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Abstract Modern vehicles are becoming increasingly
attractive from the perspective of possible intruders.

The main reasons are twofold: modern vehicles are now
connected to the outside world via Wi-Fi, Bluetooth,
and mobile connection, such as LTE and 5G, and the

increasing complexity of the on-board software enlarges

the attack surface.

In this article, we introduce CAHOOTv2, a context-

sensitive intrusion detection system (IDS) that uses the

vehicle’s sensors to determine driver habits and gather

information about the environment to detect intrud-

ers. We use hyperparameter tuning to increase detec-

tion accuracy. To demonstrate the validity of the algo-
rithm, we collected driving data from both an Artifi-
cial Intelligence (AI) and 39 humans. We include the

AI driver to demonstrate that CAHOOTv2 is able to

detect intrusions when the driver is both a human or

an AI. The dataset is obtained using a modified ver-

sion of MetaDrive simulator where we consider also the

presence of an intruder able to perform the following
types of intrusions: denial of service, replay, spoofing,
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Park Smart Srl, Italy
E-mail: giuseppe.patane@parksmart.it

additive and selective attacks. We make several experi-

ments showing the benefits of hyperparameters tuning.

The results of CAHOOTv2 are promising on detection

of intrusions.
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1 Introduction

Vehicles are increasingly connected to the outside world
thanks to the introduction of several mobile technolo-
gies like LTE and 5G. In 2021 there were approximately
236 million connected vehicles worldwide [23]. More-

over, it is estimated that in 2035 the connected ve-

hicles will increase up to 863 millions [23]. Inside ve-

hicles there are also several Electrical Control Units

(ECUs) that provide functionalities to the car [7]. ECUs
are connected each other through multiple buses, e.g.,
Controller Area Network (CAN), CAN-FD, FlexRay
and Automotive Ethernet. Different partitions of these

busses are connected to each other via gateways.

Modern vehicles are also connected to other vehi-
cles or the roadside units of the infrastructure via V2X

communications. Using V2X communications, each ve-
hicle is able to get information about the surrounding
environment. These information may influence driving

decisions, e.g., change route because of a traffic jam.

Also, many newer vehicles are connected through

LTE or 5G to the carmakers’ server. Carmakers collect
information of the car to offer services, e.g., sensors’

data, air conditioning management, route planning and

history, insurance premium charges, maintenance his-

tory and battery management for electrical vehicles. In

particular, carmakers can offer to third party the access

to the sensors’ data.
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In addition, being connected to the World, vehicles

start to resemble computer on wheels: on-board soft-
ware is becoming increasingly complex. Nowadays, ve-
hicles contain one hundred of millions of lines of code [4].

However, level 5 autonomous vehicles will contain up to

one billion lines of code [4]. In fact, cars contain vari-

ous sensors to keep track of the environment and the

vehicle status [35]. The sensors’ data can be accessed
internally through the CAN bus protocol or from the
external using an OBD-II diagnostic port [28]. In case of

an autonomous car, sensors’ data are processed by pro-

grammable components, such as, Graphics Processing

Units (GPUs) and Field Programmable Gate Arrays

(FPGAs) [5], to improve the driver’s experience.

In summary, the increasing of connected vehicles, in

conjunction with the increase of complexity of vehicles

software, may potentially facilitate vehicle intrusions.

In the last decade, the literature presents several

examples of vehicle’s attacks. In 2016, a vulnerability

in the web browser of Tesla vehicles allowed an in-

truder to remotely send messages in the CAN bus [3].
For instance, researchers Ralf-Philipp Weinmann and
Benedikt Schmotzle found a vulnerability in a software

component of Tesla that allowed them to unlock the

doors and trunk, change seat positions and change both

steering and acceleration modes [32]. Also, using a priv-

ilege escalation exploit, it is possible to use the compro-

mised vehicle to compromise surrounding vehicles.

The study of how to protect the CAN buses from in-

vehicle vulnerabilities is extremely important. In fact,
all the attacks in literature leverage the lack of confi-
dentiality for data in transit on the intra-vehicle CAN

bus network, which are, consequently, exposed to sev-

eral threats. An intruder may exploit local or remote

vulnerabilities of a car to gain some digital access to it,

either locally or remotely. She may then modify the be-

haviour of a target vehicle by sending customized CAN

frames that trigger a specific functionality on a receiv-

ing ECU.

In 2022 the EUROPOL has arrested 31 criminals

that were selling a tool, marketed as a diagnostic tool,

to replace the original software of the vehicle. The soft-

ware replacing allowed the criminals to steal keyless

cars from two French carmakers without using the orig-

inal keys [6].

The standard ISO/IEC 27039:2015 [9] and the reg-
ulation number 155 of the UNECE (UNECE R155),

delivered in 2021, of the United Nations [21] prescribed

the use of Intrusion Detection and Prevention Systems

(IDPS) to monitor the vehicles from intrusions. Un-

der the IDPS umbrella, an Intrusion Detection System

(IDS) merely reports an intrusion alert, while an Intru-

sion Prevention System (IPS) alerts and prevents the

intrusions. In particular, vehicular context-aware IDSs

use the semantic of the messages to detect intrusions.

In this article, we present CAHOOTv2, an improve-

ment of CAHOOT [19], a context-aware IDS able to

detect intrusions into a sequence of in-vehicle messages

related to a driver’s driving style. Indeed, CAHOOT is

the first IDS based also on context information able to

detect replay and DoS attack in addition to the spoof-

ing attack.

