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ABSTRACT 

Retinotopic map, the mapping between visual inputs on the retina and neuronal responses on cortical 

surface, is one of the central topics in vision science. Typically, human retinotopic maps are constructed 

by analyzing functional magnetic resonance responses to designed visual stimuli on cortical surface. 

Although it is widely used in visual neuroscience, retinotopic maps are limited by measurement noise 

and resolution. One promising approach to improve the quality of retinotopic maps is to register 

individual subject’s retinotopic maps to a retinotopic template or atlas. However, none of the existing 

retinotopic registration methods has explicitly quantified the diffeomorphic condition, that is, retinotopic 

maps can be aligned by stretching/compressing but without tearing up. Here, we developed 

Diffeomorphic Registration for Retinotopic Maps (DRRM) to simultaneously align retinotopic maps in 

multiple visual regions under the diffeomorphic condition. Specifically, we used the Beltrami coefficient 

to model the diffeomorphic condition and performed surface registration based on retinotopic 

coordinates. The overall framework is simple and elegant and preserves topological condition defined in 

the atlas. We further developed a unique performance evaluation protocol and compared the performance 

of the new method with several existing image intensity-based registration methods on both synthetic 

and real datasets. The results showed that DRRM is superior to the existing methods in achieving 

diffeomorphic mappings in synthetic and empirical data from 3T and 7T magnets. DRRM may improve 

the interpretation of low-quality retinotopic maps and facilitate adoption of retinotopic maps in clinical 

settings. 

Keywords: Retinotopic map, fMRI analysis, Diffeomorphic Registration, Beltrami Coefficient, 

Landmarks. 
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1. INTRODUCTION 

The human visual cortex is divided into multiple functional areas (Zeki and Shipp 1988), with most of 

them organized as retinotopic maps, that is, nearby neurons have receptive fields at nearby locations on 

the retina (Hubel and Wiesel 1962). Functional magnetic resonance imaging (fMRI) has provided a non-

invasive way to measure cortical activations to carefully designed visual stimuli and enabled construction 

of retinotopic maps based on the populational receptive field (pRF) model (Warnking et al. 2002; 

Dumoulin and Wandell 2008). Features from the retinotopic maps have been used to study cortical 

plasticity (Wandell and Smirnakis 2009), cortical development (Conner et al. 2004), and brain 

simulations (Swindale 2000), among many other applications.  

Unfortunately, the low signal-noise ratio (SNR) and spatial resolution of fMRI (Vasseur et al. 2010) 

has limited the quality of the decoded retinotopic maps (Warnking et al. 2002; Li et al. 2007), especially 

when the organization is more complicated (Wandell and Winawer 2011). Although post-smoothing, 

e.g., (Qiu et al. 2006b, a) is applicable, it is challenging to achieve a significant improvement. As a result, 

it is difficult to reach reliable conclusions based on retinotopic maps of a single subject, and group-level 

analysis is necessary. 

A critical step in group-level retinotopic map analyses is surface co-registration of retinotopic maps 

from multiple subjects, which is quite challenging (Benson and Winawer 2018) because the cortical 

surface is convoluted and individual retinotopic maps are noisy. A number of sophisticated cortical 

surface registration packages, such as Freesurfer (Fischl and et al. 1999) and Brainsuit (Shattuck and 

Leahy 2002, Joshi et al. 2007) have been developed for diffeomorphic (i.e., invertible, differentiable) 

cortical surface alignment based on anatomical features (e.g., curvature, thickness) but not retinotopic 

data. Using structurally aligned cortical surfaces to align the corresponding retinotopic maps is not a 

viable option because retinotopic maps may misalign with the anatomical surfaces. Recently, multimodal 

registration (e.g., Multimodal Surface Matching; (Robinson et al. 2014)), based on fMRI time series, 

cortical surface and other features, has been developed to improve surface registration. It has however 

only incorporated fMRI time series but not the retinotopic coordinates associated with them and cannot 

be used for co-registration of retinotopic maps. Benson and colleagues (Benson et al. 2014; Benson and 

