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Abstract
In the realm of healthcare, the continuous evolution of monitoring systems demands innovative
solutions to ensure heightened reliability and accuracy. This paper introduces a pioneering approach to
healthcare monitoring through a hybrid deep learning model that combines the advantages of recurrent
neural networks (RNN) and deep neural networks (DNN). Focused on enhancing connectivity in Software
De�ned Networking (SDN), our framework places a signi�cant emphasis on anomaly detection for
improved predictive accuracy. The proposed Hybrid Deep Learning model is meticulously designed to
harness the complementary features of DNN and RNN, enabling the system to capture both spatial and
temporal dependencies in healthcare data. This integration enhances the precision of anomaly detection,
allowing for the identi�cation of subtle deviations from normal patterns with unprecedented accuracy.
Key to our methodology is the adaptability of Software De�ned Networking, providing a �exible and
programmable infrastructure. The Hybrid Deep Learning model operates seamlessly within this SDN
framework, dynamically optimizing resource allocation and tra�c patterns to accommodate the unique
demands of healthcare monitoring. Through extensive experimentation and validation, our framework
demonstrates remarkable predictive accuracy in identifying anomalies within healthcare data streams.
Comparative analyses against traditional anomaly detection methods underscore the superiority of our
approach, showcasing its e�cacy in real-world healthcare scenarios. In conclusion, our research
contributes to the advancement of healthcare monitoring by introducing a Hybrid Deep Learning model,
combining DNN and RNN architectures, within the context of Software De�ned Networking. The achieved
high prediction accuracy in anomaly detection signi�es a signi�cant leap forward in the reliability and
precision of healthcare monitoring systems, paving the way for more robust and responsive healthcare
networks.

1. Introduction
SDNs have been widely used in a variety of �elds in recent years, primarily as a result of their bene�ts as
dependable network technologies that enable controlling and dividing the control and data planes in
order to manage a network. Compared to traditional networks, where the network only has application
awareness, the SDN architecture provides more information about the state of the entire network, from
the controller to its applications. Technological developments are bringing about a radical change in the
healthcare landscape, with a special emphasis on the creation of reliable monitoring systems. This work
explores the core of this development, introducing a novel method of healthcare monitoring within the
framework of Software De�ned Networking (SDN). In order to advance anomaly detection and improve
connectivity in healthcare networks, we present a Hybrid Deep Learning model that combines the
strengths of Recurrent Neural Networks (RNN) and Deep Neural Networks (DNN).

More than ever, the need for accurate and dependable healthcare monitoring systems is essential as
medical professionals look for real-time insights to make prompt interventions. This need is met by
incorporating a hybrid deep learning model, which makes use of the temporal and spatial dependencies
present in healthcare data to enable more accurate and nuanced anomaly detection. Our model is
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integrated into the programmable and adaptable Software De�ned Networking framework, allowing it to
dynamically adjust to the constantly changing needs of healthcare environments. In addition to
enhancing anomaly detection capabilities, the combination of hybrid deep learning and SDN optimizes
resource allocation and tra�c patterns to guarantee responsive and effective connectivity. The paper
explains the nuances of our Hybrid Deep Learning model as we go through this exploration, highlighting
its adaptability and its signi�cance in changing the paradigms of healthcare monitoring. The architecture
and methodology are covered in detail in the following sections, which also demonstrate how this
creative solution advances healthcare connectivity. We establish the superior predictive accuracy of our
model through comparative analyses and empirical validations, thereby con�rming its transformative
role in the healthcare monitoring domain. "Advancing Healthcare Monitoring: Anomaly Detection through
Hybrid Deep Learning for Enhanced Connectivity in Software De�ned Networking" summarizes a
technological revolution in the healthcare industry. Combining cutting-edge deep learning methods with
SDN's adaptable structure not only increases anomaly detection accuracy but also sets the stage for a
time when precision, responsiveness, and �exibility will be synonymous with healthcare monitoring.

The research contribution of the proposed framework is listed below

The proposed work explored the e�ciency of employing a hybrid deep learning model to analyze
and detect the anomalies in the network.

The literature survey of anomaly detection and SDN provides the brief understanding for
implementing the anomaly detection through hybrid deep learning model in SDN.

The approach model incorporates with DNN and LSTM which provides additional strength to
improve the overall performance

The proposed model contributes the Healthcare professionals can detect possible health problems
or security breaches in real time with the aid of hybrid deep learning anomaly detection.

The rest of the article is organized as follows: the section 2 presents the literature survey of anomaly
detection in SDN. The section 3 provides the proposed architecture of the hybrid deep learning system,
the section 4 gives the experimental setup and results of the system. The result and discussion are
discussed in section 5 and the conclusion of the article is provided in section 6.