Contextual information allows CAHOOTv2 to bet-
ter detect intrusions. For example, if a driver accelerates

and a sensor detects an obstacle in front of the vehi-

cle, CAHOOTv2 classifies this behaviour as a possible

intrusion. The environment context is digitally repre-

sented by the sensors’ values.

1.1 State of the art

In RAIDS [10] and [14] the IDS detects intrusions ex-

ploiting the images from the on-vehicle camera and the

CAN messages. Each work uses two Convolutional Neu-

ral Networks trained to detect spoofing attacks.

Rajapaksha et al. [25] propose an IDS that uses

Gated Recurrent Unit neural network trained only us-

ing benign data over CAN messages. A minimum prob-

ability threshold is estimated to detect the intrusion.

Authors evaluated the work on several public available

datasets.

Xue et al. [33] introduced an IPS that uses the ve-

hicle dynamics to detect intrusions. In particular, au-

thors define policies starting from the specifications of

the target vehicle, in-vehicle messages and onboard sen-

sors to detect intrusion that could affect the safety of

the driver.

The detection of sequence context anomalies can be

made following different approaches. Rieke et al. [27]

used process mining. Levi et al. [15] and Narayanan et

al. [20] proposed works that use hidden Markov models.
Theissler et al. [30] used a One Class Support Vector
Machine (OCSVM), while in the Kang et al. [12] work
neural networks are used. Marchetti et al. [18] used de-

tection of anomalous patterns in a transition matrix.

Taylor et al. [29] and Kalutarage et al. [11] used fre-

quency of appearance of a sequence of CAN messages.

Karopoulos et al. [13] propose a new vehicular IDS

taxonomy where each IDS belongs to multiple cate-

gories. Also the authors provide a survey of the publicly

released datasets, simulation tools and IDSs.

The survey of Grimm et al. [8] focuses on the ben-

efits of the context-aware approach on several security

fields and the related work. Al-Jarrah et al. [1] provide

a survey of IDSs and categorizing them. The authors
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also note the importance of considering the semantics

of data and context to detect anomalies.

Micale et al. [19] introduce CAHOOT, the context-

aware IDS that detects intrusions either on AI and hu-

man drivings for several attacks types. The algorithm

is tested using several machine learning algorithms in a

dataset made by five humans on a simulator. Random

Forest obtained the best results.

In the following, we describe the advantages of CA-

HOOTv2 with respect to CAHOOT and the related

work.

1.2 Contribution

The advantages of CAHOOTv2 with respect to CA-

HOOT are:

– CAHOOTv2 is trained to detect two variants of

spoofing attack.

– CAHOOTv2 improves intrusion detection accura-

cies with respect to CAHOOT. The Machine Learn-

ing algorithms present parameters that must be set

before the training process starts and may influence

the generated model. These parameters are called

hyperparameters [34]. The process of searching the

hyperparameters that improve the performance of

the models is called hyperparameters tuning [34].

In CAHOOTv2, we design a paradigm that selects

the best hyperparameters to use.

– To validate the performance of the algorithm, we

also expanded the dataset collecting driving data

from 39 humans.

Also, the advantages of CAHOOTv2 over related context-

aware IDSs works are:

– CAHOOTv2 detects DoS and replay attacks in ad-

dition to spoofing attacks and variants.
– CAHOOTv2 detects intrusions that target steering,

throttle and brake instead of only steering or steer-
ing and brake.

– CAHOOTv2 detects intrusions on both AI and hu-

man driving.

1.3 Article’s Structure

The article is structured as follows: the next section
presents the attackmodel. Section 3 describes the CA-
HOOTv2 algorithm. Section 4 shows the results of our

experiments. Section 5 concludes the paper with sug-

gestions of future improvements of the algorithm.

2 Attack Model

As attack model we consider an internal intruder that

can be deployed in: a) ECUs that control the steering
wheel, engine and brake b) sensors. The attacker is able

to forge and sniff messages and performs the following

attacks:

– DoS attack: the intruder is able to deny driver input
by generating CAN frames in which payload values

for steering, throttle and brakes are set to zero.
– Replay attack: the intruder is able to re-use valid

CAN frames with a malicious or fraudulent aim.

– Spoofing attack: the intruder is able to generate a

valid CAN frame. For example, the forged frame

may generate a valid signal to activate an ECU func-

tionality. We also consider two spoofing attack vari-

ants presented in [10]:

– Additive attack: the intruder uses the current

valid CAN frame payload and adds a random

value in ±[0.2, 0.9] to simulate an abrupt steer-

ing, acceleration or brake.
– Selective attack: the intruder introduces a CAN

frame that contradicts the driver’s will. The in-
truder uses the current valid CAN frame payload
and flips the sign if the payload absolute value
is greater than 0.3 or adds a random value in

±[0.5, 1].

3 CAHOOTv2 algorithm

The CAHOOTv2 algorithm is built on top of CAHOOT

[19] and aims to detect more attacks and increases the

accuracy on the older ones through the hyperparame-

ters tuning.

CAHOOTv2 inherits from CAHOOT several char-
acteristics:

– CAHOOT has the ability to detect intrusions while

car is moving analyzing the semantic of CAN mes-

sages.

– The algorithm CAHOOT leverages machine learn-

ing (ML) techniques for the intrusion detection.

– The algorithm can also detect intrusions when the
driver and the intruder generate the same CANmes-
sage value.