Winawer 2018) used retinotopic coordinates to register retinotopic maps by adopting a spring-damp-

mass philosophy, together with several well-potentials and constraints to help the alignment and avoid 

over-stretching or over-compression. Although very intuitive and useful, the formulation did not 

explicitly consider the diffeomorphic condition, that is, retinotopic maps can be aligned by 

stretching/compressing but without tearing up, a property assumed in all brain surface registration works 

(Fischl and et al. 1999; Shattuck and Leahy 2002; Yeo et al. 2010). As a result, it introduced redundant 

constraints.  

We developed Diffeomorphic Registration for Retinotopic Map (DRRM) to align retinotopic maps 

in multiple visual areas under the diffeomorphic condition. Diffeomorphic registration is a feasible way 

to ensure the topological condition in retinotopic mapping (Tu et al. 2020b):  nearby neurons have 

receptive fields at nearby locations on the retina  (Wandell et al. 2007).  The raw pRF results cannot 

ensure such condition. Aligning a subject’s retinotopic map to a topological template would make the 

post-registration retinotopic topological. In addition, diffeomorphic registration can be used to 

automatically infer the boundaries of the visual areas, avoiding tedious and error-prone manual labeling. 

Moreover, because the diffeomorphic condition is the natural requirement of surface registration without 

tearing, it is possible to delineate visual areas after a proper registration (Glasser et al. 2016).  

We used the Beltrami coefficient (Gardiner and Lakic 2000) to model the diffeomorphic condition 

and performed surface registration based on retinotopic coordinates. Specifically, we modeled the 



registration problem as an alignment optimization with diffeomorphic constraint, and proposed an 

iterative scheme to solve the registration model efficiently. Each iteration used simple demons (Thirion 

1998) to improve registration accuracy, and processed the Beltrami coefficients of the registration 

function to ensure the diffeomorphic condition. Compared with Benson and Winawer (2018), we reduced 

the number of constraints and ensured the diffeomorphic condition during registration. As a significant 

extension of our previous conference paper (Tu et al. 2020a), the current work successfully applied the 

method to multiple datasets, including a low-quality retinotopy dataset, evaluated its performance with 

goodness of fit to fMRI time series instead of feature differences, and adopted a state-of-the-art atlas 

(Benson and Winawer 2018) instead of the average retinotopic maps as the template, which ensured the 

post-registration retinotopic maps satisfied the topological condition (Tu et al. 2020b). 

 

2. METHODS  

Fig. 1 illustrates the retinotopic map data collection and the proposed diffeomorphic registration process. 

The experiment collects structural MRI images (Fig. 1c) and multiple fMRI volumes at many time points 

(Fig. 1d) during visual stimulation (Fig. 1ab) for each subject. After a pre-processing of raw fMRI, the 

processed fMRI data (Fig. 1e) are projected back to cortical surface (Fig. 1f). The population receptive 

field analysis (pRF) (Dumoulin and Wandell 2008; Kay et al. 2013) is used to generate retinotopic map 

for a single subject (Fig. 1 g). The proposed diffeomorphic registration method registers an atlas to the 

raw retinotopic map data (Fig. 1h) and obtains registered retinotopic map (Fig. 1i), which is ready for 

further analyses.  

In this section, the raw retinotopic map computation procedure is described in Sec. 2.1. The 

proposed multiple visual region registration algorithm is described in Sec. 2.2. We briefly describe our 

experimental data and atlas in Sec. 2.3. Registration performance metrics and comparison methods are 

reported in Sec. 2.4. 

 

Figure 1. Illustration of a retinotopy experiment and the registration process: (a) visual stimuli, (b) the visual 

coordinate system, (c) structural MRI, (d) raw fMRI volumes, (e) preprocessed fMRI volumes, (f) cortical surface 

extracted from structural MRI with projected fMRI signals, (g) a decoded retinotopic map, (h) a raw retinotopic map 

projected on a flat surface, and (i) a registered retinotopic map. 