2. Literature Review
Aiguo et.al (Chen et al., 2022) proposed a model with Machine learning and deep learning methods
which improves network behavior anomaly detection (NBAD), but existing methods are in�exible and
low-accuracy. An e�cient NBAD algorithm based on deep belief networks and long short-term memory
networks is proposed. This method extracts features automatically, reduces data dimension, and uses a
light-structure LSTM network for classi�cation. Ismal et.al (Valdovinos et al., 2021) This paper surveys
DDoS detection and mitigation strategies in SDN, analysing existing approaches like statistical,
architecture, and machine learning, and emerging ones like network function virtualization, blockchain,
honeynet, and moving target defence. Mazin (Alshamrani, 2022) evaluates the study of RHM services
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technologies and systems, analysing monitoring applications using various IoT-based sensors,
highlighting limitations and suggesting potential opportunities in this research area. Kashif et.al (Qureshi
et al., 2021) proposed an anomaly detection system for SDN and edge computing networks, and a
Trusted Authority for Edge Computing (TA-Edge) to ensure edge devices' trust for data forwarding. The
model veri�es certi�cates once, overcoming edge device overhead. Simulation results show improved
performance.

Erhan et.al (Erhan et al., 2021) provides the review on anomaly detection which is a challenging problem
requiring computing-energy accuracy trade-offs. Methods range from conventional to data-driven, and
architectural environments impact sensors ecosystem. The review highlights promising intelligent-
sensing methods and open issues. Bizhu et.al (Wang et al., 2018) introduced a Localized Evolving Semi-
supervised Learning Based Anomaly detection scheme (LESLA) for wireless mMTC devices, combining
o�ine training and online testing. It employs semi-supervised learning and contrastive probabilistic
likelihood estimation for self-evolving anomaly detection, demonstrating its e�ciency and advantages.
Balaram et.al (Sharma et al., 2020) proposed approach uses LSTM-based Autoencoder to model user
behavior and identify anomalous data points. It calculates reconstruction errors and de�nes thresholds
to separate outliers from normal data points. The CERT insider threat dataset is used for research. The
model produces high reconstruction errors for unseen behavior or anomaly patterns, with experimental
results showing an accuracy of 90.17%, 91.03%, and 9.84%.

Elsayed (Said Elsayed et al., 2020) used Long Short Term Memory (LSTM) autoencoder and one-class
Support Vector Machine (OC-SVM) is proposed to detect anomalies-based attacks in unbalanced
datasets. The model learns normal tra�c patterns and compressed input data, overcoming the
limitations of separate OC-SVM. Experiments show higher detection rates and reduced processing time,
enhancing security in SDN environments. Bizhu et.al (Wang et al., 2021) proposed a localized ADS
scheme called scalable and energy-e�cient anomaly detection scheme (SEEADS), which consists of
detection activation, lightweight prediction, heavyweight detection, and dynamic strategy selection
modules. The scheme reduces energy consumption and shows higher sensitivity on abnormal packets,
compared to literature work, and utilizes feedback from previous heavyweight activation and
predetection indications. Syed et.al (Shah et al., 2021) explored the use of MEC and network slicing in 5G
service-focused use cases, focusing on cloud-native 5G core changes, MEC use cases, cloud-native
micro services architecture, E2E network slicing advances, and open research issues.

Wajid et.al (Ra�que et al., 2020) explored the use of Software-De�ned Internet of Things (SDIoT)
orchestration using Edge (SDIoT-Edge) in managing complex IoT systems. It discusses key requirements,
standardization efforts, case studies, performance parameters, security vulnerabilities, attack
possibilities, lessons learned, and future research directions for e�cient IoT service provision in the
SDIoT-Edge paradigm. Samrat and RahmanClick or tap here to enter text. Dey and Rahman proposed a
network intrusion detection system using Gated Recurrent Unit Long Short Term Memory (GRU-LSTM)
and ANOVA F-Test and Recursive feature elimination methods. Tested on NSL-KDD, it achieves 87%
accuracy and shows potential for �ow-based anomaly detection in OpenFlow controllers. Qaisar et.al
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(Sha� et al., 2018) introduced a fog-assisted intrusion detection/prevention system (IDPS) for IoT
networks, utilizing fog computational arrangement for real-time attack identi�cation and threat
neutralization using SDN control.

Malik et.al (Malik et al., 2020) proposed a control plane-based orchestration for sophisticated threats
using a hybrid Cuda-enabled DL-driven architecture. This method uses long short-term memory and
Convolutional Neural Network for e�cient detection. The mechanism outperforms other hybrid DL
architectures and benchmark algorithms, with unbiased results after 10-fold cross validation. Majd and
Toker (Latah & Toker, 2019) explored a recent AI integration in Smart Data Networks (SDN) through three
main sub-�elds: machine learning, meta-heuristics, and fuzzy inference systems, examining their
application areas and potential improvements. Rajat and Neeraj (Chaudhary & Kumar, 2019) proposed
LOADS scheme on Mininet emulator reduces average execution time by 6.74% and 20.64% compared to
existing schemes, DHA and Elastic Distributed Controller. It also improves migration cost and response
time, with a migration cost of 55.1 milliseconds and a response time of 32.8 milliseconds.

