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Abstract

Reconfigurable intelligent surface (RIS) is an emerging technology to improve the
spectral efficiency of wireless communication systems. However, the high com-
plexity of beam design and the non-negligible overhead associated with RIS limit
the number of elements that can be deployed in practice. In this paper, we inves-
tigate the downlink communications of irregularly deployed intelligent reflecting
surfaces that assist non-orthogonal multiple access (NOMA) systems. To address
this challenge, we propose a novel four-step resource allocation algorithm. Specif-
ically, we first obtain a sub-optimal solution for the sparse deployment of RIS
elements using a simulated annealing algorithm. We then solve the power alloca-
tion problem by employing an integer optimization algorithm that continuously
iterates the immobile point. To simplify and optimize the reflection coefficient
matrix, we propose a construction inequality algorithm. Finally, we optimize the
channel assignment using a genetic algorithm. The simulation results demonstrate
that the proposed irregular RIS-assisted NOMA system outperforms the tradi-
tional RIS-assisted orthogonal multiple access (OMA) system, with a maximum
throughput increase of approximately 30%.

Keywords: Irregular intelligent reflecting surface, non-orthogonal multiple access,
throughput maximization, resource allocation, low-order iterative optimization
algorithm.
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1 Introduction

At present, the development of 6G technology is in full swing. 6G is expected to
bring an essential economic contribution [1], and the 6G era is also considered to be
a hyper-collaborative society in which various research findings in different fields will
converge to open up a whole new world [2]. In the face of the needs of 6G technology
development, the Internet of Things (IoT) demands large connectivity, access to the
large-scale device, and a shortage of spectrum resources, a number of technologies such
as RIS and NOMA have begun to receive widespread attention.

RIS has the ability to reflect electromagnetic waves to expand the coverage of the
base station (BS) and tune channels by adjusting the phase shift of each element, so
it can improve the throughput of the system with limited resources and help alleviate
the problem of scarcity of spectrum resources. It can also reduce interference between
users, improve the communication quality of edge users and guarantee the security
of communication to a certain extent. At the same time, it improves the coverage of
enhanced wireless signals, which has a strong advantage under perfect channel state
information [3].

However, in practical systems, the performance of the traditional RIS is highly
dependent on the number of RIS elements [4]. And the increase in the number of RIS
elements not only results in very high channel state information acquisition costs but
also leads to signal fading, which limits the capacity of RIS-assisted communication
systems. Especially with a low Signal to Noise Ratio (SNR), the high number of
RIS elements is causing significant performance losses [5]. Conversely, irregular RIS is
irregularly configured with a certain number of RIS elements on an extended surface,
which gives RIS elements additional freedom and increases the power and system
capacity to receive signals. In [6], irregular RIS has also been shown to improve the
performance of the MIMO model by up to 21%.

As the number of users accessing a system increases, the problem of interference
becomes more severe, leading to a decrease in system throughput. To enhance the
system’s capacity, NOMA is employed to mitigate interference between users. NOMA
enables multiple users to share the same time slot, frequency blocks, and channel code,
thereby significantly increasing the system’s throughput and spectral efficiency. Addi-
tionally, the successive interference cancellation (SIC) technique of NOMA effectively
improves the SNR and reception reliability, which is crucial for information transmis-
sion. In [7], RIS-NOMA was shown to serve more users in each orthogonal spatial
direction. For a given number of users and predefined transmit power, the total rate
of NOMA is better than that of OMA [8]. Furthermore, a new algorithm has been
proposed in [9] to suppress the error propagation of SIC.

There have been many articles on traditional RIS-assisted NOMA systems. Specif-
ically, in [10], some methods for The maximum throughput of RIS-assisted NOMA
networks are presented. In [11], the case of multiple clusters is considered and the min-
imum transmission power is obtained by a fixed point method. In [12], the minimum
transmission power of RIS-assisted SWIPT NOMA networks is investigated by using
a joint optimization approach.

The above articles consider the improvement of system performance when NOMA
is combined with traditional RIS, but the work on system throughput when NOMA
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is combined with irregular RIS has not been carried out yet. Inspired by the irreg-
ular RIS-assisted multi-user multiple-input multiple-output (MIMO) communication
system [6].

In this paper, we investigate the maximization of the throughput rate of irregular
RIS-assisted NOMA systems to enhance system performance when the signal is not
directly accessible. The primary contributions of this study can be summarized as
follows:

(1) We leverage the unique characteristics of irregular RIS and NOMA technologies
to enhance system performance. Through the combination of these two techniques,
we achieve a larger system capacity, thereby improving the overall performance of the
wireless communication system.

(2) We address the challenging optimization problem in our proposed approach,
which involves the topology matrix of irregular RIS, power allocation, reflection coef-
ficient design, and channel assignment, and is known to be an NP-hard problem.
To effectively solve this problem, we propose a four-step joint optimization algo-
rithm that sequentially employs suboptimal algorithm, fixed-point iterative algorithm,
constructive inequality algorithm, and genetic algorithm for stepwise optimization.

