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Efficient and secure computation of edit distance
on genomic data
Andrea Migliore, Stelvio Cimato* and Gabriella Trucco

Abstract

Background: Genetic information are the most sensitive data for a person and must be protected from
malicious attacks. In this paper we focus on the application of secure multi-party computation, a subfield of
cryptography, to the computation of edit distance, one of the most used metrics among genetic similarity
indicators, useful for the diagnosis and treatment of many genetically based diseases.

Results: We analyze four algorithms and compare them to the best prior results found in literature [1]:
(1) the Wagner-Fischer algorithm [2], using the entire dynamic programming matrix; (2) the Wagner-Fischer
algorithm, optimized to use only the minimum needed columns for the computation; (3) the Ukkonen
algorithm [3], considering a threshold of approximately 60% of the longest string; (4) the Ukkonen algorithm,
using a generalized cut-off technique which reduces the number of cells to be computed. The Ukkonen
algorithm with generalized cut-off is the one that performed better among the considered algorithms and it
also proved to have better performances than the best prior results found in literature.

Conclusions: Securely computing the edit distance between human genomes have become very important in
medical and public health domains. Improving computational performance is a key factor for real-world
application scenarios.
In this work, we proposed several secure implementations of some of the most efficient edit distance
algorithms, achieving better performances over existing protocols found in literature [4]. Moreover, this is the
first time the Ukkonen’s algorithm is proposed using all possible state-of-the-art optimizations for garbled
circuits. The algorithms and protocols used in this work were also applied on both random, high-entropy, and
real genomic, low-entropy strings and are provably secure with respect to the standard definition of security for
Multi-Party Computation (MPC) protocols.

Keywords: Secure multi-party computation; Garbled circuit; Edit distance; Computational performance

Background
The digital transformation is having a deep impact
on many activities of our daily lives, creating both
opportunities and challenges. Opportunities are given
by the digitalization that has improved organisational
performance by fostering innovation and boosting en-
trepreneurial initiatives giving the possibility to open
new businesses. Challenges are given by the fact that
sensible data and in general privacy of the users can be
exposed to many security risks caused by the sharing
and the elaboration of the associated information.

Bionformatics is a rapidly advancing field, where the
application of information technology to the treatment
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of biological data is helping in better analyzing and un-
derstanding the various types of data resulting from
different biological processes. Last years have regis-
tered a tremendous advance in speed and cost reduc-
tion, allowing the completion of the Human Genome
Project and the possibility to sequence a full genome
for a reduced quantity of money. However the intersec-
tion of genomics and security arises stimulating ethical
and social issues that need to be addressed, since ge-
netic information can be considered the most sensitive
data for a person and consequently, it must be pro-
tected from any kind of malicious attack or disclosure.
Secure multi-party computation (MPC) [5], is a branch
of cryptography whose goal is to enable a group of in-
dependent data owners, who do not trust each other or
any common third party, to jointly compute a function
that depends on all of their private inputs. There are a
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number of efficient implementation of these protocols
based on ad-hoc techniques, which are developed to
solve specific problems (such as set intersection) or on
the generic transformation of the computed function,
such as in the case of garbled circuits protocol [6] [7].
Secure multi-party computation can be used to solve a
wide variety of real-life problems where sensitive data
may be compromised.
In this paper, we focus on the application of secure