Laila et.al (Halman &Alenazi, 2023) The study proposes a machine learning-based cyberattack detector
(MCAD) for healthcare systems, utilizing a layer three learning switch application to collect tra�c and
deploy it on the Ryu controller. The MCAD shows high reliability and performance, achieving an F1-score
of 0.9998 and 0.9882 on normal and attack classes. It also improves network KPIs by increasing
throughput by 609% and decreasing delay and jitter. Panagiotis et.al(Radoglou-Grammatikis et al., 2022)
This article examines the IEC 60 870-5-104 protocol in industrial healthcare systems. It provides a
quantitative threat model and introduces an intrusion detection and prevention system (IDPS) that uses
machine learning and software de�ned networking technologies to detect and mitigate cyberattacks.
The IDPS achieves detection accuracy of 0.831 and F1 score of 0.8258, and mitigation accuracy of
0.923. Rohit and Agrawal (Kumar & Agrawal, 2024) explored surveillance in various areas, providing
readers with a better understanding of SDN-based surveillance and addressing open research problems
and related challenges. Nirav and Sudhir (Raja &Vegad, 2023) examines 50 probe papers on tra�c �ow
rate prediction-based anomaly detection in software-de�ned networking (SDN). It presents technique-
wise classi�cations, including �ow counting, information theory, entropy, deep learning, hybrid methods,
and network methods. The limitations of these techniques are discussed.

Azka and Revathi (Wani & Revathi, 2020) discussed DDoS attacks in IoT and introduces a �exible SDN-
based method for detecting and mitigating them. It suggests extending the test to larger attacks and
implementing DDoS prevention in IoT networks and a strict authentication mechanism. Azka et.al (Wani
& Revathi, 2020) proposed phSDN prototype, which supports body temperature, pulse rate, and blood
pressure, offers programmability over services, enabling uni�ed control over enddevices. Experiments
show it minimizes network response time and scalability, compared to fog and cloud-based approaches.
Francesco et.al (Restuccia et al., 2018) presented a taxonomy and survey of IoT security research,
highlighting the need for a secure-by-design approach to address existing and next-generation IoT
security threats, emphasizing the importance of machine learning and software-de�ned networking.
Shahbaz et.al (Siddiqui et al., 2022) published studies on SDN-based frameworks for IoT management



Page 6/30

issues, focusing on fault tolerance, energy management, scalability, load balancing, and security service
provisioning. It provides a systematic literature review of studies from 2010–2022, categorizing existing
frameworks into network function virtualization, middleware, OpenFlow adaptation, and blockchain-
based management. It highlights challenges and promising opportunities for future research. Uakomba
et.al (Uhongora et al., n.d.) presented recent developments in cyber security for SDN-based space
systems reveal vulnerabilities and threats, discussed the potential of DL-based IDS for threat detection,
and identify research gaps and future directions.

3. Proposed Methodology
Relying on the aforementioned discussion in section 2, the proposed novel model called Hybrid Deep
learning model to detect and identify anomaly detection in healthcare. This mechanism is incorporated
with two model such as DNN and LSTM. The architecture of Hybrid deep learning mechanism depicted
in Fig. 1 with the algorithm as presented in Algorithm 1.

3.1 Dataset Collection
Both nearby patients on the hospital's grounds and distant patients (those with Wi-Fi or Cellular Network)
were considered by the model. The backend system gateway is the patient's smartphone. The Body Area
Network (BAN), which each patient's BAN is connected to via a smartphone, views all of the patient's
sensors as nodes. The SDN platform manages these gateways, which could number in the hundreds or
even thousands, by dispersing different security rules from speci�c SDN controllers. After collecting the
data, it takes feature engineering process and by the hybrid deep learning model which identi�es and
detects the anomaly detection as depicted in Fig. 1.

3.2 Data Pre-Processing
Collecting the information from relevant sources, including databases, logs, and sensors. Make sure the
data includes both typical and unusual occurrences in order to properly train and assess the model.
Address noise, outliers, and missing values in the data. You can either drop rows or columns with
missing values or impute missing values using methods like mean, median, and mode imputation,
depending on how serious the missing data is. It is possible to recognize and handle outliers and noise
using statistical techniques or domain expertise.Determine which features are most important for
anomaly detection. This could entail feature importance techniques, exploratory data analysis (EDA), or
domain knowledge. Choose or design features that encapsulate the fundamental patterns and traits of
both typical and atypical behaviours.

3.3 Feature Engineering
Feature engineering is the process of turning raw data into features suitable for machine learning
models. Put another way, it's the process of determining, extracting, and altering the most relevant
features from the available data so that machine learning models can be built with greater accuracy and
e�ciency. The performance of machine learning models is highly dependent on the features that are



Page 7/30

used to train them. "Feature engineering" is a set of techniques that let us combine or alter existing
features to produce new ones. These techniques help to increase the machine learning model's capacity
to derive knowledge from the data by highlighting the most important patterns and connections in the
data.

By ensuring that the data is correct, consistent, and clean, these procedures try to set up the dataset for
e�cient analysis and model training. Developing a strong set of features that can raise the predictive
models' generalizability and accuracy is the aim of feature engineering. The model's capacity can be
improved to identify signi�cant patterns and insights by converting the unstructured data into a more
readable and organized format.

The methodical preparation of the dataset is ensured by this methodology, which is essential for
developing dependable and successful predictive models.

3.4 Model Structure

3.4.1 DNN, RNN and LSTM
Through the use of machine learning techniques, such as Deep Neural Networks (DNNs), computers can
be trained to perform tasks that would be extremely challenging to accomplish with traditional
programming methods. The human brain and its processes served as an inspiration for neural network
algorithms. Just like our minds, neural networks are programmed to operate not just by adhering to a
predetermined set of rules but also by forecasting outcomes and making inferences from past iterations
and experiences.