(3) Compared with traditional methods, our proposed approach optimizes the
performance of irregular RIS algorithm while maintaining low complexity. This
demonstrates the effectiveness and efficiency of our proposed method.

The remainder of this paper is organized as follows: In Section II, we construct
the system model and define the optimization problem, as well as introduce the con-
straints. In Section III, we propose a four-step joint optimization algorithm to solve
the problem. Section IV presents the simulation results, and Section V concludes the
paper.

2 System Model and Problem Formulation

2.1 System model

We investigate an irregular RIS-assisted NOMA downlink wireless communication sys-
tem, as depicted in Figure 1. The system comprises a single-antenna BS and K users,
each equipped with one antenna. The channels associated with the users are repre-
sented by the set K = {1, 2, 3, . . . ,K}. The RIS, consisting of M reflecting elements
sparsely distributed over Ms grid points, is assumed to have a spacing between adja-
cent grid points that is half of the signal wavelength [13]. The reflection coefficient
matrix of the RIS is denoted as Θ = diag

{

λ1e
jθ1 , λ2e

jθ2 , λ3e
jθ3 , . . . , λMejθM

}

, where
θm ∈ [0, 2π] and λm ∈ [0, 1] represent the phase shift and amplitude of the mth reflect-
ing element, respectively [14]. The selection matrix representing the topology of the

RIS is denoted as Z = diag {z}, where z = [z1, z2, z3, . . . , zMs
]
T
and zi ∈ {0, 1}, with

“0” indicating selected and “1” indicating unselected. The number of ones in vector z
is M , and the number of zeros is Ms −M .

Due to the huge propagation loss [15], we just consider the signal reflected by the
first time of the irregular RIS and no longer consider multiple reflections. Moreover, in
order to better reflect the improvement of the signal by irregular RIS and the direct
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Fig. 1 The irregular RIS-assisted NOMA Systems

link is obscured in some practical cases, we only consider the reflected link and ignore
the direct link.

The symbol to be transmitted on the nth channel is a superposition of signals from
different users, can written as

xn =

K
∑

k=1

δn,k
√
pn,ksn,k (1)

where δn,k and pn,k represent the binary power control and power allocation variables,
respectively. sn,k denotes the symbol to be transmitted by the kth user on the nth
channel

User k receive the signal received over channel n can be written as

yn,k =
(

gH
n,kZΘfn

)

xn + n (2)

where gn,k ∈ C
M×1 and fn ∈ C

M×1 denote the channel gain for channel n from the
RIS to user k and from the BS to RIS, respectively. The channel gain for channel n
between the BS and user k is ignored. n denotes white Gaussian noise (AWGN) with
zero mean and σ2 variance.

One of the key challenges in NOMA systems is determining the optimal SIC decod-
ing order, which is typically based on the channel gain. However, in NOMA systems
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assisted by RIS, the combined channel gain can be adjusted by tuning the RIS reflec-
tion coefficients. This approach is also applicable to irregular RIS-assisted NOMA
systems. Specifically, the decoding order πn,k for user k transmitting over channel n
can be used to indicate the order in which the receiver should decode the signals, with
πn,k = i denoting that the ith signal should be decoded first. The achievable capacity
for user k on channel n can then be written as

Rn,k = log2






1 +

δn,kpn,k

∣

∣

∣
gH
n,kZθfn

∣

∣

∣

2

∣

∣

∣
gH
n,kZθfn

∣

∣

∣

2

Pn,k + σ2






(3)

where Pn,k =
∑

πn,i>πn,k

δn,kpn,k.

Assuming that πn,k′ > πn,k, it is necessary to satisfy the SIC decoding condition
Rn,k′ > Rn,k in order to ensure successful decoding of the information by both user
k′ and user k. In other words, when πn,k′ > πn,k, it is required that the capacity of
user k′ decoding user k’s signal is greater than the capacity of user k decoding his/her
own signal [16], [17].

2.2 Problem Formulation

The communication scenario considered in this paper is that there are K single-
antenna users served by a single-antenna BS, where the LoS link between the BS and
the users is not available. To form a wireless communication link between the BS and
the K users, an additional array of artificial reflective surfaces is used, consisting of M
small reflective elements. The M RISs are sparsely distributed over a surface network
of area Ms.

