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ABSTRACT In the rapidly evolving digital world, ensuring secure data transmission, especially in image

data pivotal to modern communication, remains critical. The rise of the Internet of Things (IoT) increases

the demand for encryption systems that combine strong security with efficiency. However, many current

cryptosystems tend to favor one aspect over the other. To resolve this, new algorithmic methods are being

developed to find a balance. First Order Cellular Automata (FOCA) are particularly promising for image

encryption, as they align well with the complexities of image processing while keeping implementation

complexity simple. This paper presents SORCHIC, an novel hybrid encryption algorithm crafted specifically

for IoT applications that encrypt multichannel images. Utilizing Second Order Cellular Automata (SOCA)

and Chaotic Maps, SORCHIC is thoroughly examined in this study. We provide detailed insights into its

mechanisms, followed by a thorough experimental analysis comparing it to existing encryption methods.

The results highlight SORCHIC’s robustness against various cryptanalytic attacks and demonstrate its

superior efficiency over traditional techniques. This research advances encryption methods, particularly for

IoT, by offering a robust, efficient, and secure solution for image data transmission.

INDEX TERMS Cellular Automata, Chaotic Map, Hybrid Image Cipher, IoT, Image encryption.

I. INTRODUCTION

In today’s world of digital communication, an enormous vol-

ume of data, including images, flows through global networks

daily. This data transmission is crucial for various sectors,

such as the Internet of Things (IoT), social media, defense,

and navigation, among others [1], [2]. Since the channels

used for data transfer are frequently insecure and vulnerable

to numerous threats, protecting this data has become essential

to ensure the reliability of our communication systems [3].

Securing data transmitted over these channels is accom-

plished using encryption techniques [4], [5]. As most digital

data transfer occurs through images, image encryption is

fundamental to modern digital networks. In IoT applica-

tions, lightweight ciphers are essential due to the specific

deployment features of these domains. Common methods

for general image encryption include meta-heuristics, DNA

encoding [6], Chaotic Maps [7], and FOCA. While some

existing techniques offer strong protection against risks, oth-

ers excel in encryption efficiency. Despite their strengths,

achieving the ideal balance between robustness, efficiency,

and low resource consumption remains a challenge. This

balance is crucial to meet the diverse and evolving demands

of the industry.

In our current research, we introduce a novel approach

to image encryption, referred to as SORCHIC. This new

method combines Chaotic Maps and Cellular Automata (CA)

within a hybrid encryption framework. At the heart of this

technique is the SOCA, which plays a crucial role in the en-

cryption process. Additionally, it utilizes the complex scram-

bling capabilities of Chaotic Maps to enhance its resistance

against differential attacks. A unique shuffling mechanism,

distinguished by its key attributes, is integrated into this

framework as part of the Chaotic Map component, offering

unprecedented flexibility in design. Incorporating SOCA im-
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proves the quality of encrypted images significantly, repre-

senting a notable departure from traditional ciphers based on

FOCA.

A number of analyses of SORCHIC have been performed

which demonstrate its efficacy as a cipher as well as its rela-

tive efficiency on standard input images compared to existing

ciphers. The results of the analyses have been tabulated along

with a comparison with some of the existing techniques in the

Results Section V. The key contributions of the present work

has been outlined below:

• A novel image cipher using SOCA and Chaotic Maps

called SORCHIC is proposed. The technique is greatly

compatible for implementation in IoT applications and

is lightweight.

• A novel Chaotic Map is used for enhancement of the

confusion characteristics of the cipher, making it robust

against differential attacks.

• The results of the cryptanalysis of the resulting cipher

prove the robustness of the cryptosystem against a wide

array of attacks as well as highlight its efficiency for

standard input images.

The subsequent sections of this document are structured

as follows: In Section II, we explore the existing literature

about the domain within which our present work resides. It

is pivotal to contextualizing our research. Following this, in

Section III, we concisely elucidate the fundamental concepts

and architectural underpinnings that form the bedrock of the

SORCHIC scheme. Understanding these prerequisites is in-

strumental in grasping the intricacies of our design. The crux

of our contribution is unveiled in Section IV, where we offer

an in-depth exposition of the SORCHIC scheme. This section

provides a comprehensive view of our proposed system, its

intricacies, and its design rationale. Moving forward, Section

V serves as the platform for the presentation and analysis of

the experimental results, accompanied by a comparative eval-

uation vis-a-vis existing techniques. This critical examination

illuminates the efficacy of our approach. Lastly, Section VI

offers insights into potential avenues for future research both

within the scope of our current work and in broader contexts.

It serves as a bridge to future developments and scholarly

exploration.

II. RELATED WORKS

Image encryption, now a days has become an interesting

topic and has drawn curiosity of many researchers. The image

encryption schemes have been changed as per requirement of

application and implementation hardware from time to time.

Researchers, such as Dong et al., have ventured into har-

nessing the power of elementary Cellular Automata (CA) to

amplify the chaotic properties inherent in systems like the

Chirikov standard map-based “pseudo-random coupled map

lattices (PRCML)" [8]. Their innovative approach yielded

an image encryption scheme that boasts irreversibility and

nonlinearity. Notably, they incorporated a dynamic S-box

into their design, further enhancing the efficiency of the

encryption scheme. Another trailblazing endeavor in this

domain comes from Wang et al. [9], who crafted an image

cipher grounded in reversible CA and block theory. Their

methodology involved a combination of diffusion and confu-

sion operations to scramble pixel data within input images.

