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Abstract

Underwater object detection and classification technology is one of the most important ways for
humans to explore the oceans. However, existing methods are still insufficient in terms of accuracy
and speed, and have poor detection performance for small objects such as fish. In this paper, we
propose a multi-scale aggregation enhanced (MAE-FPN) object detection method based on the feature
pyramid network, including the multi-scale convolutional calibration module (MCCM) and the feature
calibration distribution module (FCDM). First, we design the MCCM module, which can adaptively
extract feature information from objects at different scales. Then, we built the FCDM structure to
make the multi-scale information fusion more appropriate and to alleviate the problem of missing
features from small objects. Finally, we construct the Fish Segmentation and Detection (FSD) dataset
by fusing multiple data augmentation methods, which enriches the data resources for underwater
object detection and solves the problem of limited training resources for deep learning. We conduct
experiments on FSD and public datasets, and the results show that the proposed MAE-FPN network
significantly improves the detection performance of underwater objects, especially small objects.

Keywords: underwater image object detection, deep learning, feature fusion, data augmentation

1 Introduction

The classification and detection of underwater
objects is a fundamental part of the exploration
and exploitation of marine resources. Through
underwater object detection technology, locating
underwater objects in the ocean and obtaining
object information can provide basic information
for human exploration of the ocean. However,
in practical applications, due to the diversity
of underwater objects (e.g. the high variability
and different sizes of individual fish), underwater
object detection has higher detection complexity
and difficulty compared to natural images.

Currently, underwater object detection meth-
ods are mainly traditional machine learning-based
detection methods: such as SVM][2], decision
tree[14], principal component analysis[24] and ran-
dom forest[3]. Most of the machine learning-based
underwater object detection methods require
manual intervention for object feature extraction,
followed by object classification and localisation.
However, these detection methods usually have
lower detection accuracy and slower speed, and
often have problems such as missing and incorrect
classification in the actual detection process.

With the rise of deep learning technology, more
and more scholars try to solve the problem of



underwater object detection with deep learning
technology, typical CNN-based underwater object
detection algorithms are [36],[25],[41],[39],[38].
These methods are mainly used to train convo-
lutional neural networks to complete the classi-
fication by underwater image features, which is
mainly divided into region-based object detection
methods and regression-based detection meth-
ods. The region-based object detection method is
mainly divided into two stages: first, extracting
the candidate region, and then detecting accord-
ing to the candidate region. The regression-based
object detection method no longer generates the
proposed region branch for underwater target fea-
ture extraction separately, but uses the anchor
frame mechanism to directly return the candi-
date frame position to classify targets at multiple
locations in the underwater image, thus greatly
speeding up the target detection speed.

Fig.1 shows the scenarios that can occur in
underwater object detection. Although the above
deep learning based object detection algorithm
can perform the underwater object detection task
more accurately, there will be some miss detection
and false detection in the underwater object detec-
tion task in practical applications due to the lower
quality of underwater images compared to opti-
cal images and the greater variety of underwater
objects. In addition, the lack of underwater image
data also hinders the training of deep learning
algorithms.

Therefore, we propose the feature fusion net-
work of MAE-FPN and create the underwater fish
object segmentation and detection dataset FSD,
which effectively solves the problem of lack of
underwater image data while achieving the high
efficiency and high accuracy of underwater image
object detection. The main contributions of this
thesis are as follows:

First, we design the Multi-scale Convolu-
tional Calibration module. This module adap-
tively selects different sensory field features based
on the channel attention mechanism and assigns
weights to the features at different scales sepa-
rately, so that the feature information of multiple
objects at different scales can be fully extracted.

Then, we innovatively propose the Feature
Calibration Distribution Module. By fusing the
high-level feature information more effectively and
then distributing the output, we make the multi-
scale information fusion more adequate, in order

Fig. 1 The samples of underwater objects. The first row
shows different fish species that have extremely high simi-
larity, making classification difficult. The second row shows
several difficult detection scenarios for underwater objects,
such as dense alignment, overlapping, and blending with
the background.

to reduce the information loss in the process of
network feature fusion and alleviate the problem
of small target feature loss.