2.1 Raw Retinotopic Map  

2.1.1 Surface extraction 

The structural MRI is used to construct the cortical surface using Freesurfer (Fischl and et al. 1999). We 

denote the discrete cortical surface by 𝑆௦, consist of vertices 𝑉௦ ൌ ሼ𝑉௜|𝑖 ൌ 1,2, . . . ,𝑛ሽ ൌ ሼ𝑉ଵ,𝑉ଶ, … ,𝑉௡ሽ 
and triangular faces 𝐹௦, i.e. 𝑆௦ ൌ ሺ𝐹௦,𝑉௦ሻ.  



2.1.2 fMRI preprocessing 

The goal of fMRI preprocessing is to detect the time series of brain activations of the voxels on the visual 

cortical surface that are associated with the visual stimuli. Typically, the raw fMRI data from each 

imaging session are co-registered across time to reduce the influence of head movements and other 

motion artifacts (Fig. 1e). Then the co-registered fMRI data are projected onto the cortical surface (Fig. 

1f). During the projection, spatial smoothing may be applied along the cortical surface to improve the 

quality of the fMRI signals (Glasser et al. 2013). Finally, depending on the required resolution, 

resampling might be applied. After preprocessing, each vertex 𝑉௜ ∈ 𝑉௦  on the surface 𝑆௦ ൌ ሺ𝐹௦,𝑉௦ሻ is 

associated with a fMRI time series 𝑦௜ሺ𝑡ሻ.  
2.1.3 pRF decoder 

For each vertex 𝑉௜ ∈ 𝑉௦ on the cortical surface, the population receptive field analysis (pRF) (Dumoulin 

and Wandell 2008; Kay et al. 2013) is used to determine its receptive field, including its center location 𝒗 and size 𝜎 in the unit of visual field.  

Assuming that the population response model is 𝑟ሺ𝒗ᇱ;𝒗,𝜎ሻ and the hemodynamic function is ℎሺ𝑡ሻ, 
the predicted blood-oxygen-level-dependent (BOLD) signal of the vertex can be written by:  𝑦ොሺ𝒗, 𝜎ሻ ൌ 𝛽 ൬න 𝑟ሺ𝒗′; 𝒗, 𝜎ሻ𝑠ሺ𝑡, 𝒗′ሻ𝑑𝒗′൰𝑛 ∗ ℎሺ𝑡ሻ, (1) 

where 𝛽 is the activation level, which is invariant over time, 𝑛 is exponent power. The perception center 𝒗 and population receptive field size 𝜎 can be estimated by minimizing the squared difference between 

the measured and predicted BOLD signals: ሺ𝒗, 𝜎, 𝑛ሻ ൌ arg minሺ𝒗,𝜎ሻ|𝑦ොሺ𝒗, 𝜎ሻ െ 𝑦ሺ𝑃ሻ|2, (2) 

where 𝑦ሺ𝑃ሻ is the BOLD signal at voxel 𝑃. The goodness of fit is evaluated by, 𝑝௖ ൌ ∑ ሺ𝑥௜ െ 𝑥̅ሻሺ𝑦௜ െ 𝑦തሻ௡௜ୀଵඥ∑ ሺ𝑥௜ െ 𝑥̅ሻଶ௡௜ୀଵ ඥ∑ ሺ𝑦௜ െ 𝑦തሻଶ௡௜ୀଵ  
(3) 

where 𝑥 is the predicted signal and 𝑦 is the measured signal.  

Iterations of this procedure across all the vertices on the visual cortical surface generate a collection 

of the pairing of 𝑉 and ሺ𝒗, 𝜎, 𝑅2ሻ and therefore the raw retinotopic map. We call it the raw retinotopic 

map to distinguish it from post-registration results. In addition, we use 𝑆 ൌ ሺ𝐹௦,𝑉௦,𝒗௦,𝜎௦,𝑅௦ଶሻ to denote 

the collection of cortical surface as well as the raw retinotopic map for subject 𝑠. 