multi-party computation to bioinformatics and more
specifically to the computation of the edit distance,
generically used to compute the distance between two
strings. The human genome is composed by two com-
plementary strands, with 3 billion DNA bases each.
Each unit consists of Adenine (A), Cytosine (C), Gua-
nine (G), and Thymine (T), the nitrogenous bases that
constitute nucleotides. In this case, edit distance is an
important metric to quantify how dissimilar two DNA
strings are, by counting the minimum number of oper-
ations required to transform one string into the other.
It is one of the most used and well established met-
rics among genetic similarity indicators because it is
very useful for the diagnosis and treatment of many
genetically based diseases such as cancer, Alzheimer’s,
schizophrenia and others [8] [9] [10] [11].
However, consider, for example, the problem of com-
paring a person’s DNA against a database of cancer
patients’ DNA, with the goal of finding if the person
is in a high risk group for a certain type of cancer. Such
a task has very important health and social benefits,
but DNA information is highly sensitive and should
not be revealed to anyone during the computation.
Recent works have shown that if large volume of
data associated to patients are available, then they
can be exposed to privacy breaches, just only ana-
lyzing the aggregate statistics. As a consequence, sev-
eral published results have been removed from public
databases, to prevent the identification of individuals
[12] [13]. By using secure multi-party computation par-
ties involved can be confident that no sensitive infor-
mation will be disclosed during or after the compu-
tation, revealing only the category of cancer they are
close to (or none). Nothing else is revealed, neither the
DNA of the person being compared nor the DNA of
the patients in the database. This type of computation
also ensures an additional guarantee, i.e. a malicious
party cannot change the final result, for example, by
making the person believe they have cancer and there-
fore propose expensive treatments. However, securely
computing this and other similar metrics is a highly
challenging research task because there exist several
properties that need to be met in order to run these
secure protocols. The scientific community paid atten-
tions on this problem for over a decade [14]; and, even

if, initially, secure edit distance computation was par-
ticularly slow, now state-of-the-art solutions are get-
ting closer to be applicable to real genome sequences.
A lot of papers have proposed several approaches
over the years, including exact algorithms, approxi-
mations and heuristics, focusing also on the analy-
sis of their performances [1] [15] [16] [17] [18] [19].
Most of these works do not precisely define and pro-
vide all the details used for the experiment setup, such
as machine type, implementation and benchmarking
settings, source codes, used input data, custom opti-
mizations, etc., making it difficult to have a framework
available to have an efficient solution.
In this work, we propose some secure implementa-

tions of the most efficient edit distance algorithms,
achieving better performances over existing protocols
found in literature, without sacrificing security and
accuracy. Moreover, a secure implementation of the
Ukkonen’s algorithm with the generalized cut-off tech-
nique using all possible state-of-the-art optimizations
for garbled circuits is proposed. Also, the proposed al-
gorithms are applied on both random, high-entropy,
and real genomics, low-entropy strings and are prov-
ably secure with respect to the standard definition of
security for MPC protocols. Finally, the methodology,
all the experiment setup details, and the source codes
used for this study are described and provided, defin-
ing a clear baseline for future works and enabling any-
one to reproduce the experiments independently.
The paper is organized as follows: first we introduce
the basic notions about edit distance and secure multi-
party computation. In the ”Methods” section, we de-
scribe the optimized techniques for the computation of
the edit distance, and their implementation in SMPC.
Finally we report the basic results and draw conclu-
sions.

Preliminaries
In this section we report the basic notions about the
two main aspects considered in this study: the compu-
tation of the edit distance and the technique to com-
pute securely a function among collaborating parties.

Edit distance
Given two strings s1 and s2 on an alphabet Σ, the edit
distance d(s1, s2) is the minimum number of edit oper-
ations required to transform s1 into s2 and measures
the similarity between two string sequences. An edit
operation is the basic step in transforming a word into
another word. There are different types of edit distance
that allow different combinations of editing operations.
In computational biology, one of the most frequently
used type of edit distance is the Levenshtein edit
distance [20].
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In more details, a word over the finite alphabet
Σ is a sequence ai, ..., an of symbols where ai ∈ Σ
for i = 1, 2, ..., n. The empty word is denoted by
the symbol ϵ. An edit operation is a pair (a, b) with
a, b ∈ Σ ∪ {ϵ} and ab ̸= ϵ and is a basic step in trans-
forming a word into another word. There are three
types of operations: insertion, deletion and substitu-
tion. The edit operation is called an insertion if a = ϵ,
a deletion if b = ϵ, and a substitution if a ̸= ϵ ̸= b.
Each of these operations is associated with a cost. Usu-
ally, the cost c(a→ b) for a ̸= b is 1, whereas for a = b
is 0. This results in a cost of 1 in the case of insertion,
deletion or replace and 0 in the case where the two
letters are the same.
Therefore, an edit sequence S is a sequence of edit op-
erations S = ((a1, b1), ..., (an, bn)), n ≥ 1.
The final cost of an edit sequence S is defined as
C(S) =

∑n

i=1 c(ai, bi) [17].