Next, we construct Fish Target Segmenta-
tion and Detection (FSD) dataset through data
crawler, data expansion and enhancement, and
manual screening, etc., which can alleviate the
problem of lack of target detection dataset in
underwater images to some extent. The dataset is
well labeled, rich and challenging, and suitable for
underwater target detection algorithm research.

Finally, we conduct exhaustive experiments
and achieve significant performance improvement
in both the FSD dataset and the open dataset,
which verifies the effectiveness of the proposed
method for underwater object detection.

2 Related Works

Deep Learning-based Object Detection are
mainly divided into two categories: two-stage
detectors and one-stage detectors. Two-stage
detectors, such as the Faster RCNNJ[29] family,
consist of two parts: one part is the proposal
of candidate object bounding boxes, and the
other part is the task of classifying and regress-
ing the bounding boxes using features extracted
from each candidate object. One-stage detec-
tors, such as YOLO series[28], [37], SSDI[20],
and RetinaNet[18], propose the prediction boxes
directly from the input image without the region
proposal step. In general, two-stage detectors have
higher localization accuracy and object recogni-
tion accuracy, while single-stage detectors have
higher inference speed.



The above algorithms rely on a set of prede-
fined anchor frames and perform object detection
based on these previous anchors. We also refer
to these algorithms as anchor-based object detec-
tion methods. Recently, major breakthroughs have
been made in anchor-free object detection algo-
rithms to overcome the computational challenges
posed by the introduction of anchor points. Major
anchor-free object detection algorithms include
FCOS[34], CornerNet[15], and CenterNet[7]. In
addition, some researchers have introduced the
transformer mechanism from natural language
processing to object detection, and proposed new
object detection methods such as DETR[4] and
Swin Transformer[22].

Overall, deep learning-based object detection
algorithms have developed rapidly and achieved
good results in both scientific research and indus-
trial applications[42],[19],[38],[40],[31]. However,
these common object detection algorithms are
mainly designed for optical natural images rather
than underwater images, and their direct applica-
tion to underwater images often results in poor
performance, so special designs for underwater
object detection are still needed.

Object Detection In Underwater Images.

Traditional underwater object detection meth-
ods mainly rely on manual feature extraction. For
example, Kim[13] proposed the underwater object
detection algorithm with multi-channel Haar class
features, Villion[35] proposed the fish behaviour
feature extraction and analysis based on machine
learning. These methods extract clearer features
and are more widely used in aquaculture. How-
ever, such methods are unable to maintain high
robustness and generalisation ability in different
environmental situations due to the use of arti-
ficially preset features, and the higher human
involvement consumes excessive human and finan-
cial costs.

With the maturity of deep learning technol-
ogy, object detection algorithms for underwater
images have shifted from traditional manual fea-
ture extraction methods to deep learning-based
target detection methods. Ahsan et al[12] devel-
oped a hybrid solution for estimating species
richness and population changes in underwater
fish habitats by combining a YOLO network with
optical flow and a Gaussian mixture model to
detect dynamic fish in the background. Sung

et al[33] extracted fish images from underwater
videos and used the YOLO algorithm model to
detect them and achieved a performance balance
between detection accuracy and speed. Qi et al[27]
proposed a two-stage network underwater small
object detection method using a deformable con-
volutional pyramid structure to solve the object
deformation problem. structure to solve the object
deformation problem.

The above methods improve the performance
of underwater object detection to a certain extent,
but due to the diversity of underwater object
types, the limited nature of the dataset, and the
complexity of the underwater environment and
occlusions, the underwater target detection task
is subject to a number of omissions and misjudg-
ments in practice. In addition, for some small
targets, such as fish, the existing network has an
overall poor detection performance.