In order to obtain the maximum throughput of the system, we will jointly optimize
the topological matrix of the RIS distribution, power allocation, reflection coefficient,
channel allocation, and decoding order. The optimized problem can be written as

(P1) : max
δ,π,p,Θ,Z

N
∑

n=1

K
∑

k=1

Rn,k = log2






1 +

δn,kPn,k

∣

∣

∣
gH
n,kZθfn

∣

∣

∣

2

∣

∣

∣
gH
n,kZθfn

∣

∣

∣

2

Pn,k + σ2






(4)

s.t.Rn,k′ ≥ Rn,k, (πn,k ≤ πn,k′) , (4a)

Rn,k′ ≥ Rmin, (4b)

N
∑

n=1

K
∑

k=1

δn,kPn,k ≤ Pmax, (4c)

|Θm,m| ≤ 1, (4d)

K
∑

k=1

δn,k = Kn, (4e)
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N
∑

n=1

δn,k = 1, (4f)

πn ∈ Ω, (4g)

zi (zi − 1) = 0, (4h)

∥Z∥1 = M, (4i)

where δ = {δ1,1, ..., δN,K} is the channel assignment indication vector, with δn,k ∈
{0, 1} indicating whether user k is assigned to channel n. p = {p1,1, ..., pN,K} is the
power allocation vector, denotes the power assigned to the nth channel for user k.
π = {π1,1, ..., πN,K} is the decoding order vector, representing the order in which user
k is decoded on the nth channel. Θ denotes the reflection coefficient matrix, and Z

denotes the selection matrix for the sparse distribution of the RIS. Specifically, the
topology matrix Z has M diagonal elements assigned the value of 1, while the rest of
the elements are assigned 0.

The optimization problem for the RIS-based multiuser communication system is
subject to several constraints to ensure reliable and efficient operation. First, constraint
(4a) is introduced to guarantee the success of the SIC decoding process, which is
a critical component of the system’s operation. Second, constraint (4b) specifies the
minimum capacity requirement Rmin for each user to ensure that all users can achieve
a certain level of data rate performance. Third, constraint (4c) is imposed to control the
total transmit power budget, which is a valuable resource that must be used efficiently
to minimize interference and maximize capacity. Fourth, constraint (4d) is introduced
to determine the reflection coefficients of the RIS, which is a key element of the
system’s infrastructure. Fifth, constraint (4e) is used to assign channels to users while
ensuring that each channel is allocated to no more than Kn users. This constraint is
critical to balancing the load across different channels and avoiding congestion. Sixth,
constraint (4f) restricts each user to a single channel to avoid interference and ensure
fair allocation of resources. Seventh, constraints (4g) and (4h) limit the decoding order
to a combination set Ω of all possible orders, which is necessary to ensure proper
SIC decoding and avoid errors. Finally, constraint (4i) is introduced to impose sparse
deployment of the irregular RIS.

Specifically, for a given topology Z0, (P1) can be deduced that

(P2) : max
δ,π,p,Θ

N
∑

n=1

K
∑

k=1

Rn,k (5)

s.t.Rn,k′ ≥ Rn,k, (πn,k ≤ πn,k′) , (5a)

Rn,k′ ≥ Rmin, (5b)

N
∑

n=1

K
∑

k=1

δn,kPn,k ≤ Pmax, (5c)

|Θm,m| ≤ 1, (5d)
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K
∑

k=1

δn,k = Kn, (5e)

N
∑

n=1

δn,k = 1, (5f)

πn ∈ Ω, (5g)

Z = Z0, (5h)

3 Joint optimization algorithm proposed for the
RIS-Noma system

In order to address the optimization problem (P1), we propose a four-step algorithm
that aims to achieve an efficient and effective solution. The proposed algorithm con-
sists of the following steps. Firstly, a simulated annealing algorithm is utilized to
obtain a sparse deployment of the RIS elements, which can significantly reduce the
computational complexity of the subsequent optimization steps. After obtaining the
topological matrix Z, it is fixed for the remaining steps. Secondly, an integer optimiza-
tion algorithm with successive iterations of immobile points is used to solve the power
allocation problem. Thirdly, the reflection coefficient matrix is simplified and optimized
by constructing appropriate inequalities. Finally, a genetic algorithm is employed to
optimize the channel assignment. The proposed algorithm is expected to provide a
computationally efficient and effective solution to the optimization problem (P1).

3.1 SA-based Sparse Deployment Of RIS

In [2], inspired by [18], they optimized the topology matrix Z using taboo search
algorithm. Under the influence of [2], we attempted another widely-used metaheuris-
tic algorithm - simulated annealing algorithm [19]. Although this algorithm may not
necessarily obtain the optimal solution, it can obtain an approximate optimal solu-
tion within a limited time. Considering that in practical scenarios, there may be many
suboptimal solutions in a large RIS grid, simulated annealing algorithm can to some
extent avoid getting stuck in local optima. Furthermore, simulated annealing algo-
rithm requires relatively few algorithm parameters, making the entire system easy to
implement and adjust.