– The driver can be a human or an AI.

– CAHOOT detects three types of intrusions that tar-
get steering, throttle and brake.

In the following, we describe the paradigms that

CAHOOTv2 and CAHOOT have in common, the pseu-

docodes of the new attacks and how we integrate them

on the intruder’s behaviour. Then, we explain the para-

digm responsible for improving the accuracy. Note that



4 Davide Micale et al.

in each pseudocode we detail the differences between

CAHOOT and CAHOOTv2. Also, new CAHOOTv2’s

functions are described in detail.

3.1 MetaDrive

CAHOOTv2 is evaluated using MetaDrive [16], a driv-
ing simulator written in Python capable of procedurally

generating infinite driving scenarios. Also, the simula-
tor provides a pre-trained AI.

We introduce and intruder into the MetaDrive simu-

lation workflow (Fig. 1). The in vehicle communication
are represented by a set of messages of two Python lists:

the steering messages and the throttle/brake messages

sent by both the intruder and the legit driver.

For each step of the intrusion workflow (Fig. 1):

– The legit driver sends driving inputs while an in-

truder forges fake ones.
– Messages are sent to the set of messages that are

read by CAHOOTv2.

– The CAHOOTv2 algorithm distinguishes forged mes-

sages from the legit ones.

– The component responsible of the steering and the
throttle/brake receives the steering wheel and the

throttle/brake messages and runs them to the sim-
ulated vehicle.

– The simulator clears the set of messages to be able
to fill it again in the next simulation step.

Keep note that in the detection phase CAHOOTv2

do not need both legit and forged messages. If the in-

truder does not forge messages, CAHOOTv2 receives

only the legit messages and establishes their legitimacy.

3.2 Intruder’s Behaviour

In CAHOOTv2, the intruder frequently changes the at-

tacks randomly choosing among the five described in

Section 2. The duration of attacks are randomly chosen

in an arbitrary interval of steps duration.

Listing 1 and Listing 2 describe our model of the in-

truder’s behaviour. In particular, Listing 1 shows the al-

gorithm prepare attack that plans the duration of each
vehicle intrusion, while Listing 2 depicts the algorithm

launch attack.

Listing 1 Prepare Attack

1 function prepare attack(steering, throttle brake,
current attack, steering history,
throttle brake history, index history, prev steering,
prev throttle brake, stop attack time, min duration,
max duration, slot time)

2 should attack change ← stop attack time <= Current
timestamp

3

4 if should attack change
5 num slots ← Select an integer number between

min duration and max duration
6 stop attack time ← Current timestamp +

num slots ∗ slot time
7

8 current attack = None
9

10 (steeringforged, throttle brakeforged, current attack,
index history, prev steering, prev throttle brake
) = launch attack(steering, throttle brake,
current attack, steering history,
throttle brake history, index history,
prev steering, prev throttle brake)

11

12 steering history ← Append steering to
steering history

13 throttle brake history ← Append throttle brake to
throttle brake history

14

15 return (steeringforged, throttle brakeforged,
current attack, stop attack time, steering history
, throttle brake history, index history,
prev steering, prev throttle brake)

The Listing 1 algorithm is the same of the pre-

pare attack presented in CAHOOT except for line 10
where steeringlegit and throttle brakelegit are sent to

the function launch attack. These values may be used

to perform an additive or selective attack.

Listing 2 Launch Attack

1 function launch_attack(steeringlegit,
throttle brakelegit, current attack,
steering history, throttle brake history,
index history, prev steering, prev throttle brake)

2 bootstrap ← False

3 if current attack = None

4 bootstrap ← True

5

6 current attack ← Randomly select one from

"DoS", "Spoofing", "Replay", "Additive",

"Selective"

7

8 if current attack = "DoS"

9 (steering, throttle brake) ← dos_attack()

10 if current attack = "Spoofing"

11 (steering, throttle brake) ←
spoofing_attack(bootstrap, prev steering,
prev throttle brake)

12

13 prev steering ← steering
14 prev throttle brake ← throttle brake
15 if current attack = "Replay"

16 (steering, throttle brake, index history) ←
replay_attack(bootstrap, steering history,
throttle brake history, index history)

17 if current attack = "Additive"
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Fig. 1 Simulation sequence workflow of the vehicle

18 (steering, throttle brake) ←
additive_attack(steeringlegit,
throttle brakelegit)

19 if current attack = "Selective"

20 (steering, throttle brake) ←
selective_attack(steeringlegit,
throttle brakelegit)

21

22 return (steering, throttle brake, current attack,
index history, prev steering,
prev throttle brake)

The Listing 2 algorithm is in charge of maintaining

active and in progress attack or decide which attack

should be run. In CAHOOTv2, launch attack should
randomly choose an attack between DoS, spoofing, re-

play, additive and selective (line 6). The additive and

selective attacks need the steeringlegit and throttle br-

akelegit and apply to them mathematical operations to

generate forged steering and throttle brake (lines from

17 to 20).

3.2.1 Instances Extraction Paradigm

CAHOOTv2 requires a training dataset that contains
both legit and forged messages. We label them as fol-

lows: steeringlegit, steeringforged, throttle brakelegit
and throttle brakeforged, alongside with the sensors’

values (Table 1).