3 Methods

In this section, we provide a detailed description of
the approach proposed in this paper. Combining
the consideration of detection accuracy and speed,
we adopt YOLO_v5 as the base detector. First, we
take the YOLO_v5 object detector as an example
to itemize the overall network structure. Then, we
will elaborate the overall structure and individual
modules of the proposed Multi-scale Aggregation
Enhanced Feature Pyramid (MAE-FPN). Finally,
we introduce the newly proposed Fish Segmenta-
tion and Detection (FSD) dataset, which provides
a detailed description of the collection and pro-
duction process.

3.1 Overall network structure

Based on YOLO_v5, we propose a multi-scale
aggregated object detection network as shown in
Fig.2a. It consists of four main parts: the input
(Input), the backbone network (Backbone), the
neck network (Neck) and the predictive head
output (Head).

Assuming that an RGB image with a size
of 640x640x3 is input, firstly, multiple feature
maps with different scales are obtained by up-
sampling in the Backbone network noted as F1,
F2, F3, F4, F5. Then MAE-FPN constructs lateral
connections based on the Multi-scale Convolu-
tional Calibration Module (MCCM) to obtain the
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Fig. 2 The architecture of our proposed network. Figure (a) shows the overall network structure with yolo_v5 as the
detector. Figure (b) illustrates the module composition in MAE-FPN.

feature layers P2,P3,P4,P5. Next, the adaptive
feature convergence distribution module (FCDM)
is used to further fuse the highest layer feature P5
with the lower layer features P2,P3,P4 to obtain
the fused feature F. Finally, the fused feature
F enhances P4,P3,P2 layer-by-layer, and obtains
the final feature level C2,C3,C4,C5 for object
detection. The C2 layer feature map is directly
output into the Seg-head, and the input feature
map is recovered to 640x640x3 size after two
upsampling.

3.2 MAE-FPN

In order to improve the detection level of
small underwater objects, existing object detec-
tion networks usually adopt the feature pyra-
mid (FPN)[17] structure and its improvements
like CB-FPN|[21], Nas-FPNJ[9], Aug-FPNJ[10], CE-
FPNJ23]. However, the existing FPN structure has
the following problems: (1) the lateral connection
of FPN has only limited non-dynamic receptive
fields, which makes the extracted target feature
information insufficient; (2) the feature informa-
tion within the highest layer of the FPN network
is not effectively fused, and the top-down fusion is
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Fig. 3 The detail of our proposed method. In Fig (a) the process of convolutional calibration at different scales in the
MCCM network is shown in detail. Fig (b) demonstrates the process of aggregating features from different layers in the

FCDM structure.

relatively single, which makes the semantic infor-
mation of the higher layers easily lost. The above
problems will lead to insufficient feature extrac-
tion of underwater targets by the feature pyramid
structure, and even cause some target features to
be lost, resulting in poor detection of small targets
such as fish.

Therefore, we deeply analyze the existing FPN
structure and propose the MAE-FPN structure,
as is shown in Fig.2b. It consists of Multi-
scale Convolutional Calibration Module (MCCM)
and Feature Calibration and Distribution Module
(FCDM) from left to right.

3.2.1 Multi-scale Convolutional
Calibration Module

The structure of the MCCM network is shown in
Fig.3a. In the MCCM structure, the larger recep-
tive field convolution in the original FPN structure
is first decomposed and equivalently replaced by
N multiple 3x3 convolutions to reduce the com-
putational overhead of the network. These N 3x3
convolutions can represent a total of N differ-
ent receptive fields ranging from the 3x3 scale to
the (2N + 1)x(2N + 1) scale. By decomposing
and sharing convolution kernels in this way, the
MCCM network is able to cover multiple receptive
fields consecutively without introducing the large
kernel convolutions and with less computational
overhead. The multi-scale convolution module is
expressed as follows:

F171($)7 N =
fRN+1)= Fisz(z), N=1
Fna(f(2N -

(1)
Where, f(2N + 1)denotes the feature map with
the receptive field of (2N +1) x (2N + 1), F; ;(z)
denotes the ith receptive field of j X j convolution,
f represents the input feature map, N represents
the number of 3 x 3 convolution kernels in the
convolution group, and the larger value of N rep-
resents the larger maximum receptive field of the
convolution group.