2.2 Registration 

2.2.1 Mathematical model  

Given a proper template 𝑇, which consists of a discrete triangular mesh together with predefined pRF 

parameters, including visual coordinates 𝒗், receptive field size 𝜎், and variance explained 𝑅ଶ் on each 

vertex, 𝑇 ൌ ሺ𝐹்,𝑉 , 𝑣் ,𝜎்,𝑅ଶ்ሻ, registration is defined as a function 𝑓ᇱ:ℝଷ → ℝଷ  that minimizes the 

difference between a subject's raw retinotopic map and the template:  𝑓ᇱ ൌ arg min𝑓′  𝐸ோሺ𝑓|𝑆,𝑇ሻ, (4) 

where 𝐸ோሺ𝑓′|𝑆,𝑇ሻ  is the registration energy for registration function 𝑓ᇱ  for a given subject’s raw 

retinotopic map 𝑆.  

What is a proper registration function 𝐸ோ? It is clear that the main term should be related to visual 

coordinate difference, ∑ |𝑣௦ሺ𝑓௜ሻ െ 𝑣௧ሺ𝑖ሻ|ଶ௜ , where 𝑣௦ሺ𝑓௜ሻ is the visual coordinate of the subject’s 

registered retinotopic map at vertex i, and 𝑣௧ሺ𝑖ሻ is the template’s visual coordinate at vertex i. In addition, 

the registration between cortical surface must be diffeomorphic.  



To formulate the diffeomorphic condition, we simplify the registration problem by projecting the 

3D retinotopic map diffeomorphically to a 2D parametric domain (Ta et al. 2014), and consider 

diffeomorphic registration in the 2D domain. As shown in Fig. 2, we first define a point which roughly 

corresponds to the fovea as the center. Second, we cut a geodesic disk (Martínez et al. 2005) (i.e. the 

distance along the surface from any point to the center is within a value) on the cortical surface. Then we 

map the geodesic disk to the 2D parametric domain by discrete conformal mapping  𝑐:𝑃 ↦ 𝑢, where 𝑢 ൌ ൫𝑢ሺଵሻ,𝑢ሺଶሻ൯ ∈ ℝଶ and 𝑃 ∈ Vୱ. The same operation is performed on the template retinotopic map 

(Fig. 2c gray color region) to project it to the parametric space 𝑐′:𝑃′ ↦ 𝑢′, 𝑢 ൌ ൫𝑢ሺଵሻ,𝑢ሺଶሻ൯ ∈ ℝଶ and 𝑃′ ∈ V் . If we can find a registration function 𝑓:𝑢 ↦ 𝑢′  between the subject’s and the templates’ 

retinotopic maps in the 2D parametric space, we can write the registration for the two retinotopic maps 

as 𝑓ᇱ ൌ 𝑐′ିଵ ∘ 𝑓 ∘ 𝑐. Since both 𝑐 and 𝑐ᇱ are given, the remaining problem is to find the 2D registration 𝑓. 

 

Figure 2. Illustration of several spaces and registration in the parametric space (the template sphere is rotated for 

illustration purpose.) 