The instances extraction paradigm extracts the in-

stances of the dataset to generate the final dataset. The

new dataset contains messages organized in pairs, each

one is labelled as T when it contains only legit mes-

sages, otherwise it is labelled as F (Table 2). With the
organization in pairs, CAHOOTv2 is able to detect in-

trusions when intruder sends the same message sent by

the driver. Let us suppose that the driver is not turning

the steering wheel, i.e., steeringlegit is equal to 0, while

the intruder starts a DoS attack, i.e., steeringforged is

equal to 0 (Table 1, row 3). The paradigm considers

both the steering message forged by the intruder and

the driver as legit since they are equal. However, based

on the throttle brakelegit and throttle brakeforged the

paradigm raises an alert (Table 2, rows 9 and 10). In
case both the driver and the intruder send the same

pair messages (Table 1, row 4), the algorithm inserts in
the dataset only an instance labelled with T (Table 2,

row 11).

3.2.2 New Attacks

Additive and selective attacks add a random value to

steeringlegit and throttle brakelegit. The sum opera-

tion may lead to a value that is not valid. Function

limit value (Listing 3) ensures that values greater than

the upper bound are changed in upper bound (lines 5
and 6) and values lower than the lower bound are cha-

nged in lower bound (lines 7 and 8). In case the value

is in [lower bound, upper bound], the function returns

the value as it is (line 10). In MetaDrive, upper bound

and lower bound are set to 1 and -1, respectively.

Listing 3 Limit value

1 function limit_value(value)
2 upper bound ← maximum acceptable value

3 lower bound ← minimum acceptable value

4

5 if value > upper bound:
6 return upper bound
7 if value < lower bound:
8 return lower bound
9

10 return value

The additive attack function sets the steering and

throttle brake with random values (Listing 4). First,

two values are randomly generated in ±[0.2, 0.9] (lines

2 and 3). Then, these values are added to steeringlegit
and throttle brakelegit. Next, steering and throttle br-
ake are sent as input to the limit function (lines 8 and
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Table 1 Example of instances before run Instances Extraction Paradigm [19]

timestamp steeringlegit steeringforged throttle brakelegit throttle brakeforged ...

01/01/2022 12:00:00.000 0,695 0,403 0,020 -0,001 ...

01/01/2022 12:00:00.100 0,045 0,494 -0,042 -0,533 ...

01/01/2022 12:00:00.200 0,0 0,0 -0,042 0,0 ...

01/01/2022 12:00:00.300 0,0 0,0 0,0 0,0 ...

Table 2 Example of instances after run Instances Extraction Paradigm [19]

timestamp steering throttle brake ... label

01/01/2022 12:00:00.000 0,695 0,020 ... T
01/01/2022 12:00:00.000 0,695 -0,001 ... F
01/01/2022 12:00:00.000 0,403 0,020 ... F
01/01/2022 12:00:00.000 0,403 -0,001 ... F
01/01/2022 12:00:00.100 0,045 -0,042 ... T
01/01/2022 12:00:00.100 0,045 -0,533 ... F
01/01/2022 12:00:00.100 0,494 -0,042 ... F
01/01/2022 12:00:00.100 0,494 -0,533 ... F
01/01/2022 12:00:00.200 0,0 -0,042 ... T
01/01/2022 12:00:00.200 0,0 0,0 ... F
01/01/2022 12:00:00.300 0,0 0,0 ... T

9). Finally, the function returns the limited steering

and throttle brake values (line 11).

Listing 4 Additive Attack

1 function additive_attack(steeringlegit,
throttle brakelegit)

2 random value 1 ← random value in ±[0.2, 0.9]
3 random value 2 ← random value in ±[0.2, 0.9]
4

5 steering ← steeringlegit + random value 1
6 throttle brake ← throttle brakelegit +

random value 2
7

8 steeringlimited ← limit_value(steering)
9 throttle brakelimited ← limit_value(throttle brake)

10

11 return (steeringlimited, throttle brakelimited)

The selective attack function creates a steering and
throttle brake pair based on the value of the legit ones

(Listing 5). In case, steeringlegit is in ±[0, 0.3], a ran-

dom value in ±[0.5, 1] is added to steeringlegit (lines

from 2 to 4). In case steeringlegit is not in ±[0, 0.3], the

forged steering is the legit one with the sign flipped

(lines 5 and 6). Similarly, the forged throttle brake is

generated (lines from 8 to 12). Then, limit value is
launched on steering and throttle brake (lines 14 and

15). Finally, the limited forged steering and throttle -

brake are returned (line 17).

Listing 5 Selective Attack

1 function selective_attack(steeringlegit,
throttle brakelegit)

2 if steeringlegit in ±[0, 0.3]
3 random value ← random value in ±[0.5, 1]
4 steering ← steeringlegit + random value
5 else

6 steering ← -steeringlegit
7

8 if throttle brakelegit in ±[0, 0.3]
9 random value ← random value in ±[0.5, 1]

10 throttle brake ← throttle brakelegit +

random value
11 else

12 throttle brake ← -throttle brakelegit
13

14 steeringlimited ← limit_value(steering)
15 throttle brakelimited ← limit_value(throttle brake)
16

17 return (steeringlimited, throttle brakelimited)

3.3 Hyperparameters Tuning Paradigm

Listing 6 and Listing 7 describe how the model is trained

using the best hyperparameters.