To fortify their scheme against a myriad of attacks, they

employed SHA-256 with a 2D logistic map to generate initial

seeds.

Meanwhile, Babaei et al. embarked on an intriguing jour-

ney, employing DNA sequences in conjunction with recur-

sive CA to fashion a novel permutation and diffusion-based

image cipher [10]. This innovative approach divided the

encryption process into two distinct phases: permutation and

diffusion. In the permutation phase, they harnessed the power

of a logistic map. In contrast, the diffusion phase saw a

synergy between DNA sequences and CA, creating a robust

and dynamic encryption method. Arab et al. ventured into the

world of image encryption with their unique approach [11].

Their design leveraged the Henon and Logistic maps, em-

ploying hyper-chaotic sequences to yield a substantial key

space, heightened key sensitivity, and superior encryption

speed. In this ever-evolving landscape of cryptography, re-

searchers continue to explore innovative ways to infuse

perplexity and burstiness into their algorithms, pushing the

boundaries of security and encryption.

Hao et al. [12] developed a lossless image cipher based on

CA and set partitioning in hierarchical structures. The cipher

composed of compression process followed by three rounds

of diffusion and scrambling. It achieved higher resistance

towards common attacks and also passed the SP800-22 tests.

Wang et al. [13] used quaternion algebra to design encryption

of multiple RGB images at once. The scheme used multiple

phases followed by an image phase mask in the end to add

extra security features. The encryption framework proposed

by Jasra et al. exemplifies the seamless integration of cutting-

edge cryptographic principles and the intricate dynamics of

hyperchaotic systems, thereby creating a security solution

that boldly withstands a variety of threats. This sentiment

resonates across the broader research landscape. A pivotal

facet that distinguishes this scheme lies in their astute de-

ployment of a novel 4D hyperchaotic system for permuta-

tion. This strategic choice imparts a heightened degree of

non-periodicity, transforming the encryption process into an

exquisite dance of entropy. Furthermore, it is intriguing to

observe that the integration of chaotic systems, woven intri-

cately with other sophisticated cryptographic techniques, has

ignited the imagination of researchers across the globe [14]–

[17].

Researchers have extensively explored chaos theory and

cellular automata, yielding innovative approaches that chal-

lenge conventional encryption paradigms. Chai et al. [18]

embarked on a pioneering journey, unveiling a technique

that intertwines the enigmatic realm of chaotic maps with

the realms of elementary cellular automata (CA) and blocks

compressive sensing. The core of their approach involves a

multi-stage process, comprising a sequence of transforma-

tions utilizing the Discrete Wavelet Transform (DWT), block
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creation, scrambling, and compression of various blocks.

What sets this technique apart is its reliance on the SHA256

hash of the plain image to generate the initial input values

for the chaotic function. This ingenious twist bestows upon it

a formidable resistance against cryptanalysis attacks, forging

new frontiers in data security.

Concurrently, Choi et al. [19] traversed the complexities

of encryption methodologies by leveraging the capabilities

of a 3D chaotic cat map in tandem with the “programmable

complemented maximum length CA (PC-MLCA)". The ju-

dicious selection of PC-MLCA endowed their system with

hardware-friendly implementation and fortified it against the

tempestuous storms of noise and various attacks. It is a

testament to the fusion of chaos and computation. Naskar

et al. [20] embarked on a quest to create a cryptosystem

that could stand against the fiercest of adversaries. Their

masterpiece leveraged the chaotic tent map and cellular

automata, an alliance capable of generating cipher images

with unparalleled robustness. The heart of their cryptosystem

lay in the strategic use of variable-length block sizes and

variable-length key streams derived from a 64-bit key and

the plain image. This symbiosis rendered the cryptosystem

exquisitely sensitive to the nuances of the plain image while

erecting a formidable bulwark against myriad cryptographic

assaults.

In recent years, the field of image encryption has witnessed

a surge of innovative cryptosystems that harness the power of

hyperchaos [21]–[23] in tandem with deep learning and DNA

encoding [24]–[26]. For a comprehensive overview of vari-

ous techniques for designing secure color image ciphers, one

can delve into the insightful work of Ghadirli and Kaur [27],

[28], where they painstakingly dissect and compare state-of-

the-art strategies, scrutinizing their pivotal security attributes.

Many of these cryptographic endeavors employ a multi-

faceted approach, incorporating multiple iterations of pixel

scrambling, confusion, diffusion, shuffling, and other intri-

cate operations to fortify the resilience of their ciphered

images. However, while enhancing the cipher’s robustness,

this multifarious approach concurrently inflates its imple-

mentation’s complexity and demands substantial computa-

tional resources. In stark contrast, the groundbreaking pro-

posedscheme presented herein diverges from convention by

utilizing chaotic maps once in the encryption process, sub-

sequently relying predominantly on SOCA to generate ci-

phered images. Remarkably, this innovative approach does

not compromise the integral security features paramount in

image encryption.

III. PREREQUISITES

In the next section, we will explore the mathematical foun-

dations and frameworks crucial to the architecture of our

SORCHIC . We begin by laying a basic groundwork in

Cellular Automata (CA) and delving into the engrossing area

of Chaotic Maps. These foundational concepts will pave the

way for a detailed analysis of the SORCHIC cryptosystem,

which will be thoroughly presented in the following section.