The specific implementation process of the algorithm is as follows: Firstly, the diag-
onal elements of the topology matrix Z of the RIS are randomly initialized to obtain
Z0, where the number of ones is M and the number of zeros is Ms−M . Then, the sys-
tem performs multiple iterations, and the number of iterations is affected by factors
such as the initial temperature, target temperature, cooling schedule, and temperature
chain length. In the ith iteration, the RIS topology matrix is Zi, and we randomly
exchange the positions of zeros and ones within the diagonal elements of Zi in a small
area. The number and positions of the exchanged elements are randomized. Whether
the new RIS topology matrix Zi is retained is based on the Metropolis criterion and is
used for the next iteration. When the number of iterations reaches temperature chain
length, the iteration count is reset to zero, and the current temperature is updated and
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compared with the target temperature until the current temperature is lower than the
target temperature, and the iteration ends. At this point, the obtained RIS topology
matrix Z is a suboptimal solution.

Algorithm 1 Irregular RIS Topology Optimization Algorithm

Require: T0 > Tend > 0, 0 < α < 1, L > 0
Ensure: y =

∑N
n=1

∑K
k=1 Rn,k

1: Initialize an initial temperature of T0, a target temperature of Tend, a cooling
schedule of α, and a temperature chain length of L

2: T = T0, l = 0, Z = Z0

3: if T > Tend then
4: if l < L then
5: Randomly swap the diagonal elements of matrix Z

6: if min
(

1, e−(y−y′)/T
)

> random(0, 1) then

7: Z ⇐ Z′

8: end if
9: l ⇐ l + 1

10: end if
11: l ⇐ 0
12: T ⇐ T ∗ α
13: end if

3.2 Joint Power Allocation and Reflection Coefficient Design

Through the solution just now, we have obtained the suboptimal matrix Z0 of Z, and
after bringing Z0 into Z, we only need to solve the optimization problem of traditional
RIS-NOMA.

Let kn denote the index of the kth user decoded on the nth channel. To optimize
the transmit power and the coefficient matrix of the RIS, we first assign channels and
specify the decoding order. Then, the capacity Rn,kn can be expressed as follows:

Rn,kn
= log2

(

1 +
pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

)

(6)

where Pn,kn
denotes the total power of all users on the nth channel from the

(kn + 1)th user to the Knth user while communicating at the same time, so Pn,kn
=

∑Kn

i=kn+1 pn,in .
Moreover, we can simplify constraint (5a) and rewrite it as

∣

∣

∣
gH

n,k′

n
ZΘfn

∣

∣

∣

2

−
∣

∣gH
n,kn

ZΘfn

∣

∣

2 ≥ 0, k′n > kn (7)
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Combining the given data and (6), (P2) can be equivalently transformed into the
following problem

(P3) : max
p,Θ

N
∑

n=1

Kn
∑

kn=1

log2

(

1 +
pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

)

(8)

s.t.log2

(

1 +
pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

)

≥ Rmin, (8a)

N
∑

n=1

Kn
∑

kn=1

pn,kn
≤ Pmax, (8b)

(5d), (7), (8c)

At this point, the variables p and Θ are still coupled, and (P3) is non-convex.
Since we cannot optimize these two variables directly, we need to optimize p and Θ
separately and optimization problem (P3) can be split into two subproblems

(P3.1) : max
p

N
∑

n=1

K
∑

k=1

log2

(

1 +
pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

)

(9)

s.t.(8a), (8b), (9a)

and

(P3.2) : max
Θ

N
∑

n=1

K
∑

k=1

log2

(

1 +
pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

)

(10)

s.t.(5d), (7), (9a)

where (P3.1) is the optimization problem to find the optimal power allocation vector
p, amd (P3.2) is the optimization problem to find the optimal reflection coefficient
matrix Θ.

3.2.1 Derivation of optimization steps for (P3.1)

To solve the subproblem (P3.1), we define a new set of variables X =
{x1,k1

, x1,kn
, . . . , x2,k1

, x2,kn
, . . . , xn,k1

, . . . , xn,kn
}, where each xn,kn

satisfies the fol-
lowing inequality:

pn,kn

∣

∣gH
n,kn

Z0Θfn

∣

∣

2

∣

∣gH
n,kn

Z0Θfn

∣

∣

2
Pn,k + σ2

≥ xn,kn
(11)

Performing simplification and rewriting techniques on constraint (11) results in

pn,kn

∣

∣gH
n,kZ0Θfn

∣

∣

2 ≥ xn,kn

(

∣

∣gH
n,kZ0Θfn

∣

∣

2
Pn,k + σ2

)

(12)
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pn,kn
≥ xn,kn

Pn,k +

(

σ2

∣

∣gH
n,kZ0Θfn

∣

∣

2

)

(13)

At this juncture, the right-hand side of inequality (15) exhibits quasi-concave;
however, the constraint (15) remains non-convex. To address the non-convexity of the
problem, a convex upper bound approximation can be utilized [20].