After extracting multiple receptive field fea-
ture maps at different scales, the scale calibration
module in the MCCM network selects different
receptive field features based on the channel atten-
tion mechanism([11] to adaptively select different
receptive field features and weight the channels of
the feature maps of interest among them, assign-
ing higher or lower weights to the features at
different scales. This is mainly achieved by the
following four steps.

1) Feature splicing: After extracting the multi-
scale sensory field feature maps within each fea-
ture map, the MCCM module splices the feature
maps into a feature map F with global multi-scale
feature information.

2) Feature encoding: after compressing the fea-
ture maps of each channel space based on the
channel attention mechanism and encoding them



in the channel dimension, they are concatenated to
generate a valid channel identifier for description.
In order to be able to accurately label each chan-
nel, the MCCM module employs Global Maximum
Pooling Operation (GMP) and Global Average
Pooling (GAP)[43] to compress the input feature
maps in the spatial dimensions and to generate the
channel identifiers mc and ac, respectively. Assum-
ing that the number of channels, height and width
of the input features are [C, H, W], the spatial fea-
ture encoding process for each channel is shown in
Eq.2:

me = Max (fc(4,7)),0 <i < H&O0 < j < W,
Ge = ﬁ Zflzl ij;l fe(i, 3)

(2)
where m, is the global maximum pooling, a. is
the global average pooling, and f.(i,7) is the fea-
ture map with the number of channels, height and
width of [C, H, W], respectively.

3) Channel calibration: the module interacts
with the identifiers m. and a. through two fully
connected layers and calculates the weights of each
dimension of the feature, corresponding to the
weights of each channel of the original feature.
Finally, the weights of each channel are multiplied
with the original feature by channel. Finally, the
weights of each channel are multiplied with the
original features by channel, and the calculation
process is expressed as Eq.3.

fe=fex o (W1 (6 (W2 (me))) + Wi (6 (Wa(ac)))),
3)
4) Feature separation and fusion: after the
above weighting operation and calibration, seg-
mentation and reduction by channel dimensions
are performed into a multi-scale feature map
before stitching. After completing feature sep-
aration, additive fusion is performed to realize
multi-scale feature fusion.

3.2.2 Feature Calibration and
Distribution Module

The highest feature level F5, which contains rich
semantic information, is not fused sufficiently and
effectively, and the top-down fusion method is rel-
atively single, so its improvement is considered. In
the proposed FCDM module, a new fusion path
is added by introducing SELayer, which enhances

the highest layer P5 layer features so that its out-
put features have stronger semantic information.
Then the lower layers P2, P3, and P4 are fused
through the Feature Fusion layer.The structure of
the Feature Fusion layer is shown in the following
Fig.3b.

In the Feature Fusion structure, Transpose
Convolution is implemented in the context fea-
tures before fusing the features to give them the
same spatial size with the target features. Since
different feature values from different layers have
different scales, batch normalization and ReLU
activation functions are performed after each layer
to normalize their scales.

Specifically, the multiscale feature aggregation
module first sends the F (Feature Fusion) layer to
the average pooling layer according to a pyramidal
downsampling rate to transform the aggregated
features into different scale spaces, which are 1,
2, 4, 8 for the nth layer (n € 2, 3, 4, 5), respec-
tively. The dimensions were then passed through
a 3 x 3 convolutional layer, batch normalization,
and ReLU activation function after each down-
sampling, respectively, in order to regenerate the
dimensions that match the original channels.

The MAE-FPN network after the above steps
outputs features as in Eq.