While the parameters of a model are learned from

the dataset in the training phase through the machine

learning technique, the hyperparameters should be set

manually by the data scientist before starting the train-

ing phase. In most cases, the default hyperparameters

present in the ML frameworks works well. However, the

hyperparameters can be tuned to find a model that per-

forms better [24]. In Random Forest, the ML algorithm

used in CAHOOTv2, the hyperparameters types are

about the structure of each tree present in the forest,

the structure of the forest and the randomness.
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The Model Generation paradigm in CAHOOTv2

differs with respect to the paradigm in CAHOOT start-
ing from line 9: based on the gain ratio rankings, the
worst features are removed (lines 9 and 10) from both

the train and test sets. Then, the hyperparameters tu-

ning function is called (line 12). Next, a random for-
est classifier is initialized using the hyperparameters

received (line 14). Finally, a random forest model is
trained using the train dataset ins bftrain which re-

turns a trained model (line 16).

Listing 6 Model Generation

1 function generate model(inslabelled, num iterations,
cross validation, params distrandom search)

2 (instrain, instest) ← split randomly the instances as
training and testing sets from inslabelled

3 ins extractedtrain ← generate dataset(instrain)
4 ins extractedtest ← generate dataset(instest)
5

6 ranking ← GR(instances)
7 features>0 ← discard features with rank = 0 from

ranking
8

9 ins bftrain ← ins extractedtrain with features
features>0

10 ins bftest ← ins extractedtest with features
features>0

11

12 paramsbest ← hyperparameters tuning(ins bftrain,
ins bftest, num iterations, cross validation,
params distrandom search)

13

14 rf ← initialize a Random Forest using paramsbest
15

16 model ← train rf using ins bftrain

17 return model

Listing 7 depicts hyperparameters tuning paradigm.

Because there are several possible combinations of hy-

perparameters, it is not feasible to try all the possible

combinations to find the best one. In the first phase, the

paradigm creates several random forests with random

combinations of hyperparameters and searches a sub-
set of the best hyperparameters (lines from 2 to 23).
Then, it tries every combinations of hyperparameters

present in the subset to find the hyperparameters with

the best accuracy (lines from 25 to 34). Each combi-

nation is tested using the cross validation technique to

ensure that the hyperparameters are valid for the en-

tire dataset and not only for a specific test set. The

random forests generated in the first phase are trained

and tested using the training dataset. Instead, in the

second phase the random forests are trained using train

and test set. Although the first phase is performed on a

limited number of hyperparameter combinations, this

phase is computationally very onerous especially for

large datasets. To speed up the computation, we ap-

ply the first phase only to the train set. There is only

a minority of data in the test set, so discarding the
test set has a limited impact on the search for the best
hyperparameters.

In the following, we explain in detail the first and the

second phase. In the inputs of hyperparameters tuning

is present params distrandom search, a bi-dimensional

array that contains for each type of hyperparameter
a list of possible values that should be tried by the
paradigm. First, the paradigm creates a list with the

name of the hyperparameters that will be tested (line

2). Then, the array params accuraciesrandom search con-

taining the pairs of hyperparameters chosen and the

accuracy obtained by the random forest algorithm, is

defined (line 4). The num iterations variable defines
how many random combinations of hyperparameters

are tested in the first phase.

A combination of hyperparameters is randomly gen-

erated (from line 6 to 9). For each type of hyperparam-

eter present in params distrandom search, an hyperpa-

rameter is uniformly randomly chosen between all the

possible values. Then, a random forest rf is initialized

using the hyperparameters chosen. Next, rf is trained

using the cross validation technique on the training

dataset with the best features. The cross validation

variable defines the number of folds. The average accu-

racy is registered, alongside the list of the hyperparame-

ters, in params accuracy [“accuracy”] (lines 9 and 12).

Then, the tuple is appended to the array of pairs hyper-

parameters/accuracy params accuraciesrandom search

(line 14).

Once the params accuraciesrandom search is pop-

ulated, the paradigm looks for a subset of the best

features. First, the array params distexhaustive search

that will contain the subset of the best hyperparam-

eters is defined (line 16). Then, the paradigm selects

the best hyperparameters of each type. For each hyper-

parameter type paramname, the accuracies present in

params accuraciesrandom search are grouped by para-
mname to obtain the average accuracy of each group

(line 18). Then, the third quartile [17] is calculated on

the average accuracies of the groups (line 20). The hy-

perparameters that have an average accuracies greater

or equal to the third quartile are inserted in params -
distexhaustive search (line 23). Hence, about 25 percent

of the highest accuracies are selected for each type of
hyperparameter.

Next, the train and test set are combined to ob-

tain the entire dataset (line 25). The variables that will
contain the best hyperparameters and the relative ac-
curacy are defined (lines 27 and 28). Then, each pos-

sible combination of hyperparameters in params dist-

exhaustive search is tested using cross validation on the
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entire dataset (lines from 29 to 31). In case the ac-

curacy obtained is greater than the value currently in

accuracybest, the best hyperparameters and accuracy

variables are updated (lines from 32 to 34). Finally, the

paradigm returns the hyperparameters that obtained

the best accuracy.