A. CELLULAR AUTOMATA

Cellular Automata has a rich history dating back to the early

1950s, with John Von Neumann pioneering their study as

powerful computational models [29]. These models serve as

intricate representations that simulate the intricate behavior

of real-world systems, emphasizing localized influences on

behavior. This emulation is achieved through the elegant con-

cept of automata represented as spatial structures resembling

a grid of individual cells. In this framework, each cell’s state’s

evolution hinges solely on its neighboring cells’ values. Take,

for instance, a 2-Dimensional Cellular Automaton (2D CA):

At any given time step ‘t’, the state of a cell at coordinates

(x, y) in the grid evolves to its state at time (t+ 1), with this

transformation being entirely reliant on the values held by its

adjacent cells.

Two fundamental cell neighborhoods emerge as key play-

ers in cellular automata: the renowned “Von Neumann Neigh-

borhood" and the comprehensive “Moore Neighborhood".

Understanding these neighborhoods is pivotal in exploring

the dynamics of cellular automata systems. The “Von Neu-

mann Neighborhood" encompasses a set of cells surround-

ing a central cell (x, y), comprising the cardinal directions:

(x−1, y) to the north, (x+1, y) to the south, (x, y−1) to the

west, and (x, y+1) to the east. This restricted neighborhood

encapsulates the immediate surroundings of the focal cell.

In contrast, the “Moore Neighborhood" expands upon this

concept by embracing a broader perspective. In addition to

the cardinal directions, it includes the diagonal cells: (x −
1, y−1) to the northwest, (x−1, y+1) to the northeast, (x+
1, y−1) to the southwest, and (x+1, y+1) to the southeast,

encompassing all eight adjacent cells around (x, y). This

extended neighborhood offers a more comprehensive view of

the cellular environment, considering both the immediate and

diagonal neighbors. To visualize these neighborhoods, refer

to Figure 1 below, illustrating the cells constituting the “Von

Neumann" and “Moore Neighborhoods". Understanding the

distinctions between these two cell neighborhoods is pivotal

in studying cellular automata, as they influence the dynamics

and behavior of these intriguing computational systems.

x-1,y-1 x-1,y x-1,y+1

x,y+1x,yx,y-1

x+1,y-1 x+1,y x+1,y+1

FIGURE 1: Moore Cellular Automata

In the complex world of cellular automata (CA), behavior

in finite grids reveals a striking contrast. This complexity

arises from the unique neighborhood conditions at the grid’s

edges, which differ from the uniform conditions within the

grid. To address this, two commonly used boundary con-

ditions are employed: periodic and null boundary condi-
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tions [30]. The null boundary condition replaces border cells

with ’0’ or a null value, which simplifies the grid but may

overlook some neighbor interactions. On the other hand,

the periodic boundary condition treats the grid as if it were

wrapped into a torus. This approach connects the borders

with the interior, allowing all neighbors to influence the

cellular automaton’s behavior at each step. The selection of

these boundary conditions significantly impacts the complex

behavior of cellular automata in finite grids.

Cellular Automata (CA) architectures include a variety

of computational models, each with distinct features that

determine how they operate. The specific CA architecture we

previously discussed is part of the FOCA category, which

is unique in that each cell’s state is influenced only by the

prior states of its neighboring cells. Essentially, at any given

time step t, a cell’s state is determined by looking at the

states of its adjacent cells at the previous time step (t − 1).
This principle forms the core of FOCA and its computational

rules [31]. Expanding on this idea, some CA systems exhibit

more complex behavior by incorporating memory, meaning

that their current state depends not only on the previous time

step’s neighbors but also on the states of cells from earlier

time steps. This memory function allows these systems to

predict or calculate future states more effectively, as they can

retain information over multiple time steps, enhancing their

predictive accuracy.

In the realm of Cellular Automata (CA), and specifically

Second Order Cellular Automata (SOCA), we encounter a

situation where a cell’s state at time t depends not just on the

state at time (t− 1) but also on the state at time (t− 2). This

dual dependence creates a fascinating area of computational

dynamics, as shown in Figure 2. Building on this concept,

Third Order Cellular Automata (TOCA) introduce even more

complexity. In TOCA, a cell’s state at time t depends on the

states at times (t − 1), (t − 2), and (t − 3). This three-

state dependence increases the complexity of CA systems,

offering numerous opportunities for exploration and analysis.

Our work focuses on the dynamics of SOCA, where the

richness of these interactions promises to reveal new insights

and challenges in the study of cellular automata.

x,y

x-1,y-1 x-1,y x-1,y+1

x,y-1 x,y+1

x+1,y-1 x+1,y x+1,y+1

x,y

t-1 t t+1

FIGURE 2: Second Order Cellular Automata

B. CHAOTIC MAPS

Chaotic Maps are, in essence, maps (or functions) defined

usually in terms of a system of equations that exhibit chaotic

behavior. In other words, these are highly sensitive to input

conditions [32]. These equations are evaluated recursively

over the inputs such that the output for the current state

becomes the input for the next.

Many chaotic maps are widely used in the field of cryptog-

raphy because of their desirable characteristics of producing

highly randomized states which vary dramatically with slight

changes in inputs. Some of the widely used Chaotic Maps

include the Arnold’s Cat Map, Logistic Map, Lorenz Map

etc. These maps also have the useful property of being

periodic, or repeating states. This can be utilized in designing

reversible systems where we want to return to the original

state of the system as is done in Encryption schemes.