The 2D diffeomorphic registration 𝑓 can be treated as a quasiconformal map by considering the 2D 

points as complex numbers, i.e., 𝑓:ℂ → ℂ, and the diffeomorphic condition can be quantified by the 

Beltrami coefficient (Ahlfors and Earle 1966) for 𝑓 ൌ 𝑓ሺଵሻ ൅ 𝑖𝑓ሺଶሻ. Specifically, the Beltrami coefficient 

is given by,  𝜇௙ ൌ ൬ ∂𝑓∂𝑢ሺଵሻ ൅ 𝑖 ∂𝑓∂𝑢ሺଶሻ൰ / ൬ ∂𝑓∂𝑢ሺଵሻ െ 𝑖 ∂𝑓∂𝑢ሺଶሻ൰ , 𝑖 ൌ √െ1. (5) 

According to the Quasiconformal Theorem (Ahlfors and Earle 1966), if ฮ𝜇௙ฮஶ ൏ 1 , then 𝑓  is  

diffeomorphic.  Moreover, the Beltrami coefficient uniquely encodes the quasiconformal mapping up to 

normalization (Ahlfors and Earle 1966), which provides a strategy to manipulate all diffeomorphic maps 

via a set of complex numbers.    

With the diffeomorphic condition, we formulate the retinotopic registration problem by,  𝑓= arg min𝑓 න𝑤|v𝑠ሺ𝑓ሻ െ 𝑣𝑇|2 ൅ 𝜆𝑠|𝛻𝑓|2 du , 𝑠. 𝑡. , ฮ𝜇௙ฮஶ ൏ 1, (6) 

where 𝑤:ℝଶ  → ℝ is a weight function and λ௦  is a positive constant to encourage smoothness in the 

registration. Intuitively, Eq. 6 is used to find the registration 𝑓  that (1) minimizes weighted visual 

coordinate differences  (in terms of 𝑤|v௦ሺ𝑓ሻ െ 𝑣்|ଶ ); (2) is smooth (in terms of 𝜆௙|𝛻𝑓|ଶ ), and (3) 

diffeomorphic (constrained by ฮ𝜇௙ฮஶ ൏ 1). Solving Eq. 6 generates a diffeomorphic registration, which 

enables preservation of the topological condition of the retinotopic map (Tu et al. 2020b). It is worth 

noting that, for each visual area, the topological condition can also be quantified by the Beltrami 

coefficient associated with the mapping from cortical surface to the visual space.  



2.2.2. Numerical methods 

Although we have defined the explicit registration energy, it is still computationally heavy to solve 𝑓 

directly. To have an efficient solution, we iteratively refine the alignment, ensure the diffeomorphic 

condition, and smooth the registration.  

Improving alignment by the simple demon algorithm 

We update the visual coordinate alignment by the simple demon algorithm (Thirion 1998), which moves 

each vertex in the source domain to match the target (template) visual coordinates. In the original 

algorithm, one choice is to move the subject’s vertex location in the parametric domain by a 

displacement:  𝑑 ൌ ሺூೞିூ೘ሻ∇ூ೘∇ூ೘ାሺூೞିூ೘ሻమ, (7) 

where 𝐼௦ and 𝐼௠ are the visual coordinates of the target (not moving) and source (moving). In our setting, 

we consider each component of the visual coordinate as the intensity and migrate them by the sum of the 

displacement. We denote 𝑓̅ ൌ 𝑢௦ ൅ β𝑑 as the result of simple demon registration, where β is the step size 

of the move. 𝑢௦ is the parametric coordinate of the last iteration. 

Diffeomorphic projection 𝑓̅ reduces visual coordinate difference but cannot ensure the diffeomorphic condition. One can make a 

diffeomorphic map by the following procedure: (1) compute the map's Beltrami coefficient 𝜇, (2) adjust 

the Beltrami coefficient, such that that the new Beltrami coefficient 𝜇′ satisfies ‖𝜇′‖ஶ ൏ 1, and (3) 

generate a new map from the new Beltrami coefficient. We now introduce the procedure in the discrete 

setting.  

(1) Computing Beltrami Coefficient 

Suppose we are given an analytical 𝑓, we can compute the Beltrami coefficient 𝜇௙ according to Eq. 5. 