Over the years, several exact algorithms, which seek
the optimal answer to the problem, without consider-
ing margins of error or specific conditions have been
proposed. In 2014 it has been proved [21] that the
Levenshtein distance of two strings of length n can-
not be computed in time O(n2−ε) for any ε greater
than zero unless the strong exponential time hypoth-
esis (SETH) is false. This issue introduces strong lim-
itations on the research for exact optimization of edit
distance because, despite O(n2) is a polynomial time,
it is not acceptable for specific applications or for very
long strings.
The most famous exact algorithm is the Wagner-

Fischer algorithm [2], based on dynamic programming
that has a time complexity of O(nm) where n and m
are the string lengths to compare.
Since exact algorithms require at least O(nm) oper-
ations to compute the Levenshtein distance, over the
years, scientific research has been strongly committed
to finding better alternatives through approximate al-
gorithms that are generally faster than exact ones [22].
Typically, approximation algorithms search for ap-
proximate matches of a pattern from a string using
also a predetermined maximum error threshold that
indicates the maximum allowed edit distance for an
approximate match. The most important algorithm in
this category is the Ukkonen’s algorithm [3] that op-
timizes the computation of edit distance by trying to
restrict the number of cells that must be filled in the
dynamic programming table.
If we are not interested in an edit distance greater than
some maximum threshold k, then it is necessary to cal-
culate only the diagonal band of width 2k + 1 of the
matrix because the other cells are irrelevant for the
computation.

This algorithm achieves a time complexity of O(k ×
min(m,n)), which is a substantial improvement in per-
formance.
An advantageous optimization of the Ukkonen’s algo-
rithm with a generalization of the cut-off technique,
described and used in the final experiment, leverages
an implicit upper bound of the Levenshtein distance
and can be used without a pre-specified threshold pa-
rameter.
This optimization reduces by approximately (n2 +
1)(n2 +2) the number of cells to be computed, resulting
in a substantial computational gain.
Other important algorithms are also Enhanced Ukko-

nen [23], Myers’ Bit-Vector [24], and Wu algorithm

[25].

Secure Multi-Party Computation
Secure multi-party computation, introduced by An-
drew Yao in the early 1980s [5], can be defined as the
problem of n players who want to compute an agreed
function of their inputs in a secure way. Formally, we
assume x1, . . . , xn inputs, where player i knows xi, and
we want to compute f(x1, . . . , xn) = (y1, . . . , yn) such
that player i is guaranteed to learn yi and nothing
more than that.
At the beginning secure computation was only a theo-
retical interest but in the 2000s, algorithmic improve-
ments and computing costs reached a point where it
became realistic to think about building practical sys-
tems using general-purpose multi-party computation.
The first project that implemented this type of system
was Fairplay [26]. For the first time, with Fairplay, it
was possible to express a privacy-preserving program
in a high level language and compile it to executa-
bles that could be run by the parties involved in the
computation. However, its scalability and performance
limited its use to toy programs.
The speed of the MPC protocol significantly increased
over time and today is several orders of magnitude
higher due to a combination of cryptographic, proto-
col, network and hardware improvements. These im-
provements made possible the adoption of MPC im-
plementations in important contexts and applications
[27].
Thanks to the increasingly efficient protocols for MPC
that have been proposed in recent years, MPC can now
be considered as a practical solution to several real-life
problems.

Yao’s Garbled Circuits Protocol

Yao’s Garbled Circuits protocol (GC) is the most
widely known MPC technique [6] [7].
Many MPC protocols are built on Yao’s GC. Further-
more, Yao’s GC runs in constant rounds and avoids
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the costly latency associated with approaches where
the number of communication rounds scales with the
circuit depth.
The starting point for this and all other protocols is
the same: we want to evaluate a given function F (x, y)
where party P1 holds x ∈ X and P2 holds y ∈ Y .
One toy problem, often used in these context to bet-
ter understand the protocol, is the Yao’s Millionaires’

problem [5]. It is about two millionaires, Alice and Bob,
who are interested in knowing which of them is richer
without revealing their actual wealth. The following
description of the Yao’s protocol is inspired by [28].
First of all we have to convert the function we need
into a boolean circuit.
Then we have to evaluate each gate securely. For doing
this Alice picks two random keys for each wire (inputs
and outputs). One key corresponds to 0, the other to
1. There are a total of 6 keys for a 2-input gate, as
shown in Figure 1.