Multiple layers of nodes make up a neural network; these layers receive input from other layers and
generate outputs until a �nal result is achieved. Any number of hidden layers can exist in neural
networks; the complexity increases with the number of node layers. The following are various neural
network architectures: 1. Traditional neural network which comprised with 2 or 3 hidden layers whereas
the neural network can have up to 150 hidden layers.

Input Layer

The input layer gets the data's input features, X.Assume that X is an input matrix with size m×n, where n
denotes the number of features and m is the number of examples.

Hidden Layers

A weighted sum of inputs that have been run through an activation function determines the output of
each neuron in a hidden layer.

Let X[l] = W[l]. Z [l-1] + b[l]

Where,
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X[l]presents the weighted sum of input to layers l

Z [l-1]presents the output of the previous layers and b[l]represents the bias vector of the layer.

The activation function g[l] introduces the non-linearity into the network.

A[l] = g[l](X[l])

Output Layer

The network's �nal predictions or outputs are generated by the output layer. The weighted sum of the
inputs to the output layer should be represented by X[L].

Let

X[L] = W[L]. Z [L-1] + b[L]

The task determines which activation function is used in the output layer: For regression tasks, one may
use a linear activation function. Binary classi�cation tasks represent one potential use case for sigmoid
activation functions. Multi-class classi�cation tasks are one scenario in which a SoftMax activation
function might be used.

Training

The network's parameters, or weights and biases, are iteratively updated during training in order to
minimize a predetermined loss function. The difference between the expected outputs and the actual
targets is measured by the loss function

J = Loss (Y, Y’)

For classi�cation tasks, cross-entropy loss is a common loss function, and mean squared error (MSE) is
used for regression tasks. Gradient descent and other optimization algorithms are used to update the
parameters:

W[l] = W[l]- 

b[l] = b[l]- 

α is the learning rate and  and  are the gradients and loss function respectively with respect to

parameters.

Activation Function: The sigmoid, tanh, ReLU (Recti�ed Linear Unit), and softmax are examples of
common activation functions. They give the network non-linearities, which enable it to discover intricate
patterns and connections in the data. Natural language processing and image recognition are just two of

∝. δJ

δw[l]

∝. δJ

δb[l]

δJ

δw[l]

δJ

δb[l]
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the many �elds that use DNNs because they are strong models that can learn intricate representations
from data.

DNN is a straightforward algorithm for a single-layered as depicted in Fig. 2. This DNN predicts output Y
using input features X. The algorithm uses both backpropagation—which involves adjusting weights
based on error—and forward propagation, which involves computing output.
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Algorithm 1: Training a Deep Neural Network for Anomaly Detection

1. Initialization:

Initialize the weights W1 and W2 randomly

Initialize biases b1 and b2 to 0

Choose activation function for hidden layers gn1 and op2 for output layer

2. Forward Propagation

Compute the activation Function

Z1 = W1X + b1

A1 = g1(Z1)

Compute the activation function for output layer

Z2 = W2 A1 + b2

Y` = A2 = g2 (Z2)

3. Compute Loss:

Determine the difference between the expected Y and actual outputs, Y`, by

applying a suitable loss function.

4. Back Propagation

Determine the gradient of the loss in relation to the activation of the output layer:

Determine the gradient of the loss in relation to the output layer's weights and biases.

Determine the gradient of the loss in relation to the activation of the hidden layer:

Determine the gradient of the loss in relation to the hidden layer's weights and biases.

5. Updating the parameters

Change both layers' weights and biases with an optimization algorithm (such as gradient descent):

dZ
2 = ∂loss∂Z2

dW2 = , db2 =∂Loss∂W2 ∂Loss∂b2

dA
1 = , dZ1 =∂Loss∂A1 ∂Loss∂Z1

dW1 = , db1 =∂Loss∂W1 ∂Loss∂b1
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Algorithm 1: Training a Deep Neural Network for Anomaly Detection

W1 = W1 - α. dW1

b1 = b1 – α. db1

W2 = W2 – α. dW2

b2 = b2 – α. db2

6. Repeat

Repeat steps 2 to 5 for the speci�ed number of epochs or until convergence.

End

A DNN is an effective algorithm that can identify and simulate complex patterns in sizable and
multifaceted datasets. Because of its multilayered architecture and non-linear transformations, it can
perform a wide range of machine learning tasks with high levels of accuracy and generalization.