Listing 7 Hyperparameters Tuning Paradigm

1 function hyperparameters_tuning(ins bftrain,

ins bftest, num iterations, cross validation,
params distrandom search)

2 paramsname ← get the names of parameters in

params distrandom search

3

4 params accuraciesrandom search ← empty array

5 for num iterations:
6 params ← Empty array

7 for each paramname in paramsname:

8 params[paramname] ← choose uniformly

random a hyperparameter in

params distrandom search[paramname]
9 params accuracy["params"] ← params

10

11 rf ← initialize a Random Forest with params
as hyperparameters

12 params accuracy["accuracy"] ← train rf using

cross validation-fold cross validation

applied to ins bftrain

13

14 params accuraciesrandom search ← append

params accuracy in

params accuraciesrandom search

15

16 params distexhaustive search ← empty array

17 for each paramname in paramsname:

18 grouped accuracies ← group

params accuraciesrandom search by

paramname and calculate the average

accuracy of each group

19

20 third quartile ← calculate the third quartile

on grouped accuracies["accuracy"]
21

22 params accuraciesbest subset ← get the

elements in grouped accuracies on which

grouped accuracies["accuracy"] ≥
third quartile

23 params distexhaustive search[paramname] ←
params accuraciesbest subset["params"]

24

25 ins bf ← ins bftrain ∪ ins bftest
26

27 paramsbest ← None

28 accuracybest ← 0

29 for each params combination in

params distexhaustive search:

30 rf ← initialize a Random Forest with params
as hyperparameters

31 accuracy ← train rf using cross validation
-fold cross validation applied to ins bf

32 if accuracy > accuracybest:
33 paramsbest ← params
34 accuracybest ← accuracy

35

36 return paramsbest

4 CAHOOTv2 Evaluation

Hereafter, we describe how we evaluate the CAHOOTv2

algorithm on a dataset we generated by the MetaDrive

simulation workflow depicted in Section 3.1.

4.1 Dataset

The dataset is generated using the driving simulator

MetaDrive. Table 3 shows the features present in the

dataset generated by the MetaDrive simulator.

We aim to obtain an IDS able to work with ei-

ther humans and AI. Therefore, we decided to collect a
dataset that contains data made by an AI and 39 hu-
mans. In particular, one human uses a keyboard while

the remaining 38 use a Thrustmaster TMX [31]. Re-

garding the gender of the drivers, four drivers are fe-

males while the remaining 35 are males.

Figure 2 shows the ages grouped by the gender. Fe-
male drivers ages are between 19 and 27 in average

22,25 years old and median of 21,5 while male drivers

ages are between 20 and 44 in average 24 years old and

median of 22. Overall, the drivers’ ages are between 19

and 44 with an average of 23,82 and median of 22.

Fig. 2 Boxplots of genders

AI driving data is collected using the pre-trained

AI present in MetaDrive to maintain the consistency of

the same simulated vehicle in use between the AI and

human drivers.
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Table 3 Features description [19]

Feature Description Example Unit

Speed Speed of the vehicle 55 km/h

Throttle brake Amount of throttle or braking 0,55 N/A

Steering Rotation of the steering wheel -0.25 N/A

Last position x/y Position of the vehicle at coordi-
nate x/y

125 N/A

Dist to left/right side Distance from the left/right lane 0,423 m

Fuel consumption Fuel consumption since the start of
the driving session

33,12 N/A

Engine runtime minute / second /
millisecond

Minutes / seconds / milliseconds
elapsed from engine start

39 minutes / s / ms

Yaw rate Angular acceleration on vertical
axis

0.089661 N/A

Project distance / veloc-
ity to vehicle n x / y

Vehicle’s projection distance / ve-
locity to the n-th nearest vehicle on
coordinate x / y

0.187 N/A

4.2 Machine Learning algorithms

The CAHOOTv2 paradigm is implemented by using

python-weka-wrapper3 [26] for the feature selection al-

gorithm GainRatio and scikit-learn [22] that efficiently

implements Random Forest (RF) [2].

Models generated using Random Forest technique
obtain good results. However, tuning the hyperparam-

eters, RF is able to achieve the best results. In the first

experiment, we run the hyperparameters tuning parad-

igm on CAHOOT algorithm with the dataset present

in [19], hereafter called α. This dataset contains data

made by the MetaDrive’s AI and 5 humans using a

Thrustmaster TMX. In the second experiment, we run

CAHOOT and CAHOOTv2 on the dataset presented

in the previous section, hereafter called β.

4.3 Experiments setup

To evaluate CAHOOTv2, we use several metrics, such

as: Accuracy, Precision and Recall.

Accuracy represents how often the model is making

a correct prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where:

– TP (True Positive) is the number of instances where
at least one sensor’s value is forged that are correctly
predicted.

– TN (True Negative) is the number of instances where

all the sensors’ values are legit that are correctly

predicted.

– FP (False Positive) is the number of instances where

all the sensors’ values are legit but incorrectly pre-
dicted.

– FN (False Negative) is the number of instances where
at least one sensor’s value is forged but incorrectly

predicted.

Precision measures the ability of the classifier not

to predict as forged an instance that is legit. It is cal-

culated as follows:

Precision =
TP

TP + FP
(2)

Recall measures the ability of the classifier to find

all forged instances. It is calculated as follows:

Recall =
TP

TP + FN
(3)

The dataset is randomly splitted in a training set
that contains 85% of instances and a test set that con-

tains the remaining 15%.

The intruder sends forged steering and throttle br-

ake messages while the driver is driving the simulated

vehicle. Also, multiple attacks on each driving session

are simulated through the setting of maximum and min-

imum duration of an attack respectively to 2 and 1 slots.
Table 4 shows the hyperparameters that we test in

hyperparameters tuning paradigm. We use 100 as num-
ber of iterations in the first phase.

We aim to detect the instances that contain at least

one sensor’s value forged from the steering and the

throttle brake.