Alice (k0x, k1x) Bob (k0y, k1y)

(k0z, k1z)

Figure 1 Wires for an AND Gate

Alice encrypts each row of the truth table by encrypt-
ing the output key with the corresponding pair of input
keys.
Alice randomly permutes (“garbles”) the encrypted
truth table and sends it to Bob.

Garbled truth table:

Ek1x
(Ek0y

(k0z))
Ek0x

(Ek0y
(k0z))

Ek1x
(Ek1y

(k1z))
Ek0x

(Ek1y
(k0z))

Note that Bob doesn’t know which row of garbled ta-
ble corresponds to which row of original table.
Then Alice sends to Bob the corresponding key to her
input bit. Since keys are random, Bob won’t know
what this bit is.
The next step consists in running the oblivious transfer
protocol between the two keys k0y, k1y and Bob’s 1-bit
input in order to give the correct key to Bob.
Bob now holds two keys and is able to decrypt exactly
one of the output wire keys.
Proceeding with this method for all gates Bob evalu-
ates the whole garbled circuit and sends the final result

to Alice.
Neither Alice nor Bob learn any more information than
what they know.

Methods
The human genome is composed by two complemen-
tary strands, with 3 billion DNA bases each. Each unit
consists of Adenine (A), Cytosine (C), Guanine (G),
and Thymine (T), the nitrogenous bases that consti-
tute nucleotides. Between two randomly selected indi-
viduals, over 99% of their nucleotides are identical, just
1% of their DNA is due to genetic variations. Single
Nucleotide Polymorphism (SNP) are the most com-
mon variations and involves only a single nucleotide.
According to [29], about 50 million nucleotides in hu-
man genome are marked as SNPs, while two average
individuals’ genomes typically differ in 4-5 million vari-
ation sites.
Thus, studies that address this type of issues typically
focus on SNP changes and therefore on quantifying the
similarity of two DNA sequences.
We now provide a quick overview of the algorithms
used for the computation of edit distance.

Wagner-Fischer algorithm
The Wagner-Fischer algorithm is based on dynamic
programming and starts from the observation that it
is possible to create a matrix with a number of rows
and columns corresponding to the length of the two
strings to be processed. For example, the two strings
“GCTATAC” and “GCGTATGC” build the following
matrix:

ϵ G C T A T A C
ϵ

G
C
G
T
A
T
G
C

The final edit distance D(n,m), where n and m rep-
resent the length of the two strings, is obtained by
resolving all the edit distances of the substrings that
constitute the final strings. In other words, the com-
putation proceeds with each D(i, j) where i and j are
smaller values of n and m. The key idea is to solve
all the sub-problems relying on the values obtained
from the previous computation. Basically, we have to
compute D(i, j) for every 0 < i < n and 0 < j < m.
Each cell represents the edit distance of two substrings
and, consequently, one of these sub-problems. Let X =
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“GCGTATGC” and Y = “GCTATAC” be two strings
and let α and β be the substrings consisting of all the
characters of the sequence but the last element:

GCGTATG
︸ ︷︷ ︸

α

C GCTATA
︸ ︷︷ ︸

β

C

we can define the edit distance between two strings as
follows:

EditDist(αx, βy) = min







EditDist(α, β) + δ(x, y)

EditDist(αx, β) + 1

EditDist(α, βy) + 1

where δ(x, y) is a value based on the difference be-
tween the two compared characters in that particular
computation step. If x = y then δ(x, y) = 0, otherwise
δ(x, y) = 1.
Filling the entire matrix we obtain Table 1.

