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Abstract

Operational steganalysis contends with a major
problem referred to as the cover-source mismatch
(CSM), which is essentially a change of distribution
caused by different parameters and settings over
training and test data. Despite it being of fundamental
importance in operational context, the CSM problem
is often overlooked in the literature. With the
goal to increase the visibility of this problem and
attract the interest of the community, the present
paper proposes a systematic review of the literature.
It summarizes gathered knowledge and major open
questions over the last 20 years of active research
on CSM: terminology, methods of measurement,
known causes, and mitigation strategies. Over 100
papers exploring, mitigating, assessing or discussing
steganalysis under train-test mismatch were collected
by sampling scholar databases, and tracing references,
cited and generated. For image steganalysis, the
literature provided enough evidence to quantify the
impact of causes, and the effectiveness of mitigation
strategies.
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1 Introduction

Steganography is often referred to as the art and
techniques of cover communication. It aims at secretly
exchanging a sensitive information by hiding it into
a so-called cover object. This creates a stego-object
which, in order to preserve the furtiveness of the
secret communication, should look as inconspicuous as
possible.
To ease this process, the cover object ought to be
commonly encountered, in order not to raise suspicion.
It should be easy to modify and carry enough entropy
to accommodate the secret message; good examples
of such suitable cover objects include digital media
– images, audio, or video – texts, computer network
packets or even program executable codes [KP16;
Fri09].

As for any secured communication, the stego-object is
sent over an insecure channel which, in the worst case,
is assumed monitored or controlled by an adversary
referred to as the steganalyst. Unlike the other scenario
of communication security, the steganalyst aims, in the
very first place, at detecting the presence of a hidden
secret message either by thorough statistical analysis
or by searching for trademarks or “signatures” of a
specific technique.

Steganography and steganalysis, thus, constitute a
game of cat and mouse. In academic studies, the
Kerckhoffs’ principle1 is often advocated in order
to justify that the steganalysis is carried out with
knowledge on all necessary properties of the inspected
objects. This also includes the potential embedding
method as well as access to large representative
datasets [PF07; LK11]. Of course, steganography
has been developed in this setting, which is the most
stringent.

On the opposite, in a real-world operational context,
the steganographer and the steganalyst only have
very limited access to each other’s information. The

1The Kerckhoffs’ principle essentially states that security
must always rely solely on the key and that the rest of the
communication system and its settings must be publicly known.

1



steganalyst selects a detector, and the steganographer
picks the steganographic strategy and the cover.
The exact original cover object is unknown to the
steganalyst, but it is generated from a noisy process
which is defined as the cover source. As advocated
in [KP14b] the steganalyst can hardly know this cover
source; it can only, at best, be estimated with an
accuracy that depends on the nature and number of
objects provided the steganographer.

From this scenario naturally raises the problem, for the
steganalyst, of “designing” or “training” a detector on
a cover source that differs from the one used by the
steganographer: this is referred to as the cover source
mismatch.

In the broad field of statistical learning, this
phenomenon is known as the distribution shift and
it occurs when the statistical properties of training
and testing data differ. The main symptom is
a deterioration of the model performance in the
production environment. Distribution shift occurs
in all possible application of statistics and machine
learning, such as to cite a few, medical imaging [GL22],
computer vision [Pen+19], reinforcement learning
[ZQW20], natural language processing [BDP07] and
speech recognition [Gon95].

However, it should be noted that the aforementioned
tasks operate mostly on a semantic level. In other
words, while the acquisition and processing setting do
matter, it has a limited impact as compared to the
presence of the pattern of interest. In addition, it
is often possible to adjust the training for a specific
source.

The peculiarity of steganography, and the related
field of digital forensics [LK19], is that the signal
of interest is extremely weak while the cover-source
mismatch has a much stronger impact; this often
yields catastrophic performance drops, which make the
steganalysis merely ineffective. In [Gib+20], using
different capturing devices increased the error rate
from 15% to random guessing. According to [KP16],
“CSM is one of the main factors negatively affecting
the deployment of steganalysis in the real world.”

The present paper presents a systematic review of
literature on CSM in steganalysis, and mainly aims at
addressing the following research questions:

Research Question 1: What are the studied causes
of CSM in the literature ?

We list the known causes of CSM studied in the
literature, and look into the research trend over time.

Research Question 2: How impactful are the known
causes of CSM?

We quantitatively assess the impact of CSM causes
identified by answers to RQ. 1.

Research Question 3: What are the existing
mitigation strategies against CSM?

Similar to RQ. 2, we assess the relative effectiveness of
the existing mitigation strategies.

At the time of writing of this survey, RQ 2 and RQ 3
can only be meaningfully answered for images media,
which constituted nearly all the literature sampled
using the strategy from Section 5.1. While the present
paper aims at encompassing all forms of steganalysis,
it only assumes digital images in Sections 6 and 7.

The rest of this survey is organized as follows: Section 2
presents prior work on CSM in steganalysis and other
applications of machine learning. Section 3 describes
the train-test mismatch problem in steganalysis and
its implications. Section 4 presents the methods
of measuring the CSM. Section 5 explains the
bibliometric methodology for literature collection and
result aggregation. Section 6 surveys identified causes
of CSM, and quantifies their impact. Section 7 reviews
strategies to mitigate CSM and quantifies their impact.
Section 8 discusses the findings, answers the research
questions, and poses still open questions, and Section 9
concludes.

2 Related Works

The symptoms of the CSM problem have been
identified for a little less than 20 years, as image
steganalysis was in its infancy. It has been
empirically observed that steganalysis techniques
perform differently over different datasets [KSM05;
Can+08]. The significance of the CSM impact has been
clearly acknowledged for the first time in 2010 during
the BOSS open contest (Break Our Steganographic
System) as the organizers added in the testing set
data generated with a different source2. This period
also coincided with the increasing use of machine
learning in steganalysis, which requires a training
phase after which the classifier can be used and
evaluated on a different testing set. While this problem
was unanimously recognized as an important deadlock
for practical applications of steganalysis [Ker+13], it
has been only seldom studied. In particular, it was
only in 2018 that the source of CSM was thoroughly
studied [GCB18; BBB18; Gib+20] by a comprehensive
evaluation of the contribution of each step of a generic
image processing pipeline (IPP) to CSM.