Based on the mean value inequality ab ≥ 2
√
ab, we can construct two functions

f (x, y) = α
2 x

2 + 1
2αy

2 (α > 0) and g (x, y) = xy, respectively. For any x and y, there
is always f(x, y) ≥ g(x, y), when α = y

x , f (x, y) = g (x, y), and the gradients are the
same. In other words, f(x, y) is an upper bound on g(x, y).

Based on the above functions, we can construct

xn,kn
Pn,k ≤ 1

2α
P 2

n,k +
α

2
x2

n,kn
(14)

where α is the fixed point. Take the equal conditions as α =
Pn,k

xn,kn
. After the ith

iteration update, the fixed poin α (t) =
Pn,k(t−1)
xn,kn (t−1) .

With the above analysis, the constraint (13) can be written

pn,kn
≥ 1

2α(t− 1)
P 2
n,kn

+
α(t− 1)

2
x2
n,kn

+ xn,kn

(

σ2

∣

∣gH
n,kZ0Θfn

∣

∣

2

)

(15)

By iterative solution, we can rewrite (P3.1) as

(P4) : max
X,p

N
∑

n=1

K
∑

k=1

log2 (1 + xn,kn
) (16)

s.t.(8a), (8b), (15), (16a)

The optimization problem (P4) is a convex function and is solved using the CVX
toolkit [21].

3.2.2 Derivation of optimization steps for (P3.2)

Before optimizing (P3.2), we first simplify
∣

∣gH
n,kn

ZΘfn

∣

∣

2
as

∣

∣gH
n,kn

ZΘfn

∣

∣

2
= real(gH

n,kn
ZΘfn)

2 + imag(gH
n,kn

ZΘfn)
2 (17)

For ease of notation, we introduce Hn,kn
and eθ to represent the variables

gH
n,kn

Zdiag{fn} and [λ1e
jθ1 ... λNs

ejθMs ]T , respectively. And we further define rn,kn

for real(Hn,kn
eθ) and in,kn

for imag(Hn,kn
eθ).

Here, (P3.2) can be rewritten as

(P5) : Find eθ (18)
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s.t.r2n,k′

n
+ i2n,k′

n
> r2n,kn

+ i2n,kn
, k′n > kn, (18a)

r2n,kn
+ i2n,kn

≥ (r2n,kn
+ i2n,kn

)
xn,kn

Pn,kn

pn,kn

+ xn,kn
σ2, (18b)

|eθ(t)| ≤ 1, (18c)

rn,kn
= real(Hn,kn

eθ), (18d)

in,kn
= imag(Hn,kn

eθ), (18e)

where eθ(t) represents the tth iteration of eθ.
The constraints (18a) and (18b) in problem (P5) are non-convex, which means that

we cannot directly use CVX to optimize the problem. However, we can use the suc-
cessive convex approximation (SCA) method to rewrite these non-convex constraints
into a form that can be handled by CVX.

Based on the sum-of-squares non-negativity theorem, we can formulate an inequal-
ity as (a− a′)2 + (b− b′)2 ≥ 0. By bringing rn,kn

and in,kn
into a and b, respectively,

the inequality can be written as (rn,kn
− r′n,kn

)2 + (in,kn
− i′n,kn

)2 ≥ 0. The
point (r′n, kn, i

′n, kn) in equation represents a first-order approximation of the point
(rn,kn

, in,kn
), which can be updated iteratively.

Simplify this inequality as

r2n,kn
+ i2n,kn

≥ −r′n,kn

2 − i′n,kn

2
+ 2rn,kn

r′n,kn
+ 2in,kn

i′n,kn
(19)

r2n,kn
+ i2n,kn

≥ r′n,kn

2
+ i′n,kn

2
+ 2r′n,kn

(rn,kn
− r′n,kn

) + 2i′n,kn
(in,kn

− i′n,kn
) (20)

During the tth iteration, the point (r′n, kn, i
′n, kn) can be updated as

r′n,kn
(t) = real(Hn,kn

eθ(t− 1)), (21)

i′n,kn
(t) = imag(Hn,kn

eθ(t− 1)), (22)

Assume that the function F (rn,kn
, in,kn

) = r′n,kn

2
+ i′n,kn

2
+2r′n,kn

(rn,kn
− r′n,kn

)+

2i′n,kn
(in,kn

− i′n,kn
), we can derive the inequality r2n,kn

+ i2n,kn
≥ F (rn,kn

, in,kn
).