CZ‘ZSEi XPZ‘—FFXD(Z'), (4)

where C; is the output feature layer after
fusion redistribution, SFE; is the attention mech-
anism, F is the Feature Fusion layer multi-scale
feature aggregation processing, D(i) is the down-
sampling rate on the fusion path.

Due to our proposed MAE-FPN, the feature
mapping of each fusion path contains both seman-
tic information and feature details, and more com-
plementarities can be retained on the fusion paths,
so the fusion effect can be enhanced to obtain more
superior feature extraction performance.

3.3 Fish Segmentation and
Detection Dataset

One of the main problems of underwater image
object detection is the scarcity of data resources.
Specifically, compared with natural images, the
amount of existing publicly available and well-
labeled underwater object detection data is small,
and most of them are obtained by capturing in



Image one

Image two Mixuplmage

(b) mixup augmentation

Fig. 4 Data augmentation process. We use the above two
data augmentation means to make our constructed dataset,
with a wide variety of categories and diverse scenarios,
closer to the actual scenarios, which is more suitable for
the research of object detection algorithms.

a certain environment, and the detection cat-
egories and scenes are relatively single. There-
fore, underwater target detection algorithms often
do not have domain adaptation. Based on the
above problems, we constructed an underwater
fish object segmentation detection dataset (FSD)
based on web crawling as well as fusion of different
data enhancement means.

In order to make our proposed dataset more
representative and closer to the actual under-
water object detection environment, we use a
fusion of data enhancement means, focusing on
the enhancement of small objects.

First, Mosaic data enhancement was used to
improve the ratio of underwater small object data.
The process is shown in Fig. As can be seen from
the figure, Mosaic data enhancement takes the
four fish images on the left and randomly scales
and splices them together to obtain the new image
on the right, which increases the number of small
targets in the image, which is equivalent to learn-
ing many small objects at the same time. Many
small objects are added to the image, which is
equivalent to learning the features of the four fish
images at the same time. After enhancement, the
distribution of small targets in the data set is
more uniform, which makes the network model
more sufficiently trained on the small targets in
the images and enhances the robustness of the
network.

Many small targets are added to the images by
Mosaic data enhancement method in a random-
ized scaling and splicing manner, which enhances
the robustness of the network. However, during
the training process of fish data samples, it leads
to overfitting problem from time to time due
to limited training samples. Therefore, we use
Mixup data enhancement approach to solve the
above problem.Mixup is a data linear enhance-
ment method, the core idea of which is to ran-
domly select two images in the training sample
and mix them proportionally to generate a new
image. The computational process is as follows:

To=dmk =Ny coq) (s
g o=+ (1=Ny;
where (x; ,x; ) is the original input vector of
the two samples i,j; (y;,y; ) is the one hot labels of
the two samples. From the above equation, Mixup
data augmentation is used to generate a set of new
samples by fusing positive and negative samples to
the input vectors in the original samples through
fusion coefficients A. The new samples (Z, §) retain
the feature information of the original samples
but are not identical to them, doubling the over-
all sample information and thus expanding the
sample capacity of the dataset.

4 Experiments

4.1 Experimental data and
environment

Datasets

The experiments are based on our proposed FSD
dataset and the URPC2021 dataset, which is an
underwater optical image data for underwater
object detection, and the data are collected from
the real marine environment. The dataset contains
a total of 7600 images of underwater objects clas-
sified into four categories: scallop, spiny fish, holly
and starfish.

The FSD dataset is obtained by the method
described in Section.5ba. After data filtering, data
enhancement, data augmentation and other oper-
ations, 38 categories with a total of 6242 fish
images were finally obtained. The sample images
and corresponding numbers of some of the major
fish species are shown in Fig.5a.
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Table 1 The Dataset division strategy

Dataset Train  Valiation  Test
FSD 4370 624 1248
URPC2021 5320 938 1875
Total 9690 1562 3123

We conduct experiments based on two datasets
respectively to validate the performance of our
proposed method. The dataset divide strategy is
shown in the Table.1.