However, in the discrete case, usually the function value is only given on each vertex, i.e., we only know 

the mapping between the source and target vertices (Fig. 3a): 𝑣௜ ൌ  𝑓ሺ𝑢௜ሻ, 𝑣௝ ൌ 𝑓൫𝑢௝൯, and 𝑣௞ ൌ 𝑓ሺ𝑢௞ሻ. 
To approximate the derivatives, 𝑓 is linearly interpreted on each triangle, i.e., for 𝑢 within a triangle 𝛥𝑢௜𝑢௝𝑢௞ , 𝑓ሺ𝑢ሻ ൌ 𝐵௜𝑣௜ ൅ 𝐵௝𝑣௝ ൅ 𝐵௞𝑣௞.  The coefficients 𝐵௜ ,  𝐵௝ , 𝐵௞  are called the barycentric 

coefficients. Intuitively, 𝐵௜ (likewise for 𝐵௝ and 𝐵௞) is the area portion of triangle 𝛥𝑢𝑢௝𝑢௞ to 𝛥𝑢௜𝑢௝𝑢௞, 

i.e. 𝐵௜ ൌ Area൫𝛥𝑢𝑢௝𝑢௞൯/Area൫𝛥𝑢௜𝑢௝𝑢௞൯. Now we can compute the Beltrami coefficient 𝜇௙ for each 

triangle according to Eq. 5. It is clear 𝜇௙ is a face-wise complex-valued constant, since 𝑓 is linearly 

related to 𝑢 and 𝜇௙ takes the first order partial derivative.  

 

Figure 3. Illustration of a mapping function and the derivative computation. (a) an illustration of the mapping 

function in the discrete domain, and (b) divergence approximation for a vertex.  

  



(2) Beltrami Projection 

Once we compute the Beltrami coefficient 𝜇, we apply following manipulation,  μᇱ ൌ ൜ 𝜇/ሺ|𝜇|൅ ϵሻ,    𝑖𝑓 |𝜇| ൐ 1 

 𝜇,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (8) 

Since 𝜖 ൐ 0, |𝜇ᇱ| will be less than 1. Namely, we slightly adjust the Beltrami coefficient so that it 

corresponds to a diffeomorphic map.  

(3) Recovering from the New Beltrami Coefficients 

We now introduce the numerical method to recover function 𝑓መ ൌ 𝑓መሺଵሻ ൅ 𝑖𝑓መሺଶሻ  on the given Beltrami 

coefficient 𝜇′ ൌ 𝜌 ൅ 𝑖𝜏. It was first introduced in (Lui et al. 2013) and called Linear Beltrami Solver 

(LBS). According to the definition, i.e., Eq. 5, we have,  ቆ 𝜕𝑓መ𝜕𝑢ሺଵሻ ൅ 𝑖 𝜕𝑓መ𝜕𝑢ሺଶሻቇ /ቆ 𝜕𝑓መ𝜕𝑢ሺଵሻ െ 𝑖 𝜕𝑓መ𝜕𝑢ሺଶሻቇ ൌ 𝜌 ൅ 𝑖𝜏. (9) 

After re-organizing Eq. 9, it is equivalent to, 

ቐെ డ௙መሺభሻడ௨ሺమሻ ൌ 𝛼ଵ డ௙መሺమሻడ௨ሺభሻ ൅ 𝛼ଶ డ௙መሺమሻడ௨ሺమሻడ௙መሺభሻడ௨ሺభሻ ൌ 𝛼ଵ డ௙መሺమሻడ௨ሺభሻ ൅ 𝛼ଶ డ௙መሺమሻడ௨ሺమሻ , 

(10a) 

 

(10b) 

where αଵ ൌ 𝑘ሺτଶ ൅ ሺρ െ 1ሻଶሻ , αଶ ൌ െ2𝑘τ  and αଷ ൌ 𝑘ሺ1 ൅ 2ρ ൅ ρଶ ൅ τଶሻ,  𝑘 ൌ 1/ሺ1െ 𝜌ଶ െ 𝜏ଶሻ .  