2More precisely, the training set of BOSS was made of raw
images processed with the very same script. On the opposite, the
testing set included out-of-camera jpeg compressed image. An
important drop of performance of all competitors was observers
on this testing subset.
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In the meantime, several strategies have been suggested
to mitigate the impact of CSM on steganalysis
performance [BCE10; LK12; PBC14; KP14a; LM16b].
However, despite its severity on modern steganalysis,
the problem of CSM remains largely unexplored and
existing steganalysis survey papers discuss CSM only
briefly [RRG19; Hus+20]. To the authors’ best
knowledge, the present paper is the first systematic
review of the literature on CSM.

2.1 Comparison with other fields of ML

Essentially, the CSM is a form of data heterogeneity,
which is a common problem in many fields of
application of ML. While CSM hasn’t been the focus
of any survey paper yet, one can find such surveys
in other fields. We selected surveys focusing on data
heterogeneity from 5 fields: medical imaging (MI),
mechanical components monitoring (MCM), speech
recognition (SR), natural language processing (NLP),
and temporal reasoning (TR).

We provide a summary – with regard to the proposed
RQs, of our readings in Tab. 1. Regarding RQ. 1, we
see that each field has recognized its own difficulties.
A striking observation is that some are conceptually
very close. Patients in MI, components in MCM,
authors in NLP can be understood as similar causes of
mismatches; the same goes for working conditions in
MCM, context in NLP and environment in SR. On the
other hand, languages are conceptually rather specific
to the fields of NLP. Mismatch from the acquisition
devices and their calibration is expected to occur in
every field, but is foremost studied in MI.

Similar comments can be made for RQ. 3. With
the advances in ML, general frameworks to deal with
mismatch have been proposed, domain adaptation
(DA) being among the most popular. It provides tools
like shallow & deep feature matching ML (e.g. TCA,
CORAL). Domain adaptation is particularly useful
when labels are expensive, such as in MI, MCM based
on operational data, or some NLP tasks, as it works
in semi- and unsupervised setups. When labels are
available in large quantities, however, pre-training and
transfer learning can be very effective. There also exist
specific solutions, depending on the problem and type
of data. SR and MCM are basically signal processing
tasks: they benefit from their own solution.

Steganalysis faces similar issues (e.g. acquisition
device and content), and has similar solutions (domain
adaptation and transfer learning). The peculiarity of
steganalysis is that it operates at roughly the same level
as the impact of the causes, although the impact of
steganography is actually much lower than the impact
of the CSM. On another note, as we will cover in Sec. 6,

the diversity of the causes of CSM seems much greater
than in the other fields.

3 Background on Mismatches

This section introduces different types of mismatch,
mismatch in cover sources (Sec. 3.1), mismatch in
steganography (Sec. 3.2), and mismatch in the context
of pool steganalysis (Sec. 3.3).

3.1 Mismatch of Cover Sources

Steganography is carried out in two main phases: first
the steganographer generates a cover from a cover
source, that is a non-deterministic acquisition process
followed by a processing pipeline. Both the acquisition
and the processing pipeline consist of several steps
which can be highly parametrized. Then, this cover
object is used as an input for a steganographic
algorithm, also characterized by a set of parameters, to
hide a secret message into the so-called stego-object.
Potentially, a problem of training-testing set mismatch
can occur when changing any parameter of any step,
from acquisition of the cover objects up to the
generation of the stego-object. In practice, however,
two objects are never generated in exactly the same
manner. In addition, different changes yield different
impacts, with more or less important effects.

Adopting the same practical point of view that is used
is almost all prior works, we shall define these concepts
in relation with its use in steganography and its impact
on steganalysis.

Definition 1 [ Cover source] A cover source is
entirely defined by the steps both the acquisition and
processing pipeline are made of, the order these steps
and the parameters used therein.
As a consequence, a cover source is a noisy process
producing covers whose statistical characteristics are
identical.

While this definition of the cover source is rather
straightforward, it is hardly related with practical uses
and applications. Even the second part, the corollary
that objects from the same cover source share the same
properties, remains rather impractical; indeed, it is still
unclear which property has a significant impact on the
usage of steganography and/or steganalysis. From a
practical point of view, the cover source has little or
no impact on steganography, which very often operates
over each object independently. On the opposite,
steganalysis generally exploits a detector that is trained
and evaluated over a set of objects.

Definition 2 [ Cover-source mismatch] Cover-source
mismatch (CSM) occurs in steganalysis when using,
for designing a detector, a training dataset whose
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ML Field Surveys Causes of mismatch Mitigation strategies

MI [GL21] Difference of acquisition device,
parameters, and patients between
datasets.

Domain Adaptation to cope with the low
number of available labels.

MCM [Yao+23] Different working conditions. Different
monitored components. Transfer from
simulations to the real-world.

Transfer Learning; Domain Adaptation,
e.g. shallow and deep feature matching,
GANs,...

SR [Zha+18] Noisy environments Preprocessing, features extraction. Using
acoustic/language models.

NLP [RP20] Cross-lingual learning. Writers, contexts
and dates also cause mismatches.

Data-centric (pre-training, pseudo-
labelling) & model-centric (adversarial
networks, autoencoders) DA.

TR [ZH07], [Luo+17] Difference in the datasets’ origins, e.g.
time granularity, or difference between
temporal textual expressions.

Temporal data management, e.g. data
integration, or NLP-based methods.

Table 1: Summary of the answers to the proposed RQs in other fields of application of ML: medical imaging (MI),
mechanical component monitoring (MCM), speech recognition (SR), natural language processing (NLP), temporal
reasoning (TR).
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Figure 1: Illustration of cover-source mismatch for
detectors distinguishing C1 and S1.

statistical properties differ from those found in the
target testing dataset.

As stated above, the cover source mismatch affects
the steganalyst. However the previous definitions are
hardly applicable in practice. Therefore, we propose
below a practical definition for the problem of the
cover-source mismatch exploiting the impact it has for
operational steganalysis:

Definition 3 [ Cover-source mismatch problem]
The cover-source mismatch problem is the ensuing
degradation of steganalyser performance resulting from
the cover-source mismatch.
Therefore it is essentially observed as the loss of
performance when a dataset from a different cover
source is used for training.