Fvaluation Metrics

The evaluation metrics are the number of param-
eters of the model (Params, millions); the compu-
tational volume of the model (FLOPs, billions);
the Average Precision (AP); and the average pre-
cision of the targets of different scales, such as
AP, (small targets, with size less than 32x32),
AP); (medium targets, with size between 32%32
and 96x96), and AP, (large targets, with size
more than 96x96).

4.2 Implement Details

To validate the effectiveness of the proposed
method, we use Pytorch as a deep learning frame-
work for network model training.The GPU is
NVIDIA RTX 3090 with 24GB memory. All object
detection networks are running based on MMDe-
tection

(b)

Fig. 5 The samples of our proposed FSD dataset. Figure (a) shows a portion of the fish names and the corresponding
numbers. Figure (b) presents the image data and the corresponding object detection, instance segmentation labelling results.

Training parameter settings: For the experi-
mental parameter settings, the optimizer we used
is stochastic gradient descent optimizer (SGD),
and the batch-size is set to 2. The initial learning
rate during the training process is set to 0.001, and
the epoch is 120, and the learning rate decreases
to 0.0004 and 0.0002 at the 40th epoch and the
80th epoch. input resolution of the image is 640 x
640, Momentum is set to 0.9, and the N value of
the MCCM module is set to 4.

4.3 Comparison Study

To demonstrate the effectiveness of the MAE-FPN
network optimisation, we conducted experiments
based on basic networks such as ResNet, YOLOv5,
Faster RCNN and compared them with state-
of-the-art detectors such as Faster R-CNNJ29],
YOLOX[8], Libra R-CNNJ[26], Spares R-CNNJ32],
FCOS[34], DiffusionDet[6], VF[1], as well as the
newest underwater detectors RoiAtt[16], Boost-
ing R-CNN[30] and SWIPENet[5], specifically
designed for underwater images.

The results of the comparison with these state-
of-the-art methods are shown in Table.2. From
this, we can conclude that our method has a
great improvement in detection accuracy com-
pared to the existing methods, and the network
structure of Faster RCNN+MAE-FPN achieves
the best performance. In addition, our MAE-
FPN structure combined with different detectors,
such as YOLO_v5 and Faster RCNN structure,



Table 2 Comparison of mAP metrics for underwater image data object detection. The best results are shown in bold.
The experimental results show that the MAE-FPN network designed in this paper combined with different detectors can
achieve improved detection performance and inference speed with significant improvement compared to existing
underwater object detectors and pre-processing object detection methods.

method backbone mAP Parameters(M) FPS
SOTA Detectors:

YOLO_V5 ResNet-50 0.406/0.421 54.2 58.4
YOLOX CSPDarkNet 0.381/0.432 60.3 54.8
Faster R-CNN ResNet-50 0.401/0.428 122.14 26.4
Faster R-CNN ResNet-101 0.414/0.441 131.6 24.5
Libra R-CNN ResNet-50 0.420/0.452 146.60 22.4
Libra R-CNN ResNet-101 0.435/0.457 164.9 19.4
Sparse R-CNN ResNet-50 0.425/0.443 212.5 16.6
DiffusionDet ResNet-50 0.428/0.453 314.4 12.2
FCOS ResNet-50 0.394/0.438 117.4 27.8
VFNet ResNet-101 0.416/0.443 141.4 23.1
Underwater Object Detector:

Boosting R-CNN ResNet-50 0.433/0.442 143.55 23.0
Boosting R-CNN ResNet-101 0.443/0.445 160.55 20.3
RoiAtt ResNet-50 0.462/0.447 183.45 18.1
RoiAtt ResNet-101 0.473/0.451 192.45 17.8
SWIPENet ResNet-50 0.451/0.449 166.7 19.3
SWIPENet ResNet-101 0.466/0.452 179.4 18.9
Ours:

MAE-YOLO_V5 ResNet-50 0.451/0.463 84.4 46.8
MAE-Faster-RCNN ResNet-50 0.466,/0.478 144.7 224
MAE-Faster-RCNN ResNet-101 0.479/0.484 164.6 20.1
Table 3 Comparison results of the number of parameters and accuracy of each feature pyramid network.

method backbone Parameters(M)  AP(%) APgs(%) APM(%) APp (%)
FPN 54.2 0.421 0.378 0.426 0.429
Nas-FPN 92.6 0.456 0.434 0.461 0.473
Aug-FPN YOLO_v5-ResNet-50 91.8 0.457 0.433 0.466 0.472
CE-FPN 89.6 0.449 0.423 0.465 0.459
MAE-FPN 84.4 0.463 0.446 0.472 0.471
FPN 73.9 0.436 0.391 0.451 0.466
Nas-FPN 113.6 0.466 0.440 0.473 0.485
Aug-FPN YOLO_v5-ResNet-101 114.5 0.465 0.451 0.476 0.468
CE-FPN 123.6 0.470 0.451 0.481 0.478
MAE-FPN 114.2 0.480 0.469 0.489 0.482

can achieve performance improvement, which also
shows the generality of our method.

In addition, we compare with improved FPN-
based structures such as Nas-FPN[9], Aug-
FPNJ[10], CE-FPN|23], etc., and conduct experi-
ments on the FSD dataset to verify in detail the

performance of our proposed MAE-FPN for object
detection at different scales.

The comparison results are shown in the
Table.3. It can be concluded that in the exper-
iments based on YOLOv5 and ResNet-50, the
average detection accuracy of MAE-FPN is 46.3%,
which is 4.1% better than the original model using



Fig. 6 The visual detection results of our proposed MAE-FPN. The first line shows the yolo_v5 detection results for the
original setup and the second line shows the detection results for our MAE-FPN structure. In comparison, our method has
stronger performance for some dense small targets, occluded targets, etc. (as shown in the circled note on the figure).

FPN. In the detection of small, medium and large
targets, the average detection accuracy of MAE-
FPN is improved over the original FPN network.
In particular, MAE-FPN has an average detection
accuracy of 44.6% for small underwater objects,
which is better than the other four detection mod-
els, and the overall performance is also better.
When ResNet-101 is used as the backbone net-
work, the APS value of small object detection
accuracy increases from 39.1% to 46.9%, which is
an improvement of 7.8%. Comparing the above
experimental results, it can be concluded that
the overall detection performance of MAE-FPN is
better than the mainstream feature pyramid net-
work model, and can be effectively used for the
detection of the same features. The tower net-
work model can effectively improve the detection
performance of small fish objects.

4.4 Ablation Study

To verify the effectiveness of the different modules,
we also set up ablation experiments to test the
multi-scale convolutional calibration module as
well as the feature clustering distribution module.
The benchmark model chosen for the experiment
is YOLOVvV5, the backbone network is ResNet-50,
and the dataset used is the validation set of the
FSD dataset. The dataset used is the validation
set of the FSD dataset.

Our ablation experiments are set up as follows:
the first row uses only the original FPN model; the
second row uses only the MCCM module to inves-
tigate the effect of the multi-scale convolutional
calibration module on the detection performance.
The third row uses only the FCDM module to

10

-0 >

investigate the effect of augmenting the P5 level
features and the distribution of feature aggre-
gation. The fourth row uses both modules. The
results of the ablation experiments are shown in
Table.4.

From the Table.4, we can see that after using
the MCCM module, the detection accuracy of the
detection model as a whole, as well as the detec-
tion accuracy of small, medium and large targets
are improved, and the proportion of improve-
ment in the detection accuracy of small targets is
the highest. After using the FCDM module, the
detection performance of small objects is mainly
improved, and the value of APS is increased from
31.2% to 33.1%, which is 1.9%.