Now, apply 𝜕/𝜕𝑢ሺଵሻ on Eq. 10a, apply 𝜕/𝜕𝑢ሺଶሻ on Eq. 10b and sum them up, one can write, ∇ ⋅ 𝐴𝛻𝑓෠ሺଵሻ ൌ 0, (11) 

where A ൌ ቀαଵ αଶαଶ αଷቁ , 𝛻𝑓෠ሺଵሻ ൌ ሺ𝜕𝑓෠ሺଵሻ/𝜕𝑢ሺଵሻ ൅ 𝜕𝑓෠ሺଵሻ/𝜕𝑢ሺଶሻሻ , and 𝜵 ⋅ 𝑮  ( 𝑮 ൌ 𝐴𝛻𝑓෠ሺଵሻ  is called the 

skewed gradient) is defined as 𝜵 ⋅ 𝑮 ൌ ∂𝐺ሺଵሻ/𝜕uሺଵሻ ൅ 𝜕𝐺ሺଶሻ/𝜕uሺଶሻ. By solving the partial differential 

equation Eq. 11 with Dirichlet boundary condition, we can solve 𝑓෠ሺଵሻ. Similarly, if we eliminate 𝑓෠ሺଵሻ, we 

can write ∇ ⋅ 𝐴𝛻𝑓෠ሺଶሻ ൌ 0. After converting to the complex form 𝑓መ ൌ 𝑓መሺଵሻ ൅ 𝑖𝑓መሺଶሻ , these two partial 

differential equations can be summarized by ∇ ⋅ 𝐴𝛻𝑓መ ൌ 0. 

In the discrete case, since the function is interpreted on each triangle, the gradient ∇𝑓෠ሺଵሻ can be written 

out on each triangle. Numerically, it is not precise to directly compute the divergence 𝜵 ⋅ 𝑮 on discrete 

gradient. Instead, we use Stock's theorem (Gauss and Gauss 1877) to approximate the divergence of a 

triangle mesh vertex. As shown in Fig. 3b, the divergence is the average out-flux of skewed gradient 𝑮 

on its dual polygon 𝐷. Let 𝑁ሺ𝑢௜ሻ be the triangle set that each triangle 𝑢௜ in 𝑁ሺ𝑢௜ሻ attaches to. The vertex-

dual, 𝐷, is a polygon constructed from the circumcenters of the attached triangles 𝑁ሺ𝑢௜ሻ. Since the 

skewed gradient 𝑮 is constant on each triangle, the divergence can be written as, 𝛁 ⋅ 𝑮ሺ𝑢௜ሻ ൌ 1

|𝐷|
න 𝑮 ⋅ 𝑑𝒍డ஽ ൌ 1

|𝐷|
න 𝑮 ⋅ 𝑑𝒍డୈ ൌ 1

|𝐷|
෍ 𝑮்ೕ ∙ ൫𝑢௞ െ 𝑢௝൯்ೕ∈ேሺ௨೔ሻ , (12) 

where 𝑇௝ is the j-th triangle in 𝑁ሺ𝑢௜ሻ. According to Eq. 12, we have a linear equation with respect to 𝑓௜ 
and its neighbors.  

Eventually, we can write 𝛻 ⋅ 𝐴𝛻𝑓෠ ൌ 0  in a matrix form: 𝑳𝑓෠ ൌ 0 , where 𝑓መ ൌ ൣ𝑓መ1,𝑓መ2, … , 𝑓መ|𝑉|൧  and 

matrix 𝑳 is defined as,   

𝐿௜,௝ ൌ
⎩⎪⎨
⎪⎧ ෍ ሺ𝐴𝒔௝ሻ ∙ 𝒔௜หൣ𝒖௜ ,𝒖௝ ,𝒖௞൧หൣ𝒖𝒊,𝒖𝒋,𝒖𝒌൧∈𝑵ሺ𝒊ሻ ,     if  𝑖 ് 𝑗 

                    െ෍𝐿௜,௞𝒌ஷ 𝒊 ,               if  𝑖 ൌ 𝑗 
                                  0,              otherwise.