Table 1 Filled matrix

ϵ G C T A T A C
ϵ 0 1 2 3 4 5 6 7
G 1 0 1 2 3 4 5 6
C 2 1 0 1 2 3 4 5
G 3 2 1 1 2 3 4 5
T 4 3 2 1 2 2 3 4
A 5 4 3 2 1 2 2 3
T 6 5 4 3 2 1 2 3
G 7 6 5 4 3 2 2 3
C 8 7 6 5 4 3 3 2

Hence, the edit distance between the strings X and Y
is 2.
This algorithm has a time complexity of O(nm)

where n and m are the string lengths to compare
(O(n2) if n = m). This is because each value is de-
pendent on the previous ones and to reach the final
solution it is necessary to compute a table of n × m
cells. Since every value is used to efficiently compute
the final solution, the full dynamic programming table
needs to be constructed, therefore we can easily con-
clude that the space complexity is equal to the time
complexity.
If, however, we are not interested in reconstructing

the optimal alignment between the two strings, it is
possible to considerably reduce the space complexity
by observing that, it is not necessary to construct the
entire table but it is enough to fill the current row
and overwrite the values at each step. Hence, space
complexity drops to O(min(m,n)). This optimization
does not have any impact on time complexity but, in
practice, the algorithm should be faster than using the
full matrix, because the CPU caching handles fewer
values and therefore it does not need to manage large
areas of memory.

Algorithm 1: Wagner-Fischer

1 n← length(s1)
2 m← length(s2)
3 for x← 0 to m do
4 Mi,0 ← i
5 end
6 for y ← 0 to n do
7 M0,y ← y
8 end
9 for x← 1 to m do

10 for y ← 1 to n do
11 r ← s(x− 1) = t(y − 1) ? 0 : 1
12 Mx,y ← min(Mx−1,y + 1,Mx,y−1 +

1,Mx−1,y−1 + r)
13 end

14 end
15 return M [m][n]

Ukkonen’s algorithm
Edit distance is not an NP-hard problem but in the
2014 it has been proved that the Levenshtein distance
of two strings of length n cannot be computed in time
O(n2−ε) for any ε greater than zero unless the strong
exponential time hypothesis (SETH) is false [21]. Ob-
viously, this introduces strong limitations on the re-
search for exact optimization of edit distance because,
despite O(n2) is a polynomial time, it is not acceptable
for specific applications or for very long strings.
In 1985 Esko Ukkonen proposed an algorithm [3] to

optimize the computation of edit distance by trying
to restrict the number of cells that must be filled in
the dynamic programming table constructed in the
Wagner-Fischer algorithm. Given m and n the two
string lenghts, and i, j the coordinates of any cell in
the matrix, from the diagonal and adjacency proper-
ties, Ukkonen observed that if D(i, j) ≤ k and m ≤ n
then it is sufficient to fill only the cells in the diag-

onals −⌊ (k−n+m)
2 ⌋,−⌊ (k−n+m)

2 ⌋+ 1, . . . , ⌊ (k+n−m)
2 ⌋ of

the dynamic programming matrix. He concluded that
the d(i, j) values form a non-decreasing sequence along
any given diagonal, i.e.:

d(i, j)− 1 ≤ d(i− 1, j − 1) ≤ d(i, j)

consequently, it’s necessary to calculate only the values
that do not exceed the chosen threshold k.
Once D(i, j) > k, the cells D(i + h, j + h) where

h ≥ 0 are irrelevant for computation purposes. This
technique is called cut-off because, intuitively, it cuts
out unnecessary values. For example, let’s consider two
random strings “ACAGACA” and “CAATCA”, and a
threshold k = 2. We obtain a Table like 2.
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Table 2 Ukkonen matrix, k = 2

A C A G A C A

C 1 1 2

A 1 2 1 2

A 2 2 2 2 2

T 3 3 3 3 3

C 4 4 4 3 4

A 4 4 4 3

We can see that the grey cells are strictly bigger than
2, hence we do not bother evaluate them. Therefore,
the final edit distance is 3. For long strings this is
a very high advantage because it is possible to sig-
nificantly reduce the number of elements to be com-
puted. We can find the edit distance by evaluating
n(2k+1) elements at most, where n is the length of the
smaller string. This algorithm has a time complexity of
O(k×min(m,n)), which is a substantial improvement
in performance.