3.4.2 RNN and LSTM
A type of neural network called a recurrent neural network (RNN) uses the output from the preceding
step as the input for the current step as presented in Fig. 3. All of the inputs and outputs in conventional
neural networks are independent of one another. However, in situations where it is necessary to guess
the following word in a sentence, the preceding words are necessary, so it is necessary to retain the
preceding words. Thus, RNN was created, and it used a Hidden Layer to solve this problem. The Hidden
state of an RNN, which retains certain information about a sequence, is its primary and most signi�cant
feature. Because the state retains memory of the previous input to the network, it is also known as
Memory State. In order to produce the output, it executes the same task on all inputs or hidden layers
using the same parameters for each input. In contrast to other neural networks, this lowers the
complexity of the parameters.RNNs are able to retain a memory of previous inputs because of their
directed cycle connections, which set them apart from feedforward neural networks, which process data
in a single pass. For tasks like language modelling, sequence generation, and time series prediction, they
are therefore highly suited.The computation in an RNN at every time step can be expressed
mathematically as follows:

Given the input sequence x = (x1, x2, x3, x4, …… xt) The hidden state ht at time step t is calculated as

follows, where xt denotes the input at time step t and ht−1 denotes the hidden state from the previous
time step.

ht= f (Whht-1 + Wxxt + b)

where, the weight matrix Wh links the most recent time step's hidden state compared to the previous
time step's hidden state. Wx is the weight matrix that connects the input at each time step to the hidden
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state that is currently in effect. A bias vector, b, is present. Typically, the activation function, represented
by f, is a non-linear function, such as the hyperbolic tangent (tanh) or the recti�ed linear unit (ReLU). The
current hidden state can then be used to calculate the output yt at each time step:

yt = g (Wy ht + C)

where the weight matrix that links the hidden state to the output is denoted by Wy.

There is a bias vector, C. The output activation function, g, varies depending on the type of task (linear
activation for regression, softmax for classi�cation, etc.).

Using methods like backpropagation through time (BPTT), where the gradients are computed with
respect to the entire sequence, the parameters Wh, Wx, Wy, b, and c are learned during training. Although
RNNs are excellent at capturing temporal dependencies, they have a problem with learning long-term
dependencies due to the vanishing gradient problem, in which gradients get very small over lengthy
sequences. Because of this restriction, more advanced RNN variations including Long Short-Term
Memory (LSTM) and GRUs, or recurring units, have mechanisms built in to more effectively capture long-
range dependencies.

3.4.3 LSTM:
A popular recurrent neural network (RNN) architecture in deep learning is called LSTM (Long Short-Term
Memory). It is excellent at identifying long-term dependencies, which makes sequence prediction tasks a
perfect �t for it. Because LSTM has feedback connections, as opposed to traditional neural networks, it
can process entire data sequences as opposed to just single data points. Because of this, it is very good
at identifying and forecasting patterns in sequential data, such as time series, text, and speech.

The �rst section determines whether the data from the preceding timestamp should be stored in
memory or if it is unimportant and can be ignored. The cell attempts to learn new information from the
input to this cell in the second section. Finally, the cell transfers the updated data from the current
timestamp to the subsequent timestamp in the third section. A single-time step is this single LSTM
cycle.The terms "gates" refer to these three components of an LSTM unit. They regulate the information
that enters and exits the memory cell, also known as the LSM cell. The output gate is the �nal gate; the
forget gate is the �rst; the input gate is the second; and so on. An LSTM unit composed of these three
gates and a memory cell, also called an LSTM cell, can be thought of as a layer of neurons in a
conventional feedforward neural network, where each neuron has a hidden layer and a current state.

An LSTM has a hidden state, just like a basic RNN, where h(t-1) is the hidden state of the timestamp that
was previously recorded, and ht is the hidden state of the timestamp that is currently recorded.
Furthermore, the cell state of an LSTM is denoted by C(ct-1) for the past timestamp and C(ct) for the
present timestamp, respectively. In this case, long-term memory refers to the cell state and short-term
memory to the hidden state as depicted in Fig. 4
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To regulate the information �ow inside the memory cell, LSTMs use gating mechanisms. An LSTM has
three primary gates: The forget gate (Fgt) decides which data from the cell state should be deleted. The
input gate (Igt) decides what fresh data should be added to the cell state. The output gate (Ogt) selects
which data from the cell state to output. The memory of the LSTM network is called the cell state. It can
carry information across many time steps without much degradation because it runs linearly through the
entire sequence with only minor linear interactions. Information enters and exits the cell state under the
control of the gates. The computations within an LSTM cell can be described as follows:

3.4.4 Hybrid Deep Learning
To e�ciently identify anomalies in complicated data, hybrid deep learning approaches in anomaly
detection combine the advantages of deep learning architectures with RNN and LSTM deep learning
techniques. These hybrid strategies seek to combine the interpretability and �exibility of conventional
techniques with the representational power of deep learning models. The following is an approach to
hybrid deep learning in anomaly detection:

Preprocessing procedures and feature engineering techniques can be used to extract pertinent features
and get the data ready for modelling before feeding it into deep learning models. This could include
coding categorical variables, scaling features, handling missing values, and producing derived features.
Since they can handle sequential data, RNNs and LSTMs are useful for modelling time-series and
sequential data with potential anomalies that could appear over time. These networks can detect
anomalies that appear as departures from expected patterns because they can capture temporal
dependencies in the data.