The constraints (18a) and (18b) can be simplified as

F (rn,k′

n
, in,k′

n
) > r2n,kn

+ i2n,kn
, k′n > kn, (23)

F (rn,kn
, in,kn

) ≥ (r2n,kn
+ i2n,kn

)
xn,kn

Pn,kn

pn,kn

+ xn,kn
σ2, (24)

After iteration the optimization problem (P5) can be written as

(P6) : Find eθ (25)

s.t.(18c), (18d), (18e), (23), (24), (25e)

The optimization problem (P6) is a convex function, which can be solved using
the CVX toolkit.
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3.3 Optimize the allocation of channels

In this subsection, we will discuss the optimization of the channel assignment problem
in a irregular RIS-assisted NOMA system. Given the topology matrix of the irregular
RIS, power allocation, reflection coefficient, and decoding order, (P1) can be rewritten
as

(P7) : max
δ

N
∑

n=1

K
∑

k=1

Rn,k (26)

s.t.(5a), (5b), (5e), (5f), (26a)

To optimize problem (P7), we used a genetic algorithm.
First, we introduce the set H, which represents the set of all channels and can be

written H = {H1,H2, ...,HN}, where Hn denotes the set of users on channel n. And
H1 ∪H2 ∪ ... ∪HN = K, where K denotes the set of all users. Combining constraints
(5a) and (5b), we define

|H| = N (27)

|Hn| = Kn (28)

∀k ∈ K, ∃!Hn such that k ∈ Hn (29)

where constraint (27) ensures the existence of N channels, constraint (28) ensures
that channel n is allocated to Kn users, and constraint (29) ensures that each user k
is allocated to one and only one channel.

With the channel allocation representation established, all feasible channel allo-
cation schemes can be represented by the set H. For any H, it corresponds to a
valid channel allocation scheme. Additionally, there exists a one-to-one correspondence
between H and the channel allocation scheme, satisfying the normality of the coding
strategy.

To optimize the NOMA channel allocation problem, we first randomly generate
an initial set of feasible solutions H(0) that satisfy the three constraints, including 10
randomly generated feasible solutions H.

After generating the initial set of solutions, we enter the iterative process. In
each iteration, we select the solution in the current set with the maximum system
throughput and retain it while discarding the others.

Then, we randomly modify the matching relationships between some users and
channels in the retained solution set H, resulting in 10 new feasible solutions that
satisfy the constraints.

Additionally, we generate a completely random solution that satisfies only the
constraints, and is independent of H, where increases the diversity of the solutions
and helps to avoid getting trapped in local optima. By adding a randomly generated
solution H to H(t), we can further increase the diversity of the solution set H(t) and
help avoid premature convergence.

After reaching the specified number of iterations T , we select the solution H in the
set H(T ) with the maximum system throughput as the optimal solution.

12



Algorithm 2 Allocation Of Channels Optimization Algorithm

Ensure: y =
∑N

n=1

∑K
k=1 Rn,k

1: Initialize an initial set of feasible solutions H(0), number of iterations T
2: t = 0
3: if t < T then
4: H∗ = argmaxHn∈H(t) y

5: Randomly swap the elements of the matrix H∗ generates 10 candidate solu-
tions, each of which is included in the solution set H(t + 1). In addition, a
completely random and independent set of H∗ is generated and added to the
solution set H(t+ 1).

6: t ⇐ t+ 1
7: end if

4 Simulation results

In this subsection, we will build a Matlab simulation platform to test the through-
put maximization algorithm of “ Irregular Reconfigurable Intelligent Surface Assisted
NOMA Systems ” designed in this paper. In this subsection, two aspects of the simu-
lation are tested: the first aspect is the comparison of the algorithm with the capacity
of conventional RIS and non-regular RIS, NOMA system and OMA system from two
aspects: different SNRs and different number of reflecting elements. The second aspect
is to compare the performance of four algorithms, namely, the traversal algorithm, the
simulated annealing algorithm, the tabu search algorithm, and the random assignment
algorithm, from the perspective of their convergence performance.

The first is the simulation of the system capacity performance, and a brief descrip-
tion of the simulation scheme is given. In this simulation, it is assumed that there is
a BS with a total of K single-antenna users, where the LoS link between the BS and
the users is not available, and the communication between the BS and the users is
formed by an additional array of artificial reflective surfaces (consisting of M small
reflective surfaces) to form a wireless communication link, and the small-scale fading
of the link between the BS and the RIS and the link between the RIS and the users
obeys the Rayleigh distribution, the channel responses are independent of each other
among users and the large scale fading obeys the free space loss with a loss factor of
2. Other channel configuration parameters are shown in Table 1.

In Figure 2, the system capacity of Traditional regular RIS Assisted NOMA Sys-
tem, Proposed irregular RIS Assisted NOMA System, Traditional regular RIS Assisted
OMA System and Proposed irregular RIS Assisted OMA System. The system capac-
ity of these four systems varies with the transmitting power of the BS. It can be seen
from the Figure 2 that the system capacity of these four systems increases linearly
with the increase of the transmitting power of the BS, and Proposed irregular RIS
Assisted NOMA System has the best capacity performance, followed by Traditional
regular RIS Assisted NOMA System. Traditional regular RIS Assisted NOMA System,
whose performance is about 2.5 dB worse, and then Proposed irregular RIS Assisted
OMA System, whose performance is about 6 dB worse. Based on the above results,
it can be seen that irregular RIS has a higher performance than traditional regular
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Table 1 Channel capacity simulation parameters
configuration

Parameter Name Parameter Value

K (Number of users) 4
M (Number of RIS) 32
Noise power (dBm) -80
RIS to base station distance 50
RIS to user distance 2
Number of Monte Carlo iterations 100
Base station transmit power (dBm) -10, -5, 0, 5, . . ., 30

RIS in both NOMA and OMA systems. Irregular RIS is about 3 dB better than the
traditional regular RIS, which indicates that the limited reflecting surface can be used
more efficiently by designing the location of the reflecting surface.