Generalized Ukkonen’s algorithm
The cut-off technique can be applied even without a
pre-specified threshold parameter k [3] [30]. The Lev-
enshtein distance does indeed have an implicit up-
per bound. Suppose we have two strings S and T
whose lengths are n and m with m ≥ n. We can
guarantee that the Levenshtein distance cannot exceed
LevenshteinDist(S, T ) ≤ m.
If we define the two strings as follows:

S = S1S2 . . . Sn−1Sn

T = T1T2 . . . Tm−1Tm

since m ≥ n, we can rewrite:

S = S1S2 . . . Sn−1Sn

T = T1T2 . . . Tn−1Tn . . . Tm

Now we can convert T into S by replacing the sequence
T1 . . . Tn with S1 . . . Sn and deleting Tn+1 . . . Tm. The
cost of performing this operation is at most m because
it needs n substitution and (m − n) deletions. Hence,
the upper bound is proved. This upper bound, so that
LevenshteinDist(S, T ) ≤ m, is quite useful because it
allows us to optimize the number of cells to be com-
puted. Let Xc be the Manhattan distance from a cell
to the upper right corner. Then, as a rule, we can say
that as long as the expression:

(n−Xc) + (m−Xc) ≥ m con Xc ≥ 0

Table 3 Generalized Ukkonen

ϵ A C G T

ϵ 0 1

G 1 1 2

A 1 2 3

C 1 2 3

T 2 2

is valid, we can safely ignore the corresponding matrix
cells. A simple example is given in Table 3.
Assuming two strings have the same lenghts n = m,
then:

(n−Xc) + (n−Xc) ≥ n

2n− 2Xc ≥ n

n− 2Xc ≥ 0

n ≥ 2Xc

Xc ≤
n

2

The ignored cells in one side of the matrix (upper
right) and in the opposite side (bottom left) have an
arithmetic progression of (Xc + 1)(Xc + 2), because if
Xc = 0 we ignore 2 cells, if Xc = 1 we ignore 6 cells,
and so on. Thus, this optimization reduces by approx-
imately

(n

2
+ 1

)(n

2
+ 2

)

the number of cells to be computed.

Securely computing edit distance
Edit distance, weighted edit distance and Needleman-
Wunsch algorithms are often used and widely adopted
in the bioinformatics research field. However, securely
computing these metrics is a highly challenging re-
search task. Over the last years, researchers have inten-
sively studied several ways to meet the vital properties
needed to run these secure protocols.
Many research works focused on secure and efficient

implementations of edit distance algorithms and the
analysis of their benchmarks [1] [15] [16] [17] [18] [19].
However, almost none of these works precisely define
and provide all the details used for the experiment
setup, such as machine type, framework chosen, imple-
mentation and benchmarking settings, source codes,
used input data, custom optimizations, etc. In this
work we discuss novel secure implementations of ex-
isting edit distance algorithms using the current state-
of-the-art garbled circuits, analyze their performance,
and define a clear baseline for future works.
In order to provide meaningful and reproducible re-

sults, we decided to use Google Cloud Platform. For
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Algorithm 2: Generalized Ukkonen’s

1 n← length(s1)
2 m← length(s2)
3 gmax← (m− 1)/2
4 gmin← 1− gmax− (n−m)
5 for j ← 0 to gmax do
6 row[j]← j
7 end
8 for i← 1 to n do
9 row[0]← i− 1

10 min← Max(gmin, 1)
11 max← Min(gmax,m)
12 gmin← gmin+ 1
13 gmax← gmax+ 1
14 dia← row[min− 1]
15 top← row[min]
16 if s1[i− 1] ̸= s2[min− 1] then
17 dia← Min(dia, top) + 1
18 end
19 row[min]← dia
20 left← dia
21 dia← top
22 for j ← min+ 1 to max do
23 top← row[j]
24 if s1[i− 1] ̸= s2[j − 1] then
25 dia← Min(dia, top, left) + 1
26 end
27 row[j]← dia
28 left← dia
29 dia← top

30 end
31 if m = max then
32 continue

33 end
34 if s1[i− 1] ̸= s2[max] then
35 dia← Min(dia, left) + 1
36 end
37 row[max+ 1]← dia