Feature Learning: The need for human feature engineering is reduced because RNNs and LSTMs can
automatically extract informative features from sequential data. This is especially useful for tasks
involving anomaly detection, where the underlying patterns might be intricate and challenging to identify
with manually created features. Recurrent Connection: Because of their recurrent connections, RNNs and
LSTMs are able to retain information over time and identify long-range dependencies in the data. This
feature is useful for identifying anomalies that show subtle temporal patterns or span several time steps.

fgt = σ (Wf . [ht−1,xt] + bf)

igt = σ (Wi. [ht−1,xt] + bi)

C
∼
ct = tanh (WC. [ht−1,xt] + bc)

Cct = ft.Cct−1 + it.C
∼
ct

Ot = σ (Wo. [ht−1,xt] + bo)

ht = Ot. tanh(Cct)
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Model Training: Depending on the availability of labeled anomaly data, RNNs and LSTMs can be trained
using a variety of methods, such as supervised, semi-supervised, and unsupervised learning approaches.
Anomaly detection frequently employs unsupervised or semi-supervised training, wherein the model
gains the ability to distinguish between typical and abnormal sequences without the need for explicit
labels. Reconstruction Error: In anomaly detection using RNNs and LSTMs, anomalies are often
identi�ed based on the reconstruction error—the difference between the input sequence and its
reconstructed counterpart generated by the model. Anomalies typically result in higher reconstruction
errors, signaling deviations from normal behaviour.

Threshold

After training, the reconstruction errors of input sequences are compared to a predetermined threshold,
allowing the RNN or LSTM model to identify anomalies. Anomalies are identi�ed as sequences with
reconstruction errors greater than the threshold. As an alternative, anomaly detection can be
conceptualized as a binary classi�cation task, in which the model is trained to identify normal and
anomalous sequences based on reconstruction errors.

Model interpretation

Although LSTMs and RNNs have strong anomaly detection capabilities, their intricate internal
representations and complicated architectures can make it di�cult to understand the decisions these
models make. Strategies like layer-wise relevance propagation (LRP) and attention mechanisms can be
used to pinpoint the features that support anomaly detection and offer insights into the model's
decision-making process.
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Algorithm 2: Hybrid Deep Learning Model for Anomaly Detection

1. Input:

• X – Sequential input data

• T – time series length

• K - number of features

• Epsilon – threshold for anomaly detection

2. Preprocessing

• Normalize the input data X if necessary

3. Training Phase

• To extract features from the input sequence, train a DNN model.

• Using the features that were extracted from the DNN, train an LSTM model to predict the following
data point in the sequence.

• Adjust both models' hyperparameters with a validation set.

• Keep the learned models for deduction.

4. Inference Phase

For each time step t from n + 1 to T

• Extracted_feature = DNNmodel predict (X[t-n : t-1])

• Predicted_output_lstm = lstmmodel predict (extracted_feature)

• Reconstruction_error_LSTM = norm(X[t] – predicted_output_lstm)

IfReconstruction_error_LSTM > epsilon:

Flag anomaly at time step t

5. Output

• Anomaly detected in the input

The proposed methodology introduces a Hybrid Deep Learning model for anomaly detection in
healthcare, combining Deep Neural Networks (DNN) and Long Short-Term Memory (LSTM) networks.
The model processes data from both on-site and remote patients, with smartphones serving as
gateways for sensor data within the Body Area Network (BAN). The Software-De�ned Networking (SDN)
platform manages these gateways by applying security rules from SDN controllers.

Data pre-processing involves collecting information from various sources, handling noise, outliers, and
missing values, and performing feature engineering to prepare the data for modeling. The DNN extracts
features from the input sequence, and the LSTM predicts the next data point, identifying anomalies
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based on reconstruction errors that exceed a prede�ned threshold. The combination of DNN and LSTM
enhances the model's ability to detect complex anomalies in healthcare data.

4 Experimental Setup
Regardless of the particular algorithm used for the automatic detection of anomaly, our goal in the �rst
setting is to differentiate between anomaly-based and non-anomaly activities using hybrid deep learning
model. For the experimental analysis, Keras was utilized in conjunction with TensorFlow. To run the
experiment on Windows 11, the TensorFlow with GPU is enabled, which accelerates gradient descent
computations for deep learning architectures, as well as an Intel Core i7 processor with 3.00 GHz and 16
GB of RAM. The training model's batch size was set to 64 and the embedding vector to 128 through
constant parameter optimization and modi�cation during the experiments.

4.1 Measuring the performance of Hybrid Deep learning
model for anomaly detection
The entire dataset is split into an 80:20 ratio after the pre-processed stage is �nished, with 80% of the
data going toward training and the remaining 20% going toward testing.A confusion matrix is a helpful
tool in deep learning that can be used to assess a classi�cation model's performance. The Table 1 is
frequently used to show how well a classi�cation model performs when applied to a set of test data
whose true values are known. This is how it operates:When the model accurately predicts the positive
class, these are known as True Positives (TP).When the model accurately predicts the negative class,
these are known as True Negatives (TN).False Positives (FP): These are situations in which the model
predicts the positive class incorrectly—that is, it interprets the data as positive when it is, in fact, negative
which is also known as Type I error.False Negatives (FN) are situations in which the model predicts the
negative class incorrectly—that is, it predicts a positive class when it is actually negative which is also
known as Type II error.