Def. 3 of the CSM problem explicitly addresses the
problem of measuring the impact on performance
of steganalysis because this is how CSM is actually
observed. This aspect is addressed in more detail in
Sec. 4. Before that, the rest of the present section
describes how CSM affects the training of a detector
as well as the different types of CSM.

Fig. 1 depicts an illustrative scenario of three cover

sources, C1, C2, and C3 and exemplifies the preceding
definitions. The geometric proximity corresponds to
cover source similarity: C2 and C3 are more similar
to each other than to C1. Note that the figure also
illustrates that the embedding shift is often smaller and
similar in direction 3 as compared to the wide diversity
between cover sources, hence the critical impact that
CSM may have. These elements illustrate a typical
configuration of cover-source mismatch.

Additionally, a given steganographic embedding at rate
α is performed, which shifts C1 to stego S1 and C2 to
stego S2. Two steganalysis detectors, shown in blue
and red respectively, were then trained to distinguish
between the same cover source C1 and corresponding
stego objects S1. The difference between the two can
come from the selected model, hyperparameters, and
initial weights. Both detectors discriminate well C1

from S1. However, the one illustrated in red is not
subject to the CSM problem when applied on cover
source C2. On the opposite, both detectors perform
poorly over C3 because of the CSM problem: cover
objects erroneously belong to decision region “stego”
resulting in a very high false-positive detection rate
(also referred to as type I error): this is the cover-
source mismatch problem.

We believe that Fig. 1, along with Def. 2, illustrate
an important – and often overlooked – fact: the CSM
problem, as a degradation of a detector’s performance,
depends on two things: the CSM configuration itself,
but also the settings of the detector. We further discuss
ways of measuring CSM in Sec. 4.1 and 4.2.

The reader might also wonder how to generalize better
to a very large amount of cover sources, possible
unseen. Mitigation strategies and their assessment is

3This is usually referred to as the shift hypothesis [Ker06;
CSF17].
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Figure 2: Scatter plots that show the empirical joint
distribution of unquantized DCT coefficients (0, 7) and
(7, 0) for images corrupted with only i.i.d Gaussian
noise and then developed with three different software.

addressed in detail in Sec. 7.

Let us conclude this definition section by a real-world
example shown in Fig. 2 and 4 taken from [Gib+20].
First, Fig. 2 show scatter plot of co-occurrence (i.e.
joint empirical distribution) between two randomly
selected DCT coefficients resulting from JPEG cover
sources. The images from the exact same sources with
the exception that they are converted from RAW files
to uncompressed TIFF images using different software.
More precisely, we note that the simplest development
was used (essentially made of demosaicing, white
balance and gamma-correction).
It can be clearly seen from Fig. 2 that the correlation
between the selected DCT coefficients are almost in
complete opposition. In addition, one can note that
the variance of marginal distribution also changes
significantly, especially for RawTherapee, see green dots
on Fig. 2.

Last, Fig. 4 exemplifies how the CSM can have a
dramatic impact on detector performance. Depending
on the detector and the sources, the CSM problem can
be either barely noticeable or make a detector no better
than a random-guesser.

3.2 Mismatch in Steganography

Detectors must also face heterogeneity in the
steganography in training and test sets. This
is a separate type of mismatch than CSM,
because steganographer choice of cover sources and

C(0)

S
(α1)
1 S

(α2)
1

S
(α1)
2 S

(α2)
2

S(1)

as α grows →

Figure 3: Stego-source mismatch between schemas S1

and S2, and embedding rates α1 < α2 < 1.

steganography are independent. In addition, as we
shall explain in Sec. 4.2, measuring the CSM problem
via features inherently separates the two. However,
both mismatches exhibit the same symptoms, and
existing mitigation strategies against CSM can be
applied to both.

The literature uses either “stego-source mismatch”
(SSM) [DBF16; Lea+22], and “stego-algorithm
mismatch” (SAM) [Rei+19]. We suggest a new name,
stego-scheme mismatch (SSM), because it is more
general and hence encompasses the few possible causes
of the mismatch of this kind.

Definition 4 [ Stego-scheme mismatch] Stego-scheme
mismatch (SSM) is a mismatch of the distributions
of stego objects stemming from a given cover source.
It is caused either by using different stego-schemes or
different settings to embed data in cover objects.

SSM has two known causes: stego embedding, and
embedding rate α, illustrated in Fig. 3 by orientation
and length of the stego shift. Embedding into a cover
source C(0) with two schemes S1 and S2 and payload
α < αmax causes different stego shifts. The dotted
trajectories of both schemes suggest that for α = αmax

the embedding is equivalent to LSB matching, denoted
S(1).4

Note that the shift hypothesis [Ker06; CSF17] states
that, roughly speaking, the trajectory are the same
regardless of the cover sources. The same embedding
causes the same impact (the same “shift”) on the stego
distribution.

SSM is more important for test sets with (1) lower α,
or (2) less detectable embedding scheme [Che+17].
A universal detector is capable to generalize to any
stego method.

4Note that in practice the maximal achievable payload αmax

depends on the coding method. With LSB matching, ternary
embedding allows embedding up to log2(3) ≈ 1.585 bit per
element.
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3.3 Mismatch in pool steganalysis

Pooled steganalysis is the problem that arises when one
tries to inspect a group of several objects over which
one sole decision must be made (typically “all these
objects are covers” vs. “some objects are stego-files”).
Pooled steganalysis either indirectly addresses CSM or
is affected by it.

On the one hand, several works addressed the problem
of pooled steganalysis when it aimed at identifying
guilty actors, in which case this framework can lift
the problem of CSM provided that “each actor used
a source of cover objects, different from sources used
by other actors” [KP12a]. However, this means that
the steganalyst needs to know the source of each
actor which is hardly possible in the real-life, “unless
the suspected steganographer is considerate enough to
supply [...] the cover source” [KP14b].
Under the same assumption, a similar approach was
adopted in [LM23] by detecting inconsistencies in the
classifier in order to identify the suspect(s).