38 end
39 dia← row[m]
40 return dia

this work, the N1, a Compute Engine’s first generation
general-purpose machine type, was chosen; specifically
the n1-standard-1 instance, provided with 1 vCPU
and 3.75 GB of memory and Ubuntu 21.04. To develop
all secure implementations we chose the EMP-toolkit
framework [31], because it integrates all existing appli-
cable optimizations for garbled circuits including effi-
cient OT extension [32] [33], FreeXOR technique [34]
and Half-Gates garbling [35]. EMP-toolkit also pro-

vides a 127-bit computational security (κ).
For the purpose of this work a semi-honest model and
two-party computation was chosen.
All algorithms were developed in C/C++.
In computer science field there is no common con-

sensus regarding benchmark measurement. Many vari-
ables can distort the effective result of a process exe-
cution, mainly due to I/O operations, task switches,
time spent on other processes, interrupt handling, etc.
running in the same time span.
Generally, two methods are taken into account to mea-
sure how much time has passed: Wall time and CPU

time.
For the purposes of this work it was decided to
mainly adopt the CPU time, using the clock gettime

function with the CLOCK PROCESS CPUTIME ID option,
available in the GNU C Library. However some com-
parisons have been carried out using also the wall time.
Finally, to obtain a significant value, each test has been
executed 10 times, and an arithmetic mean among all
the results has been calculated.

Results
In this section, we analyze the performance of four
privacy-preserving algorithms:

• Wagner-Fischer (full matrix): the Wagner-
Fischer algorithm, using the entire dynamic pro-
gramming matrix.

• Wagner-Fischer (two columns): the Wagner-
Fischer algorithm, optimized to use only the min-
imum needed columns for the computation.

• Ukkonen (with threshold): the Ukkonen’s al-
gorithm, considering a threshold of approximately
60% of the longest string.

• Ukkonen (generalized cut-off): the Ukkonen’s
algorithm, using the generalized cut-off technique.

The source code is available publicly at GitHub [4] for
interested readers.
The algorithms were evaluated using two datasets of
DNA data.
The first dataset consists of randomly generated
strings of various lengths of {A, C, G, T} elements.
The lengths considered were: 200, 1000, 2000, 3000,
and 4000. The second dataset consists of real DNA
strings from a genome database released by the
“iDASH Security and Privacy Workshop 2016” [36].
The database includes 50 strings of approximately
3400-3500 characters each.
Results are shown in table 4. Computation inputs
considered are two n-nucleotide genomes. The thresh-
old for Ukkonen algorithm is automatically computed
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String Lengths

Randomly Generated Genomic (iDash)

Algorithm 200 1000 2000 3000 4000 3456 3465 3475

Wagner-Fischer 0.2 8.1 34.9 - - - - -
Wagner-Fischer (opt.) 0.2 7.8 34.0 82.6 146.7 109.2 108.6 108.6
Ukkonen (thr.) 0.1 5.0 21.9 52.7 93.7 71.0 70.4 70.9
Ukkonen (gen.) 0.1 4.8 20.9 50.6 90.2 67.4 67.7 68.6

Table 4 Algorithms performance on different string lengths. Computation inputs are two n-nucleotide genomes. The threshold for
Ukkonen algorithm is automatically computed as 60% of the longest string. The symbol “-” means that the algorithm was terminated
by Linux Out of Memory Killer process before it ended. Times are in seconds.

as 60% of the longest string. The symbol “-” means
that the algorithm was terminated by Linux Out of

Memory Killer process before it ended.
In Table 5 we compared the results obtained in this
work with the best prior results found in literature
[1] (without considering particular and specific cus-
tomization to the garbling scheme), revealing a signif-
icant increase in performance.

Table 5 Performance comparison. Computation inputs are two
4000-nucleotide genomes.

CPU time (s) Wall time (s)

Best Prior N/A 286
This Work 90.2 183

For fair comparison with the cited work, the wall
time has also been calculated, using the CLOCK REALTIME

option of the clockgettime function.
Hence, a 36% speedup was achieved by this work.
Both these works use high-entropy strings (randomly
generated), are generic, accurate, provably secure un-
der the standard, preferred definition of security, and
have comparable benchmarking methodologies. How-
ever, this work does not benefit from any custom cir-
cuits optimization, present instead in the cited work
and in many other works.

Conclusion
The computation of the edit distance between human
genomes has become a very important task in medical
domain.
In this paper we have proposed some novel tech-
niques to securely compute the edit distance on human
genomes and proposed an efficient implementation re-
porting some experimental results on both artificial
and public datasets. Our techniques show improved
efficiency over state of the art, reducing the overall
time needed. Some more optimizations, on both the

computation of the distance and the usage of secure
computation framework can be developed.
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