 
Table 1

Confusion Matrix of TP, TN, FP and FN
Predicted Data   Actual Data

  Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Typically, a confusion matrix has square dimensions, which correspond to the number of classes that are
being predicted. It's a 2×2 matrix for binary classi�cation purposes. An N×N matrix is used for multi-
class classi�cation, where N is the number of classes. Numerous performance metrics, including
accuracy, precision, recall (sensitivity), speci�city, F1-score, and others, can be computed from the
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confusion matrix. These metrics offer information about the model's performance and potential error
areas. The following typical metrics are obtained from a confusion matrix:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP).

Sensitivity of Recall = TP / (TP + FN)

Speci�city = TN / (TN + FP)

F1-score: 2 * (Recall * Precision) / (Recall + Precision)

These metrics aid in identifying the model's advantages and disadvantages and can direct modi�cations
to the training procedure or the choice of models.

Reconstruction error is the difference between input data and output after an autoencoder model, which
compresses the input data into a lower-dimensional latent space. Autoencoders learn to reconstruct
input data with minimal loss during training, but when presented with anomalous data, the
reconstruction process may result in higher errors, indicating potential anomalies. A threshold is often
set for anomaly detection, and data points exceeding this threshold are �agged as anomalies, indicating
signi�cant differences from the training data. Anomaly detection uses reconstruction error and
frequency to identify unusual patterns or outliers in data sets. Reconstruction error refers to the
difference between input data and output after passing through an auto encoder model as depicted in
Fig. 5. A higher error indicates signi�cant deviation from the learned patterns. A threshold is set for
reconstruction error, and data with errors exceeding this threshold are �agged as anomalies. Frequency
refers to the occurrence rate of a particular pattern or event within a dataset or time series. Anomalies
are rare or infrequent occurrences that deviate signi�cantly from the norm.

Outliers or anomalies in the data that actually deviate from the norm are called true anomalies. The
hybrid deep learning model aims to accurately identify these genuine anomalies through the use of its
sophisticated architecture and learning capabilities. In the context of hybrid deep learning models,
"detected anomalies" refers to situations in which the model has found patterns or data points within a
dataset that substantially differ from the average. Usually, the model's output which could take the shape
of probabilities, labels, or anomaly scores for every data point is used to identify these anomalies. The
categorized true and detected anomalies in dataset are represented in Fig. 6.

The interpretation of confusion matrix of DNN, LSTM and Hybrid deep learning model is represented in
Fig. 7, Fig. 8 and Fig. 9. A common tool for assessing how well classi�cation models work is a confusion
matrix, which summarizes the counts of true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) predictions. The predicted class labels are represented by each column in the
confusion matrix, while the actual class labels are represented by each row. This section will examine the
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interpretation of confusion matrices for three distinct model types: hybrid models that combine both
DNNs and LSTMs, Long Short-Term Memory (LSTM) networks, and Deep Neural Networks (DNNs).

 
Table 2

Performance comparison of proposed algorithm
Models Accuracy Precision Recall F1*score

CNN 94 93 98 95

RNN 96 98 97 97

DNN 95 97 96 97

LSTM 97 99 97 98

Hybrid Model 100 97 98 98

In order to evaluate the models' performance, this article has also used a 10-fold cross-validation
strategy over the training set. There are ten folds produced using the training set. Ten iterations of this
process are performed, once for each fold's validation. Ultimately, averaging all the metrics over
validation folds yields a more accurate evaluation of the performance. The proposed model was
compared with four models like CNN, RNN, DNN and LSTM as presented in Table 2. The models of CNN,
RNN, DNN and LSTM has reached the accuracy of 94%, 96%, 95% and 97% respectively whereas the
hybrid deep learning model has reached 99% of accuracy.
 

Table 3
Accuracy and Loss of DNN model

Training_Loss 0.19 Training_Accuracy 0.9

Validation_Loss 0.01 Validation_Accuracy 1

From Table 3, it is observed that accuracy and loss of DNN model. The evaluation measure of training
loss and validation loss have achieved 0.19% and 0.01% respectively whereas the training accuracy have
achieved about 0.9% and validation accuracy reached about 1%. A higher accuracy means that the DNN
is predicting more things correctly, whereas a lower accuracy means that the model is having trouble
correctly classifying instances as presented in Fig. 10. It offers a clear way to gauge total performance.
Model convergence and alignment with the training data are better when the loss value is lower. In order
to make sure the DNN is e�ciently learning from the data and adjusting its parameters to increase
predictive accuracy, it is helpful to monitor loss during training.

From Table 4, it is observed, accuracy and loss metrics offer important insights into how well LSTM
models perform. Loss measures the difference between the predicted and actual sequences, whereas
accuracy evaluates how accurate sequence predictions are. These metrics are crucial for tracking the
convergence of the model during training and assessing how well LSTM models capture temporal
dependencies in sequential data. The training loss and validation loss has reached about 0.07 and 0.00
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respectively and the training accuracy and the validation accuracy has reached about 1% as represented
in Table 4 and Fig. 11.