4.4 Evaluation of hyperparameters tuning

In the following, we compare the model that is trained

by using the default hyperparameters with the one that
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Table 4 Hyperparameters tested in hyperparameters tuning paradigm

Hyperparameter Description Values

num estimators The number of trees that make up the forest [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

max features The number of features considered for the split [“log2”, “sqrt”]

min samples split The minimum number of samples required to
split an internal node

[2, 7, 12, 18, 23, 28, 34, 39, 44, 50]

min samples leaf The minimum number of samples required to be
at a leaf node

[1, 6, 11, 17, 22, 28, 33, 39, 44, 50]

bootstrap Whether to use the entire dataset to build each
tree or a bootstrap sample

[true, false]

criterion The function used to measure the quality of a
split

[“gini”, “entropy”]

Table 5 Features selected by CAHOOT on α (percentage of
each rank with respect to the sum of the ranks of the features)

Features Rank percentage

steering 46,7%

throttle brake 32,4%

speed 7,4%

yaw rate 6,6%

fuel consumption 2,3%

last position y 1,3%

last position x 0,9%

engine runtime minute 0,5%

engine runtime second 0,5%

dist to left side 0,4%

project distance to vehicle 1 y 0,3%

dist to right side 0,2%

project velocity to vehicle 0 y 0,2%

is trained using the best hyperparameters. The exper-

iment is conducted on the same train and test set on

dataset α.

Table 5 contains the list of features selected for the

two models. To better distinguish features rankings,

each feature rank is shown as a percentage of the sum

of all the ranks.

The steering and throttle brake messages are the

most important features. The worse features are the dis-

tance from the right lane and the projection of velocity

of the nearest vehicle in the y axis. The engine runtimes

minutes and seconds are at the half of the table while

the engine runtime milliseconds was discarded.

Table 6 shows that the search of hyperparameters
increase the accuracy of 1,5%. The recall is 0,3% lower

than the model trained with the best hyperparameters,
but the precision is 0,9% higher, i.e., the false negative
are slightly increased but false positive are decreased.

To better understand on which circumstances the

customized hyperparameters best perform, we calcu-

lated the accuracy grouped by entity, i.e., human or the
MetaDrive’s AI is driving the car, and by type of attack,
i.e., DoS, spoofing and replay. The model trained with

custom hyperparameters is 1,2% more accurate with

respect to the model trained with default hyperparam-

eters on the MetaDrive’s AI drivings. The attack that

obtains the best accuracy increase is spoofing attack,

i.e., 0,7%. On the other hand, the accuracy of replay

attack increases only of 0,1%.

4.5 Evaluation of CAHOOTv2

In the following experiment, we compare three models:

a model trained using CAHOOTv2 paradigm, i.e., a

model trained to detect DoS, spoofing, replay, additive

and selective attacks using the best hyperparameters, a
model trained using CAHOOTv2 with the default hy-
perparameters and a model trained using CAHOOT

paradigm, i.e., a model trained to detect only DoS,

spoofing and replay attacks using the default hyperpa-

rameters. The experiment is conducted on the dataset

β.

Table 7 contains the list of features selected for the

three models. Keep note that CAHOOTv2 uses the

same features regardless the hyperparameters selected.

The table show that CAHOOTv2 and CAHOOT dis-

card only engine runtime millisecond. While in CA-

HOOTv2 steering and throttle brake together repre-

sent the 55,35% of the entire feature set, in CAHOOT

steering and throttle brake together represent the

82,62% of the entire feature set. Consequently, the re-
maining features are more important in CAHOOTv2.
In all the models, the most important features are ste-

ering, throttle brake and speed. While in CAHOOTv2

dist to left side and yaw rate are respectively the fo-

urth and fiveth most important features, in CAHOOT

they are only the ninth and the eighth most impor-

tant features. In CAHOOT, the fourth and fiveth most
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Table 6 Accuracy, precision and recall comparison on α of CAHOOT with default and best hyperparameters

CAHOOT with best hyperparameters CAHOOT with default hyperparameters
Accuracy Precision Recall Accuracy Precision Recall

96% 96,9% 97,6% 95,5% 96,0% 97,9%

Test only human drivers

97,6% 98,2% 98,5% 97,2% 97,6% 98,6%

Test only MetaDrive’s AI driver

83,9% 88,1% 90,7% 82,7% 85,5% 92,5%

Test only Replay attack

93,5% 96,2% 94,8% 93,4% 95,3% 95,5%

Test only DoS attack

96,8% 96,6% 98,8% 96,3% 95,8% 98,9%

Test only Spoofing attack

97,4% 97,7% 98,9% 96,7% 96,6% 99,1%

important features are energy consumption and last -

position x.

In this case, Tables 8 and 9 show that CAHOOTv2

tuning the hyperparameters obtains the best accuracy,

i.e., 0,3% of accuracy higher than the default hyperpa-

rameters and 8,2% of accuracy higher than CAHOOT.

The model trained with the best hyperparameters in-

creases the precision of 0,3% while maintaining equal

the recall with respect to default hyperparameters.

We also calculated the accuracy grouped by entity,

i.e., human or the MetaDrive’s AI is driving the car, and

by type of attack, i.e., DoS, spoofing, replay, additive

and selective. Grouping allows us to better understand

under what circumstances the model works best.

