j). (7)

In Eq. (7), H(p·|j) denotes the Shannon entropy [36] of the probability distribution

p·|j , defined as H(p·|j) = −
∑

i ̸=j pi|j log pi|j .

The perplexity can vary between 1 and n and it corresponds to the effective

number of neighbors around a point xj covered by the Gaussian kernel with standard

deviation σj . Points beyond the perplexity range will simply be counted as ’faraway’.

When perplexity equals 1, it corresponds to the case σj → 0 that all probability mass
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is placed on the nearest neighbor. On the other hand, when perplexity equals n−1,

it corresponds to the case σj → ∞ in which all neighbors are weighted equally.

The perplexity is the main hyper-parameter of t-SNE methods that needs to be

determined. Moreover, the probability distribution is symmetrised as pij =
pi|j+pj|i

2n

for computational convenience.

Similarly, the distances in the LD embedding space are also transformed into a

probability distribution in terms of the long-tailed t-distribution with one degree-

of-freedom as follows

qij =
(1 + ||yi − yj ||

2)−1

∑

k ̸=l(1 + ||yk − yl||2)−1
, i ̸= j. (8)

Here in the LD embedding space, the ED is used for both the t-SNE and SASNE.

The self-similarity qii is again set to zero.

The LD embedding coordinates yi are then obtained by minimizing the Kullback-

Leibler (KL) divergence, KL(p, q) =
∑

i

∑

j ̸=i pij log
pij

qij
, as a cost function between

the probability distributions, pij and qij , using gradient-based methods. The KL

divergence has the property that KL(p, q) = 0 if and only if pij = qij for all i and

j.

t-SNE optimisation The optimisation procedures of t-SNE are as follows: In both

the t-SNE and SASNE methods, one minimises numerically the KL divergence

between the probability distributions, pij and qij , as described above by gradient

descent. Since the cost function is not convex, the optimisation may converge to a

local minimum and therefore the solution may depend on the initialisation, i.e., the

initial configuration of the coordinates yi with i = 1, · · · , n in the LD space.

In case of optimizing t-SNE, we follow the protocol of Kobak and Berens [4] that

the optimisation is initialised with the two leading principal components of the

HD data set, normalised by the standard deviation of the corresponding principal

component. The initial configuration is further multiplied by a factor of 10−4 which

was shown empirically to speed up the convergence. For the SASNE optimisation,

we use a similar initialisation procedure as in the case of the t-SNE but apply it to

the BHD.

We also adopted the optimisation trick to multiply all HD probabilities pij by a

constant α = 12, called early exaggeration, for the first 250 iterations. which was

shown to lead to better cluster separation [2]. Moreover, as originally suggested

by Belkina et al. [37], the learning rate in the gradient descent is set to η = n/α

where n is the number of points which has shown to lead to improved convergence

behaviour in terms of stability and speed. Given the above settings, the optimisation

was performed by the tsne function provided by the MATLAB Statistics and Machine

Learning Toolbox.

Hyperparameters of PHATE and UMAP Default parameters for PHATE are used

as suggested in the original publication [13] and for UMAP we follow the default

parameters used by Becht et al. [15].
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Computing the biharmonic distance Given a graph G defined by a n×n similarity

matrix W with elements wij = 1/∥xi −xj∥
2, one can compute the graph Laplacian

L = D −W [24]. Here D is the diagonal degree matrix with elements di =
∑

k wik

that is the degree of the node i. The BHD between the points xi and xj can be

expressed in terms of the eigendecomposition of L as Cij = Vol(G)
∑n

k=2(vik −

vjk)
2/λ2

k [24], where λk is the kth eigenvalue, vik is the ith element of the kth

eigenvectors of L, and and Vol(G) =
∑

i di is the volume of the graph G. This

expression also shows that the BHD has the form of an ED, i.e., sum of squares
∑n

k=2(z
2
ik − z2jk), with the (n − 1)D Euclidean coordinates for the ith data point

given by zik = vik
√

Vol(G)/λ2
k (k = 2, · · · , n). A convenient property of these

coordinates are that the corresponding covariance matrix is diagonal. Therefore

the PCA initialisation based on the BHD is simply the leading coordinates with

largest corresponding eigenvalues, in this Euclidean space. Hence, after computation

of the eigendecomposition of L, these coordinates can be directly input to any

standard t-SNE implementation where we keep optimisation scheme consistent with

the original t-SNE algorithm.