 
Table 4

Accuracy and Loss of LSTM model
Training_Loss 0.071 Training_Accuracy 1

Validation_Loss 0.00 Validation_Accuracy 1

To take advantage of each architecture's advantages, hybrid models often combine several
architectures, such as LSTMs and DNNs. The combined model's performance in terms of sequential
analysis (LSTM part) and feature extraction (DNN part) can be inferred from accuracy and loss. It's
critical to evaluate how well hybrid models represent the data's complexities and whether the combined
architecture outperforms its component parts when evaluating their performance.The performance of
LSTM and hybrid models can be assessed using accuracy and loss, which are crucial metrics that
provide information about the models' capacity for classi�cation and convergence during training. Table
5 and Fig. 12.

 
Table 5

Accuracy and Loss of Hybrid model
Training_Loss 0.13 Training_Accuracy 1

Validation_Loss 1.07 Validation_Accuracy 1

Hybrid models often combine several architectures, such as LSTMs and DNNs. The combined model's
performance in terms of sequential analysis (LSTM part) and feature extraction (DNN part) can be
inferred from accuracy and loss. It's critical to evaluate how well hybrid models represent the data's
complexities and whether the combined architecture outperforms its component parts when evaluating
their performance. Accuracy and loss are critical metrics that can be used to evaluate the performance
of LSTM and hybrid models. The model tell us about the models' ability to classify data and converge
during training. Table 4.3 and Fig. 4.9 reveal that the training accuracy and validation accuracy have both
reached 1%, while the training loss has reached approximately 0.13 and the validation loss is
approximately 0.10.

5. Result and Discussion
This section presents a study that investigates the e�ciency of hybrid deep learning for anomaly
detection in environments with Software De�ned Networking (SDN) to enhance connectivity. Our method
e�ciently detects anomalous behavior in network tra�c by combining the advantages of long short-term
memory (LSTM) networks and deep neural networks (DNNs). Table 6 represents the comparison of
existing work of various authors in respect to their model and accuracy. The authors evaluated our hybrid
deep learning model's performance using SDN datasets and contrasted hybrid model's detection
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accuracy (A), precision (P), recall (RC), and F1-score with conventional anomaly detection methodologies
like statistical techniques and single-model deep learning approaches. The results demonstrate that our
hybrid deep learning model consistently outperforms these conventional methods across a variety of
performance metrics. The bene�ts of our hybrid approach are its scalability and e�ciency. The
suggested model e�ciently manages large-scale SDN deployments by fusing the parallel processing
capacity of DNNs with the memory-e�cient architecture of LSTMs, all without compromising detection
accuracy or adding a sizable amount of computational overhead.

Table 6
Comparison of existing work with proposed model

Authors/Year Model Accuracy

Halman (Halman &Alenazi, 2023) MCAD 99.24

Saheed(Saheed & Arowolo, 2021) PSO-RF 99.76

Haque (Haque & Aziz, 2013) LCNN 94.0

Nguyen (Nguyen et al., 2018) CNN 92

Rajesh (Kumar et al., 2019) BC and ML 98

Proposed Model Hybrid DL 100

In comparison to single-model approaches, by utilizing the advantages of each of the several deep
learning architectures or algorithms it combines, a hybrid model can outperform the others. When it
comes to anomaly detection in SDN, a hybrid model can capture both temporal and spatial
dependencies in network tra�c data, which improves the accuracy and dependability of anomaly
detection. Figure 13 represents the comparison between the existing models and proposed model in
respect to the accuracy. In terms of machine learning and deep learning models, numerous researchers
have put forth different models to identify anomalies in diverse domains. The goal of the proposed work
was to use hybrid deep learning models to improve understanding and accuracy in anomaly detection
tasks.

6. Conclusions
The implementation of hybrid deep learning for anomaly detection in SDN signi�cantly enhances
network connectivity while simultaneously fortifying cybersecurity defenses. This dual bene�t empowers
enterprises to proactively safeguard their critical assets and maintain the integrity and reliability of their
network infrastructure in the face of evolving threats and vulnerabilities. The need for advanced anomaly
detection solutions is paramount to ensure the continued success and resilience of SDN in an
increasingly interconnected and dynamic digital environment. SDN is poised to remain a cornerstone in
the evolution of networking technologies.
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The proposed hybrid deep learning model, which synergizes the feature extraction capabilities of DNNs
with the temporal analysis strengths of LSTMs, achieved a remarkable 100% accuracy in detecting
anomalies. This study's results underscore the exceptional e�cacy of the hybrid model in identifying
anomalous behavior within SDN tra�c, thereby demonstrating its potential as a highly effective solution
for contemporary network security challenges. The scalability and e�ciency of the hybrid model make it
an ideal choice for managing large-scale SDN deployments without compromising detection accuracy or
incurring signi�cant computational overhead..
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Figure 1

Health Connect SDN Anomaly Detection Framework
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Figure 2

Structure of Deep Neural Network

Figure 3

Structure of Recurrent Neural Network

Figure 4

structure of Long Short Term Memory
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Figure 5

Distribution of Anomaly Detection

Figure 6

Anomaly Detection using Hybrid Deep Learning Model
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Figure 7

Confusion Matrix for DNN

Figure 8

Confusion Matrix for LSTM
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Figure 9

Confusion Matrix for Hybrid Deep Learning Model

Figure 10

Accuracy and Loss of DNN model
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Figure 11

Accuracy and Loss of LSTM model

Figure 12

Accuracy and Loss of Hybrid model
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Figure 13

Comparison chart with proposed model