In the present work, a Tinkerbell map is presented and

used in the system architecture of the SORCHIC scheme.

A function is used in dynamical systems to explain the time

dependence of any point geometrically. Tinkerbell map is an

example of similar discrete system that is mathematically ex-

pressed by Equation (1) and (2). Figure 3 shows the behavior

of this map.

pn+1 = pn
2 − qn

2 + apn + bqn (1)

qn+1 = 2pnqn + cpn + dqn (2)

FIGURE 3: Tinkerbell map [33].

Equation (1) and (2) contain 4 coefficients represented as

a, b, c and d [34] which are constants.

IV. SORCHIC - THE PROPOSED TECHNIQUE

The proposed encryption method uses a symmetric cipher

design that incorporates elements from diverse cryptographic

approaches. At its core, the algorithm employs a hybrid

structure comprising three main phases. Initially, it breaks

down the input image into its RGB components. Then, each

of these channels undergoes encryption separately using the

cipher algorithm, and their outputs are combined to create

the final encrypted image. The algorithm’s tripartite frame-

work consists of phases for key generation, state evolution,

and shuffling. The key generation phase occurs once during

initialization to set up inputs for subsequent stages. Follow-

ing this, the state evolution and shuffling phases operate in

sequence over a fixed number of iterations. Notably, the
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output from each iteration feeds into the next, forming a

continuous iterative process that concludes with the creation

of the encrypted image and decryption key. Figure 4 provides

a visual representation of this intricate process.

A. KEY GENERATION PHASE

In the beginning of this process, a critical step occurs: cre-

ating a crucial image, which relies on using a seed vector as

input. This pivotal image precisely matches the dimensions

of the input image. The seed vector, composed of pixels

arranged in a grid pattern, appears randomly and has dimen-

sions of M×M , where M must evenly divide the dimensions

of the input image, referred to as dim× dim. This requirement

ensures the pivotal image aligns perfectly with the input

dimensions, achieved through a careful tiling process using

the seed vector. The value of M can vary, as long as it remains

a divisor of dim. This initial phase produces the pivotal output

known as the key image, essential for subsequent stages of

the process. Interestingly, while the outlined tiling method

reliably generates a key image for encryption, practicality

allows for almost any image to serve this role, provided it

matches the dimensions of the input image. Further details

on the intricate process of key generation can be found in

Algorithm 1.

Algorithm 1 Key Generation Algorithm

Input: Seed Vector V of dimension M ×M
Output: Key Image K of dimension dim× dim

1: for x← 0 to dim− 1 do

2: for y← 0 to dim− 1 do

3: i← 0

4: j ← 0

5: for i← 0 to m− 1 do

6: for j ← 0 to m− 1 do

7: K[x+ i][y + j]← V [i][j]
8: end for

9: end for

10: y← y +m
11: end for

12: x← x+m
13: end for

B. STATE EVOLUTION PHASE

The core of this algorithm represents its distinctive fea-

ture, standing at the forefront of its uniqueness. This

pivotal phase introduces the SOCA (State-Of-the-Cellular-

Automaton) structure, which orchestrates the primary en-

cryption process. In this stage, the algorithm takes two es-

sential inputs: the RGB channels of the input image and the

key image generated in the preceding phase, which serve

as the states T0 and T1 for the subsequent encryption com-

putation. The proposed algorithm adopts a Moore Neigh-

borhood SOCA configuration, operating within a framework

of periodic boundary conditions to execute the encryption.

The equation that governs the derivation of the next states is

elegantly presented below:

Tn+1
i,j = XORPeriodic

Moore (Tn
i,j , T

n−1
i,j ), (3)

Considering the function XORPeriodic
Moore (T (n)), which

yields the result of performing an XOR operation on the

Moore neighborhood surrounding the cell at coordinates

(i, j) within the SOCA. This neighborhood comprises all

adjacent cells to the state T (n) except for the cell at (i, j).
The procedure involves the repetition of this XOR operation

for a fixed number of iterations, resulting in a series of output

states. The XORPeriodic
Moore function, central to the SOCA

process, can be described as follows:

XORPeriodic
Moore (Tn

i,j) = T(i−1+dim)%dim,j

⊕T(i+1)%dim,j ⊕ Ti,(j−1+dim)%dim

⊕Ti,(j+1)%dim ⊕ T(i−1+dim)%dim,(j−1+dim)%dim

⊕T(i+1)%dim,(j−1+dim)%dim

⊕T(i−1+dim)%dim,(j+1)%dim

⊕T(i+1)%dim,(j+1)%dim

(4)

The XOR function emerges as a potent tool. It capitalizes

on an interesting property: when a ⊕ b = c, the inverse

also holds, b ⊕ c = a. This intrinsic characteristic unveils

a remarkable symmetry, rendering the decryption process a

mirror image of its encryption counterpart. As we traverse

further into this intricate procedure, the outputs of this stage

come to the forefront. These outputs are not singular but a

pair, representing both the (x+ 1)
th

and the xth images.

This duality, arising after x steps of computation, forms the

foundation for the subsequent phase.

C. SHUFFLING PHASE

This phase, as the name suggests, shuffles the output of the

previous stage using a Tinkerbell map to introduce high level

of differentiation in the output and to maintain the practicality

as well as flexibility of implementation of the scheme itself.

The working of this phase is shown in Algorithm 2. The

output of this stage are the shuffled images T ′
x+1 and T ′

x

corresponding to the output images Tx+1 and Tx of the

previous stage.