Another look at the mismatch was studied from pooled
steganalysis when the strategy of the steganographer
is not known: that is how the payload is spread over
several objects. In this case, the steganalyst typically
faces a stego scheme mismatch as the embedding rate
for each object is unknown.
A robust statistical sequential method based on
CUSMU (Cumulative Sum) was proposed in [Cog15]
while the method developed in [PN15] is based on
the histogram of the classifier “soft-output” (before
thresholding). The problem was also leveraged
in [CSF17; KDF23]: in an adversarial setting, it has
been proposed to spread the payload in order to create
the hardest stego scheme mismatch hence reducing
detectability.

4 Measuring the CSM Problem

In Def. 2 and 3 we have taken particular care
to separate the CSM from the problem it generates
through its impact on steganalysis. Thus, measuring
severity is critical for the very definition of the CSM
problem but also in order to study its causes (RQ. 2)
and for successful mitigation of CSM (RQ. 3). In
this section, we describe the two main approaches that
have been used for assessment of the CSM problem.
First, and most obvious, in Sec. 4.1, mismatch problem
is measured via performance of a detector. Second,
Sec. 4.2 describes the studies measuring CSM problem
using a distance in features spaces.
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Figure 4: Results from [Gib+20] depicting steganalysis
error rate for different camera models at the lowest ISO
sensitivity.

4.1 Measuring a mismatch via

detectors

One way to measure the CSM is through comparison
of the detector error ϵ in matched and mismatched
scenarios. Within the framework of modern
steganalysis, based on machine learning, the
clairvoyant scenario is the one in which training
datasets perfectly match the testing datasets over
which the detection performance is measured.5 This
case, without CSM, represents the “ideal” baseline
error of steganalysis and is referred to as the intrinsic
difficulty of a given source (see Def. 5).

The mismatched scenario error is the one when the
training is performed over a dataset which presents
some statistical differences with the testing dataset.
This corresponds to Def. 2 of a CSM scenario. The
ensuing degradation of detector performance is referred
to as the inconsistency between sources, see Def. 6.

In order to illustrate as clearly as possible these
concepts, Tab. 2 shows a toy-example with two sources.
Note that, just alike in Fig. 4, rows represents the
dataset used for training the detector while columns are
for the testing dataset, on which detection performance
is actually measured. As labelled in Tab. 2, the
detection error-rate on the diagonal measures the
intrinsic difficulty as in those cases training and
testing datasets match. On the opposite, the out-of-
diagonal results report the detection error-rate in case
of mismatches hence the degradation error-rate due to
the mismatches. In the rest of the present section,
we will use the following notations: ϵXX represent the
detection error-rate when training on the dataset X

and testing on the same datasetX. In this case without
a mismatch, the intrinsic difficulty is measured and is
sometimes denoted ϵX for short. On the opposite,

5Note that some steganalysis methods do not use machine
learning. However, these statistical detection methods [TRC14;
CF15] generally include some parameters (weights, detection
threshold, etc. ...) whose settings require some cover and stego
examples hence may be subjuct to the CSM problem [KSM05;
Can+08].
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ϵY X represents the case when training the detector
on the source Y while testing on the source X (since
training is carried out first, it is the first variable in the
notation we adopt). In this case of CSM, the detection
performance reveals the CSM problem.
Eventually, note that in machine learning the detection
performance is usually measures with the overall
accuracy. On the opposite, in steganalysis the
detection error-rate is generally the total probability
of error (under equal prior), denoted PE , without
distinguishing false positive from false negative.
Therefore in the following we will often refer to the
error-rate as a measure of detection performance (the
lower error-rate, the high performance).

With these notations, we can now formally define the
notions that have been adopted in the literature for
measuring CSM using detector error-rate:

Definition 5 [ Intrinsic difficulty] The intrinsic
difficulty ϵXX or ϵX of a source X is the error-rate
of a detector that is trained and tested on X. It
expresses how difficult it is for a detector to detect a
steganographic scheme of embedding rate α in covers
from a cover source X.

The intrinsic difficulty represents the error-rate of
steganalysis on a given source without any mismatch.
Therefore, this criterion is not related to the CSM
problem, but it must be taken into account, serving
as a baseline, to quantify the CSM problem.
Note that the intrinsic difficulty can vary greatly, even
for similar sources: Fig. 4 show that the camera model
can impact by almost 10% the error-rate.

Definition 6 [ Inconsistency] The inconsistency ϵXY

is the error-rate of a detector, trained on source X and
evaluated on source Y .

The source inconsistency alone carries little
information by itself, and should be accompanied
by the corresponding intrinsic difficulty. This
reference can be made more explicit by reporting the
regret [ŠAP22; Abe+22; Abe+23]:

Definition 7 [ Regret] The regret RXY,Y is the
difference between the inconsistency ϵXY and the
intrinsic difficulty ϵY , as shown in Eq. 1,

RXY,Y = ϵXY − ϵY . (1)

To exemplify this concept, one can have a look back at
Tab. 2. The inconsistency is higher when testing on the
source Y , ϵX,Y = 0.38 than when testing on the source
X, ϵY,X = 0.33. However, the intrinsic difficulty is also
much higher on the source Y , ϵY = 0.35, than on the
source X, ϵX = 0.2.
Therefore, the “relative degradation due to the CSM

Test on
source X source Y

Train on
source X 0.2 0.38
source Y 0.33 0.35

ϵXX ϵXY

ϵY X ϵY Y

Intrinsic difficulty Inconsistency

Table 2: An illustrative example of presenting
mismatched scenario results measured via a
detector error-rate. The diagonal contains intrinsic
difficulties, off-diagonal values are the inconsistencies.
Inconsistencies can be replaced by the difference with
the corresponding diagonal element, column-wise
(regret) or row-wise (generalization error).

problem”, which is defined as the regret by Def. 7,
is actually much lower when testing on the source Y ,
RXY,Y = 0.03 as contrast to when testing on the source
X, RY X,X = 0.13.
Note that these numbers represent a general
observation that the regret is asymmetric, see for
instance Fig. 4 and prior works [Gib+20; KSF14;
GCB18; BBB18; Gib+20].