In addition, in order to select the best N
value in MCCM module to get better small object
detection effect, this paper conducts a compari-
son experiment under different N values, and the
results are shown in Table 5.

From Table.5, it can be seen that as the
value of N increases, the overall average detection
accuracy of MAE-FPN shows a tendency to first
increase and then decrease, and the average accu-
racy of MAE-FPN reaches the highest when the
value of N is 4 or 5. Considering the number of
model parameters, the computational volume and
the target detection accuracy at each scale, in this
chapter, the N value of the MCCM module is set
to 4, which means that the detection field areas
are 1x1, 3x3, 5x5, 7x7 and 9x9.

4.5 Discussions

For our proposed MAE-FPN network architec-
ture, we conduct experiments on the publicly



Table 4 Detection average precision of ablation study. MCCM represents Multi-scale Convolutional Calibration Module
and FCDM represents Feature Calibration and Distribution Module.

method backbone  AP(%) APgs(%) APyn(%) APL(%)
FPN ResNet-50  0.421 0.378 0.426 0.429
FPN+MCCM ResNet-50  0.442 0.426 0.458 0.442
FPN+FCDM ResNet-50  0.435 0.419 0.455 0.431
FPN+MCCM+FCDM  ResNet-50 0.463 0.446 0.472 0.471

Table 5 N comparison results. According to the results, the optimum performance is achieved when the value of N is

taken as 4.
N Parameters FLOPS AP(%) APs(%) AP.m(%) APL(%)
1 41.3 226.7 0.445 0.431 0.468 0.436
2 43.8 279.6 0.449 0.435 0.472 0.440
3 46.4 327.5 0.456 0.442 0.472 0.454
4 49.0 378.2 0.463 0.446 0.472 0471
) 52.1 428.6 0.460 0.439 0.474 0.467
6 54.9 472.5 0.459 0.441 0.470 0.466

available URPC dataset and our own proposed
FSD dataset, respectively, to fully validate the
model performance.

Through comparative experiments, our model
outperforms existing target detection networks
on the URPC and FSD datasets. Meanwhile, by
comparing with the existing improved FPN-based
structure, our model has improved in terms of
algorithmic accuracy as well as model computa-
tional complexity.

We also conduct ablation experiments to grad-
ually validate the modular performance of the
proposed MCCM and FCDM. Through the exper-
imental results, it is found that compared with
MCCM, FCDM has more obvious improvement
for the model, which is due to the fact that the
FCDM module enhances the features of the high-
est P5 layer and then enhances the features of
each fusion path, which makes the semantic infor-
mation of the feature maps of each layer comple-
mentary, and is more conducive to the detection
of small targets. The fusion of MCCM and FCDM
results in a more obvious model improvement,
especially for the detection of small underwater
targets, which demonstrates the effectiveness of
our scheme.

Finally, we also compare the N-value of the
convolution group in the MCCM module, and
when model complexity and performance are con-
sidered together, the performance of MCCM is
optimal when the N-value is 4.
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5 Conclusion

In this paper, we propose a new underwater image
target detection network, MAE-FPN, which is a
model that solves the problem of poor perfor-
mance of existing methods for recognizing small
underwater targets by fusing the high-level feature
information more efficiently and then distributing
the outputs in order to fuse the multi-scale infor-
mation more adequately. Then, in order to solve
the problem of scarce data resources for underwa-
ter image target detection, we constructed a richly
varied and well-labeled fish segmentation detec-
tion dataset FSD, and at the same time, in the
process of construction, we fused a variety of data
enhancement means to expand the proportion of
small samples and difficult-to-detect samples, and
further enriched the sample information on the
basis of the original sample features, which made
the dataset diversified. Our method is validated on
the public dataset as well as the FSD dataset, and
the experimental results prove that our method
achieves good performance in terms of speed as
well as accuracy, and outperforms the existing
FPN and its improved structure.
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