D. STRUCTURE OF SORCHIC

The heart of the encryption process lies in the complex

interaction of phases that evolve over time. Over a series

of t iterations, these phases work together to produce two

critical outcomes: the encrypted image and the decryption

key representation. This encryption process, utilizing tech-

niques like shuffling and SOCA, is detailed in Algorithm 3.

Conversely, Algorithm 4 explains the decryption counterpart,

emphasizing the intricate symmetry between Encryption and

Decryption in their structural design. Figure 4 elegantly illus-

trates the architectural framework of the SORCHIC scheme,
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Algorithm 2 Shuffling Algorithm

Input: Output Image C of previous phase

Output: Shuffled Image C ′

1: for x← 0 to dim− 1 do

2: for y← 0 to dim− 1 do

3: i1← i2 − j2 + a× i+ b× j
4: j1← 2× i× j + c× i+ d× j ▷ New indices

are computed using Tinkerbell map

5: C ′[i][j]← C[i1][j1]
6: end for

7: end for

8: C ← C ′

visually capturing the harmonious interaction of these cryp-

tographic processes. During decryption, the "Decryption Key

Image" functions as the Initial Vector (IV), and the encrypted

image serves as the "Input Image," as depicted in Figure 4.

Algorithm 3 Encryption Algorithm

Input: Input Image I , Key K, Number of Iterations, p
Output: CipherImage, Decryption Key Image

1: iter← p
2: C0 ← I
3: C1 ←K
4: C2← Initialize with 0

5: for x← 0 to iter − 1 do

6: for i← 0 to dim− 1 do

7: for j ← 0 to dim− 1 do

8: C2[i][j]← XORPeriodic
Moore (C1)⊕ C0[i][j] ▷

Using the XORPeriodic
Moore function in equation 4

9: end for

10: end for

11: if x+ 1%p == 0 then

12: C2← shuffle(C2) ▷ Using the Shuffling

procedure shown in Algorithm 2

13: C1 ← shuffle(C1)

14: end if

15: C0 ← C1

16: C1 ← C2
17: end for

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the analysis of the proposed scheme

as well as a summarized comparison to some of the existing

techniques of similar design. The following experiments have

been performed on a Google Compute Engine with 12.68 GB

RAM and 107.72 GB storage. Constant values for the various

algorithm hyper-parameters have been used throughout the

analysis of the scheme. These parameters include the number

of SOCA iterations p and image dimension dim.

These values can be varied based on the robustness, ef-

ficiency and sensitivity requirements. The Boat image is

used as key image instead of the aforementioned key gen-

eration procedure in order to showcase the performance

Algorithm 4 Decryption Algorithm

Input: CipherImage C, Key K, SOCA Iterations p
Output: Original Image

1: iter← p
2: C0 ← C
3: C1 ←K
4: C2← Initialize with 0

5: for x← 0 to iter − 1 do

6: if x%p == 0 then

7: C1 ← shuffle(C1)

8: C0 ← shuffle(C0)

9: end if

10: for i← 0 to dim− 1 do

11: for j ← 0 to dim− 1 do

12: C2[i][j]← XORPeriodic
Moore (C1)⊕ C0[i][j]

13: end for

14: end for

15: C0 ← C1

16: C1 ← C2
17: end for

and robustness of the scheme in the absence of externally

induced randomness. “Boat", “Baboon" and “Peppers" had

been considered as plain images for various experiments.

The corresponding enciphered and deciphered images are

presented in Figure 5.

A. HISTOGRAM ANALYSIS

Studying the Histograms of Input and Cipher Images pro-

vides valuable insights into how pixel distributions differ

between these two distinct sets. Ideally, we would expect

significant differences in the histograms, indicating that pixel

intensity values are markedly different between the two

types of images. However, real-world images often have

non-uniform histograms due to smooth transitions between

nearby pixels. In contrast, cipher images typically exhibit

more uniform histograms, suggesting abrupt changes be-

tween neighboring pixel groups. This characteristic is crucial

for secure image encryption. Refer Figure 6, 7, 8 for a

graphical depiction of these histograms for cipher images

across their RGB color channels. Similar uniform visual

representations were generated for all test images.

B. INVESTIGATION OF CIPHER IMAGE QUALITY

In this section, we carefully analyze the image quality

achieved by SORCHIC. Our evaluation will use three im-

portant and well-established metrics, namely “Mean Square

Error (MSE)", “Peak Signal-to-Noise Ratio (PSNR)" and

“Mean Absolute Error (MAE)". The formulae for computing

these values can be found in [35]. A comparison of the

values between SORCHIC and existing popular techniques

is presented in Table 1.
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FIGURE 4: SORCHIC Architecture

Plain Images Encrypted Images Decrypted Images

Boat Boat_Encrypted Boat_Decrypted

Baboon Baboon_Encrypted Baboon_Decrypted

Peppers Peppers_Encrypted Peppers_Decrypted

FIGURE 5: Input and Result Images using SORCHIC

TABLE 1: Comparison of Cipher Image quality using various

parameters

MSE PSNR MAE

Methods Baboon Pepper Baboon Pepper Baboon Pepper

Ref. [36] 11143.49 10784.50 7.661 7.803 88.344 84.828

Ref. [37] 9368.70 11158.19 8.42 7.67 79.28 86.27

Ref. [38] 7,364 8,319 9.4598 8.93

SORCHIC 11149.36 10845.41 8.593 8.176 89.237 87.572

C. ANALYSIS OF AVALANCHE EFFECT

This analysis demonstrates how sensitive the SORCHIC is to

the experiment’s secret key. It shows that even a tiny change

to the secret key can completely render the restored image

unintelligible [39].