Regret informs us about the severity of the CSM
problem since it assesses that when inspect a given
dataset, how much detection performance can be
impacted depending on the dataset used for training
a given detector.
Interestingly, when the sources differ in a single
processing step, the regret allows evaluating the impact
of this step on the CSM problem.

The regret reports about the test source, and is
computed using two detectors. Generalization error
is an alternative metric, computed with one detector
trained on one single source but tested over two
sources.

Definition 8[Generalization error] The generalization
error RXY,X is the difference between the inconsistency
ϵXY and the intrinsic difficulty ϵX , as shown in Eq. 2,

RXY,X = ϵXY − ϵX . (2)

Both the regret and the generalization error are still
dependent on the magnitude of intrinsic difficulty.
But their nature and their uses are very different.
Roughly speaking, generalization error focus more on
the capacity of a detector used over different sources.
On the opposite, regret reports how much a given
testing source is sensitive to the choice of the training
source.

Eventually, it is often interesting to normalize a metric;
in the present case of the CSM problem, the regret can

7



be normalized in order to contrast with the intrinsic
difficulty of the source.
Note that this also allows including all prior works
results in this survey to propose an exhaustive
terminology. To this end we introduce the relative
regret:

Definition 9 [ Relative regret] The relative regret is
the regret normalized by the intrinsic difficulty, shown
in Eq.3:

ϵXY − ϵY

ϵY
. (3)

Our definitions, based on [GCB18; ŠAP22], aim to
solve the discrepancy of the terms “inconsistency” and
“regret” [GCB18; Gib+20; Abe+22; Abe+23].

Limitations Measuring the CSM problem via
detector error-rate stems from an operational
approach: it focuses on the symptoms of CSM, but
heavily depends on a type of detector used, which
makes regret-based mitigation difficult to generalize
to different detectors.

Reporting the regret also depends on the chosen
performance metric. The most common choice in
steganalysis is the probability of error PE under equal
prior assumption. However some alternatives have also
been proposed such as the miss-detection rate for a
prescribed false-alarm and the Area Under ROC Curve
(AUC) to cite few.

4.2 Measuring a mismatch via distance

in a feature space

The second option to quantify the CSM problem is
as a distance of cover sources projected to a lower-
dimensional feature space. This relates the definition
of Cachin’s steganographic security [Cac98], defined as
a distance between hypothetical distributions between
covers and stegos.

Definition 10 [ Feature space] Feature space is a
collection of n variables, extracted using the same
function ϕ(·), from different objects and carefully
designed for a specific goal of analysis. Indeed, features
aim at preserving statistical properties of objects
while normalizing their representation, reducing the
dimensionality and hence helping the desired analysis.

The feature spaces can be defined manually, for
instance handcrafted steganalysis features DCTR
[HF14] or GFR [Son+15], or constructed ad-hoc by a
trainable component.

The distance can be measured with Euclidean norm
ℓ2, or Kullback-Leibler divergence (KLD); a popular

metric for domain adaptation (Sec. 7.4) is the
maximum-mean discrepancy (MMD).

Definition 11 [ MMD] Maximum-mean discrepancy
(MMD) is an average-link distance metric between
cover sources X and Y , defined in Eq. 4,

MMD2(X,Y ) = ⟨µX − µY , µX − µY ⟩ =

= ⟨µX , µX⟩+ ⟨µY , µY ⟩ − 2⟨µX , µY ⟩,
(4)

where µX = EX [ϕ(x)], and ⟨µX , µY ⟩ = EX,Y [k(x, y)],
given a feature extractor ϕ(·) and a kernel k(·).

Recently introduced metrics between cover sources are
chordal distance [Abe+23] and KLD based on the
covariance matrix with regret [Mal+23].

Limitations Ideally, the feature distance should
correlate to the regret [Abe+23; Mal+23]. However
while distances are symmetric d(X,Y ) = d(Y,X)
this generally does not hold true for the regret in
steganalysis which is asymmetric, as shown in Fig. 4.
For MMD and ℓ2, both symmetric metrics, this is
clearly incorrect.
Recent works addressed the CSM problem by relating
distances in features-space with the detection regrets
with the goal to understand better the causes of the
CSM problem. These approaches, however, are still in
their infancy and faces fundamental challenges.

5 Bibliometry

This section introduces the methods used to answer
the research questions from Sec. 1. Sec. 5.1 presents
the collection of literature (RQ1). Sec. 5.2 describes
measuring the research trend (RQ1). Sec. 5.3 depicts
how the literature results were aggregated (RQ2, RQ3).

From now on, the survey focuses on the specific case
of image steganalysis. Indeed, the state of the art
in other types of covers, such as video, audio, text
files, etc. are much less developed. In particular,
the CSM problem, even though it is studied by some
papers, for instance in video steganalysis [LSZ23] or
audio steganalysis [Lin+20], is not enough covered.

5.1 Collection of literature

The collection strategy consists of (1) initial sampling,
(2) identification of relevant papers, and (3) breadth-
first search using forward and backward references.

Sampling The initial samples were acquired with a
query “cover source mismatch steganalysis” from two
metasearch engines, namely Google Scholar (GS) and
DBLP, and independently from the editor or publisher.
We take the first 50 results, sorted by relevance with
no additional filters.
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Identification Each paper was proofread to identify
whether it is relevant. Relevant papers fit into at least
one of the following criteria:

❼ Paper discusses the effects of CSM.

❼ Paper reports results with CSM.

❼ Paper investigates the impact of factors on CSM.

❼ Paper attempts to mitigate CSM.

Only a few papers mentioning the CSM were in fact
excluded, for instance, when CSM is a future work.

Reference search For each relevant paper, we
searched its references (forward search) as well as
papers citing it using the GS feature “Cited by”
(backward search). On the newly found papers, we
applied the same reference search, proceeding in the
breath-first order until exhaustion.

In the end, we collected and annotated 102 papers.
The complete annotated bibliography is presented in
Appendix A.