In this study we computed the BHD using the symmetric Laplacian Lsym =

D− 1

2LD− 1

2 [24], instead of L, which empirically produced slightly better results.

Pre-processing of single cell data We follow the same pre-processing procedures as

used by Kobak et al. [4] as follows: Let nc and ng be, respectively, the number of

cells and the number of genes under consideration. We denote xig as the expression

level of gene g (g = 1, · · · , ng) in cell i (i = 1, · · · , nc). The fraction of cells that

do not express the gene g is given by dg = 1
nc

∑nc

i=1 I(xig = 0), where the indicator

function I(xig = 0) = 1 when xig = 0, and zero otherwise. Furthermore, the mean

log-expression level of the gene g can be expressed as mg = 1
nc ̸=0

∑

i:xig ̸=0 log xig

where nc ̸=0 =
∑nc

i=1 I(xij > 0) is the number of cells with non-zero expression of

gene g. The next step adopts a heuristic approach from the work of Kobak et al. [4]

to select 1000 genes by finding a value of b such that there are exactly 1000 genes

that exhibit high fraction of zero-expression levels across cells in relation to its mean

expression value, which has shown to be able to select biologically relevant genes

[38]. Mathematically, this is done by finding a value b such that exactly 1000 genes

satisfying the relation dg > exp
[

− 3
2 (mg − b)

]

+0.02 can be selected. The coefficient
3
2 and 0.02 are chosen for a good distributional fit [4]. This selected subset of 1000

genes is then kept for the analysis, whereas the others are discarded. Finally, the

log(1 + xig) transformation is applied to the counts of the 1000 selected genes to

even out the variance of the larger expression levels. That is, the relative expression

difference is considered as opposed to the absolute difference so that, for example,

an expression difference from 1 to 5 is considered equal to the difference between

100 and 500.
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Figures

Figure 1

Four synthetic data sets. a Data sampled from two Gaussians with equal covariance

matrix but different means. The red and blue clusters contains 1000 and 50 points, respectively. b

Data sampled uniformly along two non-overlapping 1D nonlinear curves with Gaussian noise

added. Each cluster contains 400 points. c Data contains 6 clusters with 100 points each. Data

are sampled from Gaussians with equal covariance. The cluster means are arranged in two major

groups, each containing 3 sub-clusters. The green lines are included for clarity. The numbers next

to the lines indicate the ED between the cluster means. d Schematic illustration of data set

containing 1440 points sampled on piece-wise linear manifolds in 60 dimensional space with

Gaussian noise added to all the 60 dimensions.

Figure 2

Rank residual plots (RRP) for the four simulated test cases. The perfect situation in

which all distance rank orderings are preserved in the embedding implies that all residuals equal to

zero. In that case, the RRP shows a shape peak along the horizontal line in the middle of the plot.



The residuals are visualised via a 2D histogram, where each bin is colored according to the relative

density of points, according to the color bar at the bottom of the plot. Unreachable regions are

colored white. The values on the top of each RRP correspond to the average rank error R. The

test cases are arranged per column with the same order as in Fig. 1.

Figure 3

2D embeddings of the test cases in Fig. 1. The color scheme of the clusters are the same

as in Fig. 1. The insets in c magnify the cluster structures separated far apart from the embedding.

Figure 4

Barplot showing the average silhouette value for each of the simulated test cases, where

clusters are present, and for each method. The dashed lines corresponds to the silhouette

coe�cient. a Barplot showing average silhouette value together with silhouette coe�cient for each

method for the imbalanced test. b Barplot showing average silhouette value together with

silhouette coe�cient for each method for the nonlinear test. c Barplot showing average silhouette



value together with silhouette coe�cient for each method for the hierarchical test.

Figure 5

Results of applying SASNE, t-SNE, PHATE and UMAP to the single cell data set. a-d

Resulting LD projections by SASNE, t-SNE, PHATE and UMAP, respectively. Each data point is

colored according to the clustering results of Harris et al. [17]. e-h RRPs for each of the LD

embeddings.

Figure 6

Results of LD embeddings by SASNE, t-SNE, PHATE and UMAP. a-d 2D projections of

the MNIST data set using SASNE, t-SNE, PHATE and UMAP respectively. Each point is

coloured according to what digit it represents. e-f RRPs for the LD embeddings by SASNE,

t-SNE, PHATE and UMAP respectively. i Barplot showing the silhouette coe�cient evaluated on

the LD embedding on the MNIST data set for each method.
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