Alternatively, the changed key will bring forth an entirely

dissimilar cipher image. Figure 9 presents some decrypted

images produced as a consequence of only one rule change

(a) Enc_Boat (b) R

(c) G (d) B

FIGURE 6: Channel-wise histograms of Boat generated by

SORCHIC

in the secret key.

TABLE 2: Comparative analysis of key-sensitivity (%)

Image SORCHIC PVCA [40] Babaei et al. [10]

Baboon 99.76 99.76 99.60
Peppers 99.72 99.71 99.66

It is clear that the system is extremely sensitive to the secret

key. The comparison between SORCHIC and its counter-

parts is given in Table 2. Clearly, the proposed technique

outperforms the existing ones.

D. RESISTANCE AGAINST STANDARD ATTACKS

SORCHIC is a symmetric image cipher which encodes an

image based on SOCA rules as written in Section IV. This

is designed by “Moore neighborhood periodic boundary"

second order CA that changes its configuration based on

nine neighbors dynamically. Here, 3 crucial parts are selected

randomly – (1) Key, K (2) SOCA iteraions, p and (3) the
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(a) Enc_Baboon (b) R

(c) G (d) B

FIGURE 7: Channel-wise histograms of Baboon generated

by SORCHIC

(a) Enc_Peppers (b) R

(c) G (d) B

FIGURE 8: Channel-wise histograms of Peppers generated

by SORCHIC

(a) Recovered Baboon (b) Recovered Peppers

FIGURE 9: Decryption results with altered key

epochs, w for which rounds the method should to be run. As

a result, the cipher images possess high randomness.

Additionally, this approach can produce entirely various

types of cipher images from very similar initial image types.

To put it another way, a single original image can bring forth

a variety of cipher images based on the three critical parts

mentioned above. Additionally, even if the same K compo-

nent is considered, the encoded images will differ. This is

because of the encryption method’s capacity to achieve a high

degree of confusion and diffusion qualities. Therefore, even

if the original image pixels are replaced by all zero values, it

prevents the opponent from learning anything useful. Thus,

SORCHIC prevents chosen ciphertext, chosen plaintext,

known plaintext and known ciphertext attacks.

E. ROBUSTNESS TEST AGAINST DIFFERENT NOISE

LEVELS

To verify the resilience of the suggested approach, various

noise levels are used. The plain images are first given a

varying percentage of “Salt and Pepper" noise, after which

they are encrypted and transferred to the recipient end. Here,

En_Baboon and Re_Baboon refer to encrypted Baboon and

Recovered Baboon respectively. Similarly other nomencla-

tures are used.

(a) Baboon (b) Boat (c) Peppers

(d) En_Baboon (e) En_Boat (f) En_Peppers

(g) Re_Baboon (h) Re_Boat (i) Re_Peppers

FIGURE 10: Robustness test with 10 % noise level for

SORCHIC

The original images are deciphered at the receiver’s end.

Figure 10 displays the corresponding images with a 10%

noise level. The figures unambiguously demonstrate that by

looking at the recovered photographs, the plain images may

be quickly identified.
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F. DATA LOSS ANALYSIS

Images may be exposed to a variety of disturbances while

being transmitted from one point to another. Data loss could

arise at the receiver’s end as a obvious consequence. Hence,

the receiver can perceive something quite different. Even

with a certain amount of data loss, the method must recover

the actual image without losing its generality. To put it

another way, the cipher must decipher and retrieve the plain

image that closely resembles the original image.

In SORCHIC , we have checked data losses at various im-

age coordinates as depicted in Figure 11. As observed in the

figures, the reconstructed images had a strong resemblance

with the original ones, thus supporting the strength of the

suggested scheme.

(a) Baboon_Enc (b) Center

(c) Baboon_Dec (d) Baboon_Dec

(e) Corner (f) Bottom

(g) Baboon_Dec (h) Baboon_Dec

FIGURE 11: Data loss analysis of the Baboon encrypted

image and decrypted image

G. EVALUATION OF INFORMATION ENTROPY

Entropy in information theory serves as a fundamental mea-

sure of randomness. Image encryption plays a pivotal role

as a metric for quantifying the average information content

stored within each bit of an image. When we examine a

typical, unencrypted image, we observe a wide range of pixel

values, leading to significant variations in the probability

distribution of these values across the image. Conversely,

pixel values tend to exhibit a uniform distribution in the realm

of ideally encrypted images, where each possible value holds

an equal probability. This state is often described as having

higher entropy than the former scenario. To calculate the

Information Entropy of an image, we utilize Equation 5 as

our mathematical tool.

γ =

mn
∑

i=0

P (Ti)(− log2 P (Ti)), (5)

Here, the image dimensions are denoted as m × n, cap-

turing the fundamental scale of the image. Additionally, we

refer to P (Ti), which corresponds to the pixel value count

in the image’s histogram for each pixel value Ti [43]. In

Table 4, we present a comparative analysis of the entropy

values for encrypted versions of various images. These values

serve as a crucial metric for assessing the quality of the

encryption scheme under consideration. Upon closer exam-

ination of the entropy values, it becomes evident that the

SORCHIC scheme yields commendable results. This ob-

servation underscores the scheme’s resilience against various

forms of randomness attacks, making it a robust choice for

image encryption.