5.2 Measuring the Research Trend

Each paper in the bibliography is labelled with tags,
denoting assumed or explored topics. The tags allow
for measuring the trends of CSM research, separately
for causes and mitigation. The number of citations
is acquired from GS, as of 5 October 2023. For each
paper, we compute the topic coverage (Eq. 5),

1

#tags
. (5)

5.3 Aggregation of results

Although a comparison of the results in the literature is
hardly possible due to different experimental setups, a
relative measure may account for it to some extent.
We convert the results to relative regret (Eq. 3),
and aggregate by taking the expectation across cover
sources, according to Eq. 6,

EX,Y

[ϵXY − ϵY

ϵY

]

. (6)

Relative regret marginalizes differences of experimental
setups, and can be extracted from the existing
literature, when inconsistency or regret are reported
together with the source’s intrinsic difficulty.

However, the statistics should match in error metrics;
problematic is also dynamic threshold used in PE .
Furthermore, relative regret assumes that CSM affects
performance proportionally.

6 Causes of CSM

In this section, we answer RQ 2 for image covers.

6.1 Image cover source

A cover is defined by the whole imaging pipeline, which
consists in the acquisition (from the scene up to the
electrical signal) and processing (from electrical signals
to the image file) [Ram+05; HB23]. The diversity of
the cover sources stems from the variety in acquisition
devices and parameters, processing software and their
specific operations and parameters. But it is also
enriched by the initial captured content and the later
compressions applied by specific software, such as
social networks.

This diversity makes it hard to give a proper all-
encompassing model of the cover source. However it
is possible to measure the impact of each operation.
To get their impact, we gather the intrinsic difficulties
and the source inconsistencies from [BBB18; YKF18;
Lin+18; Gib+20; BHB22]. We use them to compute
the relative source regrets using Eq. 3. We then
compute the expected relative regrets using Eq. 6
gathering every causes into 6 categories: content,
device, colour, filter, resize and JPEG.

The distribution of the relative regrets for each step is
reported in Fig. 5. As expected, the JPEG compression
step has the biggest impact on CSM. The impact of
processing steps tends to be higher the later they are
in the pipeline.

Sec. 6.2 summarizes the state of the art using this 6-
step categorization of the cover source steps.

6.2 Coverage of Causes

Each and every step discussed below is an arbitrary
division of all the gathered causes of CSM. Readers
should be aware, for instance, that filtering operations
can be performed at different steps of the pipeline.
Equally, colour operations can be performed at a later
stage. Finally, while we generally assume that the
JPEG compression comes last, it does not guarantee
that later processing won’t induce CSM.

Despite these nuances, we chose, for the sake of clarity
in answering RQs. 1-2, to present a summary in the
general order in which each cause appears in the overall
pipeline. We strongly recommend reading the studies
to get the full explanation of the reported findings.

Content While not properly a part of the processing
pipeline, the content has long been recognized a cause
of heterogeneity in steganalysis [KSM06]. The level
of texture, also called texture complexity (TC), allows
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Figure 5: Generic schema of image processing pipeline (IPP), together with the impact of each step on CSM.

quantification of image similarity. Such a metric was
proposed in [Hu+17] Datasets with high TC are harder
to train on [Gib+20; Yu+23], but generalize better on
testing sets with low TC than the other way around
[Hu+17; Hu+19].

The amount of textures depends on the captured scene,
but later processing, such as filtering or resampling,
greatly impact the final textures as well.

Device The device model is a common source of
diversity in the literature [BFP11; CGB19]. Research
also covers the impact of individual device [Lin+18],
and acquisition parameters: ISO sensitivity (moderate
impact), aperture, and exposure time (low impact)
[Gib+20].

Colour Colour processing involves demosaicking,
i.e., removing the Bayer grid from the raw image by
interpolating colours, and colour balancing, rendering
white and gray shades. Optional steps are linear colour
correction, and the non-linear gamma correction.
Diversity in demosaicking algorithm is common in the
literature [CGB19], even though its impact is lower
than filtering or resampling [Gib+20; Abe+22]. On
the other hand, relative excess regrets extracted from
[BBB18] are high. This study reports noticeably low
ϵXY , which explains the high relative impact of colour
step in Fig. 5. For all these processing in particular,
Fig. 5 would benefit in having more results.

Filter Filtering encompasses neighbourhood-based
processing, such as denoising [NO08], unsharpening
[PRM00], blurring, sharpening, or edge enhancement.
These operations are shown to have a strong impact on
the CSM [BF17; Gib+20; Gib+22; Abe+22]. Due to
the large number of filtering parameters, measuring the
CSM quickly becomes a computationally overwhelming
task.

Resize Resizing can be carried out with two
very distinct operations: cropping and resampling.
Cropping consists merely in removing pixels row or
column without any additional modification. While
this may induce a shift in the grid, such as Bayer
or JPEG, it completely preserves statistics in pixels
domain. On the opposite, resampling requires a low-
pass digital filtering operation (to interpolate missing
values) hence reduces the texture complexity and is
a strong CSM factor. Downsampling can reduce
CSM between mismatching cover sources [Zha+19].
Both cropping and resampling were used in ALASKA
[CGB19].

JPEG JPEG compression is indisputably the most
impactful cause of CSM. The constant attention
from the community [GFH06; KSF14; Kon+16;
CGB20] focused mostly on the quality factor (QF)
controlling the distortion-rate tradeoff. CSM is also
induced by double compression [Rod+22] or JPEG
implementation [BHB22]

Fig. 6 answers the RQ. 2. It shows the evolution of
the number of papers, from 2006 onward, studying the
causes of CSM. To the 6 categories that we consider in
the paper, we added 3 others, often found in studies.
First, “IPP” designates studies with unspecified cover
source processes, but still use them as a cause of CSM.
Then “Stego” refers to papers dealing with SSM, and
“Dataset” to CSM between datasets. Additionally,
when a paper dealt with more than one cause, we chose
to split its weight evenly.

Note that the number of papers used in Fig. 6 is less
than the total number used in the survey. It is because
not all papers accurately discussed the causes of CSM.

Heuristics for CSM Impacts To conclude this
section, let us mention some complementary papers
that use heuristics to approximate the impact on CSM.
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Figure 6: Area chart capturing timeline of CSM causes.