Considering tests only on humans, the model with

the best hyperparameters obtains accuracy and preci-

sion scores greater than the ones obtained by the default

hyperparameters and CAHOOT. Considering tests only

on the MetaDrive’s AI instances, the model with best

hyperparameters has an accuracy slightly lower with

respect to default hyperparameters, i.e., 0,1%, but the
model is more balanced. The difference between preci-
sion and recall with the best hyperparameters is 3,5%

while in the default hyperparameters is 5,5%.

Tables 8 and 9 show that that the model easily de-

tects intrusions on instances where the human is driving

the vehicle. On the other hand, it is more difficult de-
tect intrusions on instances where the Metadrive’s AI
drives the vehicle. Humans tend to make gradually driv-
ing adjustments, whereas Metadrive’s AI makes contin-

uous and sudden changes. Graduality allows the model

to detect more precisely an intrusion in progress for

human drivings.

The replay attack is the most difficult to detect but

CAHOOTv2 increases the accuracy up to 0,4% sacrific-

ing some of the recall to increase the precision. The DoS

attack is better identified by the model with the best

hyperparameters, i.e., 0,3% more accuracy. However,

CAHOOT is 0,1% more accurate but precision and re-

call are more unbalanced with respect to the best hy-

perparameters. The spoofing attack is the easiest to de-

tect. All three algorithms obtain really high results, in

particular CAHOOTv2 with the best hyperparameters,

i.e., up to 0,3% more accurate. The additive attack and

selective attack are easy to detect for CAHOOTv2 re-

gardless the hyperparameters. However, the best hyper-

parameters allow the accuracy to increase up to 0,4%.

CAHOOT is able to detect these attacks but with lower

scores with respect to CAHOOTv2.
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Table 7 Features selected by CAHOOTv2, with default and best hyperparameters, and CAHOOT on β (percentage of each
rank with respect to the sum of the ranks of the features)

Features
Rank percentage

CAHOOTv2 CAHOOT

steering 31,83% 52,31%

throttle brake 23,52% 30,31%

speed 9,0% 3,91%

dist to left side 4,93% 0,4%

yaw rate 4,47% 1,16%

last position y 3,92% 1,66%

last position x 3,33% 1,95%

energy consumption 3,27% 2,1%

dist to right side 3,07% 1,89%

project distance/velocity to vehicle n x/y from 1,24% to 0,14% from 0,39% to 0,05%

engine runtime second 0,69% 0,18%

engine runtime minute 0,56% 0,17%

Table 8 Accuracy, precision and recall comparison on β between CAHOOTv2 and CAHOOTv2 with default hyperparameters

CAHOOTv2 CAHOOTv2 default hyperparameters
Accuracy Precision Recall Accuracy Precision Recall

97,9% 98,8% 98,2% 97,6% 98,5% 98,2%

Test only human drivers

98,0% 99,0% 98,3% 97,8% 98,7% 98,3%

Test only MetaDrive’s AI driver

87,3% 89,9% 93,4% 87,4% 88,7% 95,2%

Test only Replay attack

94,8% 96,9% 95,4% 94,5% 96,3% 95,6%

Test only DoS attack

96,5% 97,1% 97,4% 96,3% 96,8% 97,4%

Test only Spoofing attack

99,6% 99,5% 99,9% 99,4% 99,3% 99,9%

Test only Additive attack

97,7% 99,5% 97,3% 97,3% 99,2% 97,1%

Test only Selective attack

99,6% 99,7% 99,8% 99,5% 99,5% 99,8%

5 Conclusions and future work

The high complexity of newer vehicles increases the at-

tack surfaces on which a vulnerability could be present.

An intrusion while the vehicle is in motion could en-

danger the lives of the driver and passengers.

In this article, we introduced CAHOOTv2 that im-

proves the ability on intrusion detection of CAHOOT

generating more balanced models thanks to the best

hyperparameters used for the training phase. We also

expanded the dataset with additional drivers to better
validate the results.

Security solutions are strongly linked to safety, es-

pecially when considering the automotive domain. CA-

HOOT and CAHOOTv2 are designed to be an IDS,

so malicious event are just identified and no active re-

actions are implemented to avoid that they may im-

pact the vehicle’s safety. While driving a car, events

may occur that require exceptional responses from the

driver, e.g., a cat suddenly crossing the road forcing

an abrupt stop. If not properly trained, an IDS may

interpret these events as malicious. CAHOOT and CA-
HOOTv2 are already trained to identify dangerous situ-
ations, e.g., one of the simulated cars performed sudden
overtaking or congested traffic that forced the driver to

make abrupt decisions.

In future, we will design an algorithm that is able

to detect intrusions and also is able to identify drivers

while preserving their privacy. Rather than endanger-

ing the lives of the driver and passengers in the vehi-

cle, the intruder could be interested on introduce CAN

messages to misleading the driver identification system
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Table 9 Accuracy, precision and recall comparison of CA-
HOOT on β

Accuracy Precision Recall

91,7% 92,7% 95,9%

Test only human drivers

91,8% 92,8% 96,0%

Test only AI drivers

83,6% 85,4% 94,1%

Test only Replay attack

94,4% 95,9% 95,7%

Test only DoS attack

96,6% 96,6% 98,0%

Test only Spoofing attack

99,3% 99,1% 99,9%

Test only Additive attack

83,5% 87,1% 91,3%

Test only Selective attack

86,7% 87,9% 95,4%

present in the vehicle to impersonate an authorized

driver. To prevent this, the intrusion detection compo-

nent of the algorithm may identify the forged messages

and prevent them to reach the driver identification com-
ponent.
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