H. ASSESSMENT OF CORRELATION COEFFICIENTS

The Correlation Coefficient, denoted as µ, is a pivotal statis-

tical metric in gauging the resemblance between two images.

It fundamentally quantifies the extent of diversity exhibited

by the pixel values within these two images. The Correlation

Coefficient’s value is constrained within [−1, 1]. Notably,

a value nearing either extremity of this interval denotes an

exceptionally pronounced likeness, whereas a value approx-

imating ‘0’ signifies a considerable dissimilarity. Mathemat-

ical expression for calculating the Correlation Coefficient is

defined by Equation 6, as follows:

µ =

∑

m

∑

n(Xmn − X̄)(Ymn − Ȳ )
√

(
∑

m

∑

q(Xmn − X̄)2)(
∑

m

∑

n(Ymn − Ȳ )2)
,

(6)

Here, X̄ and Ȳ represent the mean pixel values attributed

to the images under scrutiny. These statistical aggregates are

pivotal in unraveling the image intricacies. Meanwhile, Xmn

and Ymn denote the pixel values residing at the index (m, n),

as detailed in the notable work by Roy et al. [40]. However,

the crux of our investigation lies in the comparative analysis

of µ values, a fundamental variable governing the encrypted

images in different directions. We have meticulously curated

a tabulated presentation encapsulated in Table 3 to shed

light on this. This table is a valuable reference point for

deciphering the nuances of the directional µ variations.

In image encryption, the vertical, horizontal, and diagonal

spectrums of correlation are used to measure how well the
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TABLE 3: Comparison of µ-Values generated through SORCHIC with recent methods

Methods
Baboon Peppers

µ µ

Horizontal Vertical Diagonal Average Horizontal Vertical Diagonal Average

Ref. [38] -0.003668 0.0003721 -0.0009163 -0.0014041 0.000127 0.0003223 0.0089575 0.0031356

Ref. [41] -0.001100 -0.002037 0.00098 -0.0007204 0.00017 -0.001268 0.00044 -0.00022

Ref. [42] 0.0025 0.0064 0.0035 0.00413 -0.0020 0.00008 -0.0064 -0.002773

SORCHIC 0.000897 0.000124 -0.000068 0.0003177 0.00002 -0.00087 0.00099 0.00004667

TABLE 4: Comparison of entropy values with recent tech-

niques

Scheme/Image Baboon Peppers

Ref. [38] 7.9974 7.9974

Ref. [41] 7.9993 7.9993

Ref. [42] 7.99907 7.99890

SORCHIC 7.99998 7.99995

encryption algorithm disrupts the inherent correlations in

an image. Effective image encryption should result in low

correlations across all these spectrums, indicating that the

pixel values have been thoroughly randomized and the image

is secure against attacks that exploit these correlations. As

can be seen from Table 3, the values of µ are lesser for

Baboon in horizontal spectrum as compared to Ref. [ [42]].

On the other hand, majority of the values achieved are lesser

than the existing algorithms, indicating the strength of the

encryption algorithm.

I. DIFFERENTIAL ANALYSIS

Differential Attacks constitute a pivotal category of crypt-

analysis techniques, wherein the input image undergoes

slight perturbations and is subsequently subjected to encryp-

tion using the same cryptographic key in conjunction with

the original unaltered image. Subsequently, a comparative

analysis is performed between the original and perturbed

input images’ encrypted representations to elucidate the in-

herent relationships between these two encrypted forms. In

cryptography, fortifying encryption mechanisms against such

formidable attacks is paramount. It necessitates the imple-

mentation of cryptographic algorithms that exhibit a property

where even a minute alteration in the input data results in

a completely divergent encrypted output. The realization of

such a property forms a fundamental goal in designing and

evaluating cryptographic techniques.

TABLE 5: Comparison of differential analysis metrics of

SORCHIC with existing schemes

Images Baboon Pepper

Metrics NPCR UACI NPCR UACI

Ref. [38] 99.6384 33.6305 99.6628 33.5712

Ref. [41] 99.6081 33.4581 99.6095 33.4581

Ref. [44] 99.6105 33.4661 99.6078 33.4637

SORCHIC 99.9856 33.8712 99.9775 33.0220

Two critical parameters that play an instrumental role in

quantifying the robustness of an encryption scheme in the

context of differential attacks are “Number of Pixel Change

Rate (NPCR)" and “Unified Average Changing Intensity

(UACI)". These parameters serve as indispensable metrics,

facilitating a comprehensive assessment of the encryption

method’s efficacy in thwarting differential attacks. Mathe-

matically, these metrics can be expressed through the follow-

ing equations:

{

N(M1,M2) =
∑ M(m,n)

X×Y
× 100%,

U(M1,M2) =
∑

m,n
|M1(m,n)−M2(m,n)|

R×X×Y
× 100%,

Here, X and Y symbolize the dimensions of the images,

with R representing the uppermost attainable value for the

image’s pixels. The function M(p, q) characterizes the dis-

parity between the two images at position (p, q), a quantity

computed via the utilization of Equation 7.

M(m,n) =

{

0 if M1(m,n) = M2(m,n);

1 if M1(m,n) ̸= M2(m,n),
(7)

In the context of assessing the performance of the SOR-

CHIC scheme, it becomes imperative to delve into a com-

parative analysis of the NPCR and UACI metrics when jux-

taposed with various existing techniques. The results of this

comparison are meticulously tabulated in Table 5, shedding

light on the scheme’s efficacy and differentiating it from its

contemporaries.