A heuristic close enough to the detector error can
facilitate mitigation of CSM caused by the parameter
whose impact is being approximated. For instance,
[Hu+17] designs a similarity for texture complexity
in images. [YF20] suggests a metric for JPEG
quantization tables (QT)6.

7 Mitigation of CSM

This section answers RQ3. We start by the idealistic
case – clairvoyant scenario (Sec. 7.1), followed by
major mitigation schools: atomistic (Sec. 7.2), holistic
(Sec. 7.3), and domain adaptation (Sec. 7.4). Sec. 7.5
summarizes miscellaneous other techniques. In Sec. 7.6
we analyse the trends in the research.

7.1 Clairvoyant scenario

Perfect mitigation of CSM is possible, if steganalyst
gets to know the cover source, and trains the detector
on it. Such simple strategy, referred to as the
clairvoyant scenario [Pev11], comes from a conservative
interpretation of Kerckhoff’s principle, according to
which what is not secret is assumed to be public.

Limitations However, knowing the cover source is
applicable only sometimes in practice. It assumes
the steganographer publishes the cover source, either
deliberately, unintentionally, or forced by an active
steganalyst. Otherwise, CSM is present, and
steganalyst must seek different ways to mitigate it.
The current state of the art has three major schools:
atomistic, holistic and domain-adaptation.

6QT metric weights high frequencies unintuitively. E.g.,
standard QF75 is closer to QF76 than to QF75 with incremented
DC, although 90% values differ.

7.2 Atomistic steganalysis

A natural extension of the clairvoyant scenario to
unknown cover sources is to train multiple detectors on
different cover sources, and choose the correct detector
for the input image. Such atomistic detector, shown in
Fig. 8a, involves two steps:

1. the forensic step (select), which identifies the cover
source from the input image; and

2. the steganalysis step (detect), a pool of detectors
trained on different cover sources.

The training consists of selecting the cover sources
and training the selector and one detector per cover
source. During the testing, the input cover source is
determined, and the input is fed into the associated
detector. If the detector for the input cover source is
available, the atomistic detector performs as well as in
the clairvoyant scenario [Hou+12; Zen+15].

Selector A major question is how to construct the
newly introduced selector component. Cover source
identification typically uses a feature space and an
unsupervised [Zen+15; Hou+14; PBC14] or non-
parametric [Gom+18] construction. The cover source
can also be partially reconstructed using the means of
forensic analysis [BCE10; Hou+12].

Limitations The first limitation is that the number
of possible cover sources is intractable. The selector
must be able to deal with the situation when the cover
source is not present in the pool.

The second problem is that the success of the atomistic
detector relies on the selector. Errors of the selector
add up with the errors of the detectors [ŠAP22].

The third issue is the selection the cover sources to
train on. The aim of the steganalyst is to a good
coverage of the source domain, but the more detectors
one wants, the longer the training time becomes
[Abe+23].

7.3 Holistic steganalysis

A detector performs the best on the cover source seen
during the training. When trained on multiple cover
sources, the performance is usually slightly worse than
of the dedicated per-source detectors. By contrast,
the performance degrades far more on unseen cover
sources. The amount of degradation depends on how
different each cover source is from the training set.

A holistic approach gives up on matching the
clairvoyant performance and training a large number
of dedicated detectors. Instead, one detector is trained
on a heterogenous dataset with a large amount of
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Figure 7: Effect of existing mitigation strategies on CSM, compared to clairvoyant scenario.
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Figure 8: Strategies to mitigate cover-source mismatch.

cover sources, as shown in Fig. 8b. The idea is
that a sufficient coverage over sources ensures a good
performance of the detector on unseen sources, and
leads to mitigation of CSM.

Heterogeneity The major challenge in holistic
approach is the construction of the training database.
A number of sources certainly relate to the robustness
of the dataset. Research suggests that training on
fewer, carefully chosen cover sources yields better
results, than on a huge number of blindly collected
cover sources [Xu+15; Abe+22].

Model selection Architecture of holistic detector
is critical for model performance. Not only is the
detector expected to detect steganography, but it also
needs to do so in heterogeneous environment [Fri+11].
Increasing flexibility of a model can lead to greater
overfitting, which can be mitigated by increasing the
dataset size, or by regularization techniques [MK13;
Ng+14].

Limitations The first limitation is that the holistic
training requires a very large dataset [LK12; PBC14].
The second problem is that the holistic approach
performs worse than atomistic approach on a fixed set
of cover sources [Hou+12; Zen+15]. The third issue
is that the performance is very sensitive to the cover
sources covered in the training set. The success of the
mitigation also strongly depends on the selection of the
detector architecture.

7.4 Domain adaptation

The mitigation of atomistic and holistic approaches is
limited by a number of sources used during training.
The idea of domain adaptation (DA) is training on a
single cover source called source domain, and use the
learnt knowledge to adapt to an unseen cover source
called target domain. This is done by aligning the
domains, illustrated in Fig. 9b by coloured circles, so
that the detector can better generalize to a diverse
domain.

The general DA workflow illustrated in Fig. 9a is.
(1) converting the test sample to the adapted feature
space; and (2) passing them to a detector, trained in
this feature space.

Adaptation The feature space should align different
cover sources close, yet maximize the shift caused
by steganography. Its construction is challenging,
because the labels for the target domain are usually
not available. Literature presents solutions using
various unsupervised techniques, such as clustering or
manifold alignment [Li+13; LM16a; Kon+16; Fen+17;
Jia+20; Abe+21], possibly aided by guiding features
and pseudo-label prediction [Zha+21; Zha+22].

Limitations Existing methods only extract specific
statistics, such as means or higher moments,
which may be insufficient to mitigate CSM over
different cover sources. Moreover, using handcrafted
steganalysis features for domain adaptation may lead
to unsuccessful mitigation, because although sensitive
to steganography, they are also affected by CSM
[Yan+21].

7.5 Other techniques

Apart from the three major approaches, we identify
other, marginally explored, techniques.

Re-embedding Re-embedding into the test images
increases the spread of the stego shift directly in
the target domain. Training multiple detectors,
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similar to diffusion models, i.e., on cover-stego, stego-
double stego, etc., may further improve the detection
performance [LM16b; LM18; LM19; Yu+23].