Compared with the traditional regular RIS assisted OMA system, the irregular RIS
assisted NOMA system proposed in this paper has achieved a performance improve-
ment of about 30%, and even the weak irregular RIS assisted OMA system has a
maximum throughput improvement of about 20%. This highlights the great superiority
of irregular RIS.
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Fig. 2 Maximum capacity in different situations

In Figure 3, the effect of the total reflecting array size on the system capacity under
the irregular RIS is analyzed for a total number of reflecting surface elements of 16.
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The capacity performance of the four systems is not different from that in Figure 2,
but the performance of the irregular RIS system increases monotonically as the size
of the reflecting array increases, indicating that increasing the size of the reflecting
array can effectively increase the capacity performance of the system. On the other
hand, when the total size of the reflecting array reaches four times the area of the
effective reflecting element, the capacity performance of the system basically converges,
indicating that there is a certain upper limit to the performance improvement achieved
by increasing the size of the reflecting array, and it is not significant to increase the
size of the reflecting array after reaching a certain level.

This highlights the necessity of irregular RIS, when the RIS size is continuously
increased, the performance improvement is no longer obvious, at this time replacing
the traditional regular RIS with irregular RIS can greatly improve the maximum
throughput of the system. From the perspective of installation cost and RIS cost,
the construction of irregular RIS is reduced in size compared with traditional regular
RIS under the same performance, and the lower cost undoubtedly reflects another
advantage of irregular RIS.
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Fig. 3 Maximum capacity in different situations

Combining the results of Figure 2 and Figure 3, it is easy to conclude that the use
of irregular RIS can effectively improve the overall system capacity performance with-
out increasing the number of reflecting surface elements and the corresponding phase
control unit, and the larger the reflecting array size, the more obvious the improvement
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is, and the overall performance improvement is about 3-5 dB. The overall performance
improvement is about 3-5 dB, which fully proves the superiority of irregular RIS.

Next is an analysis of the performance of four different search algorithms the
traversal search algorithm (the optimal algorithm, representing the upper performance
limit), the simulated algorithm and the taboo search algorithm (two common subopti-
mal methods, the former is used in this paper), and the random assignment algorithm
(representing the lower performance limit) for a fixed number of RIS elements and
the number of elements in the entire panel,focusing on the performance of the simu-
lated annealing algorithm and the taboo search algorithms as a function of iteration
and percentage compared to the optimal case.The simulation scheme is basically the
same as in Figure 2 and Figure 3, The four different optimization search algorithms,
namely, Traverse Algorithm, Simulated annealing Algorithm, Taboo Search Algorithm
and Random Number Algorithm, are applied to the search of the reflecting surface
elements of the irregular RIS mentioned in Figure 2 and Figure 3. The optimization
performance and complexity performance simulation scenarios of the four algorithms
in searching for irregular intelligent reflecting surface elements are basically the same
as the one in which a BS is assumed to have a total of K single-antenna users, where
the LoS link between the BS and the users is not available, and the communication
between the BS and the users is carried out through an additional artificially erected
reflecting surface element array (composed of N small reflecting surfaces) constitutes
the wireless communication link, and the small-scale fading obeys the Rayleigh dis-
tribution in the link between the BS to the RIS and the link between the RIS to the
user, and the large-scale fading obeys the free-space loss, and the loss factor is 2. Other
channel configuration parameters are shown in Table 1.

Figure 4 illustrates the relationship between the number of iterations of the four
algorithms and the percentage of time spent by the optimal algorithm. Although time
spent cannot fully replace time complexity, it can provide some insight into the practi-
cal performance of the four algorithms. As shown in Figure 4, the Simulated Annealing
Algorithm requires significantly less time than the Optimal Algorithm and the Taboo
Search Algorithm in the first 500 iterations, taking only 20% of the time of the opti-
mal algorithm. The forbidden search algorithm already takes 60% of the time of the
optimal algorithm at this point. . However, after 500 iterations, the Simulated Anneal-
ing Algorithm consumes significantly more time per iteration, and at 912 iterations,
the total time spent exceeds that of the Taboo Search Algorithm and approaches that
of the Optimal Algorithm. These results indicate that the Simulated Annealing Algo-
rithm requires very little time for a small number of iterations, but as the number
of iterations increases, it gradually approaches and surpasses the Taboo Search Algo-
rithm. It should be noted that since the time to generate random numbers is negligible
compared to the time spent on iterations, the time spent by the Random Number
Algorithm is negligible compared to the time spent by the Optimal Algorithm. This
is evident in Figure 4, where the time spent by the Random Number Algorithm is
consistently 0.