J. NIST TESTS FOR RANDOMNESS

The security of any cryptographic cipher is heavily reliant on

assessing its randomness. In the evaluation of the randomness

of the proposed scheme (SORCHIC), we have employed the

widely recognized SP800-22 suite [46], as established by the

“National Institute of Standards and Technology (NIST)"1.

These assessments focus on identifying various forms of

non-randomness that may be present in a sequence. For each

assessment, a standard significance level of α = 0.01 was

applied when analyzing the P-values generated. A sequence

is considered to have passed a statistical test if the P-value is

greater than or equal to α; otherwise, it fails. The NIST rec-

ommends two methods for interpreting the results: evaluating

1https://www.nist.gov/publications/statistical-test-suite-random-and-
pseudorandom-number-generators-cryptographic
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TABLE 6: Comparison of NIST Randomness Test Results

Techniques Ping et al. [45] SORCHIC

Size 512×512 512×512

Tests p-value Z Result p-value Z Result

Serial (m=16, delsi2m ) 0.834308 0.99 ✓ 0.932712 0.99 ✓

Rank 0.275709 1 ✓ 0.275814 1 ✓

Overlapping Templates 0.924076 0.97 ✓ 0.931456 0.97 ✓

Longest Runs of 1s 0.987896 0.99 ✓ 0.987928 0.99 ✓

Block Frequency (m=20000) 0.935716 0.98 ✓ 0.985423 0.98 ✓

Non-overlapping Templates 0.554420 0.99 ✓ 0.555644 0.99 ✓

Spectral DFT 0.897763 0.99 ✓ 0.901224 0.99 ✓

Frequency 0.759756 1 ✓ 0.868268 1 ✓

Maurer’s Universal 0.075719 1 ✓ 0.094342 0.98 ✓

Runs (Forward) 0.935716 1 ✓ 0.966725 1 ✓

REV∗ 0.468595 1 ✓ 0.471738 0.99 ✓

RE† 0.602458 1 ✓ 0.614245 1 ✓

Linear Complexity (m=500) 0.236810 0.99 ✓ 0.329873 0.99 ✓

Approximate Entropy 0.419021 0.98 ✓ 0.438003 0.98 ✓

Cumulative Sums (Forward) 0.122325 0.98 ✓ 0.127881 1 ✓

∗REV = “Random Excursions Variant" (x = -1)
†RE = “Random Excursions" (x = -1)

the proportion of sequences that pass a test and examining the

distribution of P-values.

1) Proportion of sequences:

The range of valid proportions can be defined as,

p̂± 3

√

p̂(1− p̂)

m
,

where, p̂ = 1 − α, and m is the sample size [45]. If

the proportion is not within this interval, it indicates

that the data might not be random. For our situation

where m = 100, the acceptable proportion range is 0.99

± 0.02985, which translates to [0.96015, 1.01985].

2) Distribution of P-value:

To verify uniformity, the P-value distribution is exam-

ined. The range from 0 to 1 is segmented into 10 equal

parts, and the calculations proceed as follows:

χ2 =

10
∑

i=1

(Fi −m/10)2

m/10
,

were, Fi represents the frequency of occurrences where

the P-value falls within sub-interval i, and m stands for

the sample size. A P-value is computed so that

P−value = igamc

(

9

2
,
χ2

2

)

,

Here, the incomplete Gamma function, denoted as

igamc, is used to determine if a sequence is uniformly

distributed. A P-value of 0.0001 or higher indicates that

the sequence meets this criterion.

We analyze the randomness of the output sequence gen-

erated by our proposed algorithm. We tested 100 different

sequences of cipher images, each 1,000,000 bits long, using

the NIST STS (version 2.1.1). The results of these tests are

recorded in Table 6, where Z represents the proportion. The

findings confirm the strong performance of SORCHIC in

all tests. As mentioned earlier, for this evaluation, we used

a sample size of m=100 and considered p-values within the

range of [0.96015, 1.01985].

VI. CONCLUSION

In the scope of this research endeavor, we introduce a pio-

neering image encryption framework known as SORCHIC.

This innovative scheme harnesses the power of Second Or-

der Cellular Automata (SOCA) in conjunction with Chaotic

Maps to orchestrate the encryption process. Notably, our

work introduces an entirely novel family of chaotic maps

that underpins the overarching architecture of the SOR-

CHIC. Its adaptability, manifest through incorporating di-

verse hyper-parameters in its design, sets this scheme apart.

This adaptability grants it the dual prowess of robustness

and efficiency, as these hyper-parameters can be facilely fine-

tuned to yield the desired system performance. The rigor of

our work extends to a comprehensive suite of cryptanaly-

sis techniques, including Histogram Analysis, Cipher Image

Analysis, Differential Analysis, and Information Entropy

assessment. These meticulous examinations corroborate the

SORCHIC’s resilience against various security attacks, re-

inforcing its credentials as a stalwart guardian of digital

imagery.

Looking forward, future research will explore the perfor-

mance of SORCHIC across a range of hyper-parameter val-

ues to enhance robustness against adversarial attacks while

optimizing efficiency. Additionally, an evolved version of

SORCHIC will eliminate the need for key images, thereby

improving practicality across various applications.
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