Feature projection The second limitation of DA
mentioned in Sec. 7.4 may be tackled by modifying the
features, so that the projected features are insensitive
to cover source heterogeneity [PK13; Xue+19]. Feature
engineering w.r.t. CSM is not trivial, for instance,
fusing feature sets, which helps in the matched
scenario, may degrade performance in the presence of
CSM [Fri+11].

One-class detector Figs. 1, 3 and 9b depict linear
detectors, but there is a variety of detectors, which
in some cases may perform better or be more robust
to CSM, such as non-linear classifiers or one-class
classifiers [Pev08].

Unsupervised Learning A steganography may be
treated as an outlier, detected using unsupervised
learning. This is particularly common in pooled
steganalysis, where steganalyst looks for guilty
steganographer among a pool of communicating actors.
The techniques used are outlier detection, clustering
based on MMD [KP11; KP12b] or k-nearest neighbours
[HZX16].

7.6 Trends in Research on CSM

Mitigation

In a similar fashion to the CSM causes in Fig. 6, we
show the trend of the mitigation strategies in Fig. 10, in
terms of the number of papers per year. The number
of papers has been growing until peak in 2018-2020,
and descending since.

Holistic and atomistic strategies appear consistently
over the entire time period. Holistic strategy is the
most common, which can be explained by better
generalization capabilities, as demonstrated by being
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Figure 10: Area chart capturing timeline of CSM
mitigation strategies, with y-axis step 3.

the winning strategy both in BOSS and ALASKA
competitions. Unsupervised approach appears mainly
in the pooled steganalysis literature. The domain
adaptation appears more in the recent years over which
we have seen the dominance of domain adaptation,
connected with the popularity of deep learning.

8 Discussion

Steganalysis competitions BOSS and ALASKA had
a profound impact on the field, and stimulated a
lot of new energy. Their experimental setups were
followed by the research long after they ended. Future
competitions should be carefully designed to facilitate
comparisons, such as the one carried out in this survey;
of importance to the CSM are the factors of diversity,
steganographic schemes, and performance metrics.

Open Question 1: Have all the causes of CSM and
SSM been clearly identified ? Are their effects well
measured ?

Pushing forward in this direction, the steps of the IPP
are usually studied in isolation, but their order might
impact the CSM. Interactions between the steps exist,
e.g., between resampling and sharpening [Abe+22] or
between SSM and the cover source [Rei+19].

Open Question 2: How can we measure the crossed
effect of different causes on the CSM?

Answering this question, among others, challenges the
community to build methods that will need to deal
with the computational complexity of the task.

We detailed the different approaches to measure
CSM, highlighting the limitations in each one, but
the question is still mostly an open one. As the
current tools are symmetric, a “theoretical” measure
of CSM can only poorly relate to the practical regret.
Designing better tools, in order to avoid the bias
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of training a detector, is probably one of the most
promising steps at characterizing the CSM in the short
term.

Open Question 3: How is CSM related with
statistical properties of the cover sources ?

Finally, as already mentioned, this survey is focused on
the case of steganalysis natural images. One question
that we can naturally draw from our present research
would be to see if the same observations can be made
for other types of digital media.

Open Question 4: How does CSM impact
steganalysis of other types of covers (audio, video,
. . . ) ?

Existing methods to measure the CSM impact depend
on the detector, or on the feature space. Suitability
of these assumptions, as well as possible alternatives,
is to be investigated. Meta-research, such as result
aggregation in Fig. 5, would benefit if future studies
provided intrinsic difficulties and inconsistencies.

Existing mitigation strategies may aid at solving the
problem, yet fail in pessimistic scenarios, such as
unknown processing history. The atomistic approach
is suitable for a closed set of cover sources, but fails on
open-set problems where holistic performs better. The
increased popularity of domain adaptation correlates
with the introduction of deep learning in steganalysis.

We strive to sample and aggregate the existing
literature on CSM objectively. However, we are aware
of potential biases: (1) sampling bias due to search
engine ranking, isolation of papers from the rest of
literature, or incorrect assessment of relevance, (2) bias
due to incorrect annotation of the paper, and (3) bias
of impact estimates, when the paper results cannot be
used for aggregation, e.g., when reported via graph.

Adversarial scenario for CSM CSM is usually
understood as a problem for steganalyst. It can also be
interpreted as a game between the steganographer and
the steganalyst, a modified rock-paper-scissors, where
the steganalyst wins on match and steganographer on
the mismatch of the shapes [Fri09; GPK23]. This
approach has been tested in a very constrained scenario
so far.

9 Conclusion

The research in the last 20 years has been looking
into the cover-source mismatch problem from various
directions. Many strategies to suppress CSM exist,
but the core of the problem is still present. Successful
mitigation must go hand in hand with understanding

of the causes. Reliable mitigation of CSM and SSM is
essential for operational universal steganalysis.

10 Abbreviations

The following abbreviations are used in this
manuscript, given in alphabetical order.

❼ AUC: area under curve

❼ BOSS: break our steganographic system.

❼ CORAL: correlation alignment

❼ CSM: cover-source mismatch.

❼ DA: Domain Adaptation

❼ DBLP: digital bibliography and library project

❼ DCT: discrete cosine transform

❼ DCTR: DCT residual

❼ GFR: Gabor filter residual

❼ GS: Google Scholar

❼ IPP: image processing pipeline.

❼ KLD: Kullback-Leibler divergence

❼ LSB: least-significant bit

❼ MCM: mechanical component monitoring

❼ MI: Medical Imaging.

❼ ML: machine learning.

❼ MMD: maximum-mean discrepancy

❼ NLP: natural language processing

❼ QF: quality factor

❼ ROC: reciever-operating characteristic

❼ RQ: research question.

❼ SR: speech recognition

❼ SSM: stego-scheme mismatch

❼ TC: texture complexity

❼ TCA: transfer component analysis

❼ TR: temporal reasoning
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New Paradigm for Steganalysis Via
Clustering”. In: MWSF. Vol. 7880. SPIE.
2011, pp. 312–324.

[KP12a] Andrew Ker and Tomáš Pevný. “Batch
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