Figure 5 presents the percentage relationship between the number of iterations of
the four algorithms and the performance of the Optimal Algorithm. As shown in the
figure, when the number of iterations reaches 100, the Taboo Search Algorithm has
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achieved 88% of the performance of the Optimal Algorithm, and by 200 iterations,
it has reached 90%. The Simulated Annealing Algorithm also achieves 90% of the
Optimal Algorithm’s performance at 220 iterations and surpasses the Taboo Search
Algorithm at the 226th iteration. By 300 iterations, the Simulated Annealing Algo-
rithm has reached 98% performance, and the performance of both algorithms is very
close to that of the Optimal Algorithm. In contrast, the performance of the Stochas-
tic Algorithm is only 20%-30% of the Optimal Algorithm’s level, making it of little
practical value despite its low complexity.

The results in Figure 4 demonstrate that at 300 iterations, the Simulated Anneal-
ing Algorithm requires only 10% of the operation time of the Optimal Algorithm,
while achieving a performance close to 98% of the Optimal Algorithm. Combining
the results shown in Figures 4 and 5, we can conclude that the Simulated Annealing
Algorithm generally outperforms the Taboo Search Algorithm, although its perfor-
mance may be inferior to the Taboo Search Algorithm in a few iterations (less than
226), and its operation time may exceed that of the Taboo Search Algorithm after
many iterations (more than 912). Nonetheless, the Simulated Annealing Algorithm
can effectively reduce the overall complexity of the system while largely maintaining
its overall performance.

Despite only providing a suboptimal solution for the current scenario, the Sim-
ulated Annealing Algorithm can achieve good results after a short iteration time.
Compared to traditional traversal algorithms, the Simulated Annealing Algorithm
achieves lower complexity while still producing satisfactory results. Additionally, the
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results are flexible and adjustable. In situations where the environment is variable,
and the system cannot iterate many times, the algorithm can quickly achieve over 90%
system performance with a short iteration time, which is a significant improvement
compared to the ordinary RIS-assisted OMA system. Conversely, if the environment
is stable and sufficient time is available, the algorithm can achieve a near-optimal
solution by increasing the iteration time. The flexibility of the number of iterations,
coupled with its improved performance, renders the model more suitable for practical
scenarios and expands its application prospects.
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Based on the results in Figures 2-5 above, it can be seen that Irregular Intelli-
gent Reflecting Surface Assisted NOMA Systems and Irregular Intelligent Reflecting
Surface Assisted OMA Systems have a better performance than Traditional Intelli-
gent Reflecting Surface Assisted NOMA Systems and Traditional Intelligent Reflecting
Surface Assisted OMA Systems. Systems have a significant performance improvement
over Traditional Intelligent Reflecting Surface Assisted NOMA Systems and Tradi-
tional Intelligent Reflecting Surface Assisted OMA Systems. The combination of the
taboo search algorithm mentioned in this paper can reduce the overall complexity of
the system by more than 50% without affecting the overall performance, which fully
guarantees the possibility of practical application of Irregular Intelligent Reflecting
Surface.
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5 Conclusion

In this paper, the optimization of an RIS-assisted NOMA system to maximize system
throughput was investigated. The proposed approach co-optimized the beamforming
of the BS, passive phase shifting of the RIS, and channel assignment to achieve this
goal. A new step-by-step optimization algorithm was introduced to solve the coupling
optimization problem. Through simulation, the proposed algorithm was shown to be
effective and capable of real-time adjustment of channel allocation and RIS element
distribution to achieve higher system throughput with lower computational effort.

Furthermore, the optimization scheme of RIS element distribution mentioned in
the paper achieved suboptimal results while reducing the overall complexity of the sys-
tem by more than 50% compared to other methods and scenarios. The combination of
the taboo search algorithm mentioned in the paper further reduced the computational
complexity of the system. Overall, the paper provided a promising approach to maxi-
mizing the throughput of an RIS-assisted NOMA system with practical benefits such
as reduced complexity and improved efficiency. The proposed step-by-step optimiza-
tion algorithm effectively optimized the beamforming of the BS, passive phase shifting
of the RIS, and channel assignment in a co-optimized manner, leading to improved
system throughput. Additionally, the proposed optimization scheme for RIS element
distribution significantly reduced the computational complexity of the system. The
combination of these two approaches resulted in a practical and efficient solution for
optimizing RIS-assisted NOMA systems. The results of the simulations demonstrated
the effectiveness of the proposedapproach and suggested that it had the potential to
significantly improve the performance of current wireless communication systems.
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