 (13) 

where 𝒔௜ ൌ 𝒏 ൈ ൫𝒖௝ െ 𝒖௞൯, 𝒔௝ ൌ 𝒏 ൈ ሺ𝒖௞ െ 𝒖௜ሻ and 𝒏 is the face normal vector. The matrix form 𝑳𝑓෠ ൌ
0 contains |𝑉| number of complex-valued equations. For the 𝑖-th equation, 𝐿௜,௝  is the coefficient of 



variables 𝑓௝ , namely, 𝐿௜,ଵ𝑓෠ଵ ൅ 𝐿௜,ଶ𝑓෠ଶ ൅⋯൅ 𝐿௜,|௏|𝑓෠|௏|
ൌ 0 . Let 𝑰  and 𝑩  be the interior and 

boundary/landmark vertex indices, respectively. The discrete map 𝑓መ can be obtained by solving the linear 

equations 𝐿𝐈,𝐈𝑓෠𝐈 ൌ െ𝐿𝐈,𝐁𝑓෠𝑩, where 𝑓෠𝑩 is a sub-vector of 𝑓መ composed of 𝑓෠௝ for 𝑗 ∈ 𝐁. The matrix 𝐿𝐈,𝐁 is a 

sub-matrix of 𝐿 composed of 𝐿௜,௝, for 𝑖 ∈ 𝐈 and 𝑗 ∈ 𝐁. The matrix 𝑓෠𝑰 and 𝐿ூ,ூ are similarly defined. 

Smoothing 

To make the registration smooth, we use Laplacian smoothing to find smoothed 𝑓ሚ after diffeomorphic 

projection, such that, 𝑓ሚ ൌ arg min௙ሚ ׬ ห𝛻𝑓ሚหଶ ൅ λୱห𝑓ሚ െ 𝑓෠หଶ𝑑𝑢, (14) 

where λୱ is defined in Eq. 6. By letting partial derivatives of Eq. 14 to be zero, it induces Euler-Lagrange 

equations: ሺെ𝛻 ⋅ 𝛻 ൅ 2λୱሻ𝑓ሚ ൌ 2λୱ𝑓෠, which can be written in a matrix form, ሺ𝐿′ ൅ 2λୱ𝐼ሻ𝑓ሚ ൌ 2𝜎𝑓෠. Notice 

that 𝐼 is the identity matrix, and 𝐿′ ൌ 𝜵 ⋅ 𝛻 is the special case when 𝐴 is an identical matrix in Eq. 13. 

So, we can also write 𝐿′ in a matrix form and solve 𝑓ሚ efficiently.  

 The registration results are influenced by the smooth parameter 𝜆௦. We use a generalized cross-

validation (GCV) procedure to estimate the proper parameter to avoid both over-smoothing and under-

smoothing. The GCV procedure was initially introduced by (Craven and Wahba 1978) in smoothing 

splines. Assuming that for each subject, there are 𝑛 ൌ |𝑉| raw visual coordinate measurements, denoted 

by 𝑓ଵ, 𝑓ଶ, … ,𝑓௡ . We uniformly split the data into 5  distinct folds, 𝐹ଵ ൌ ሼ𝑓௜|𝑖 ∈ 𝐾ଵሽ,𝐹ଶ ൌ ሼ𝑓௜|𝑖 ∈𝐾ଶሽ, … ,𝐹ହ ൌ ሼ𝑓௜|𝑖 ∈ 𝐾ହሽ, where 𝐾௝ is the index set of the 𝑗-th fold. Leaving out the 𝑘 െth fold, 𝐹௞, we 

can use the rest four folds to compute the smoothed results on a specific 𝜆௦, denoted by 𝑓ሚ஛ೞ௞ . Then, we 

can estimate the error between the smoothed and raw visual coordinates within fold 𝑘. Eventually, we 

can find the optimal parameter 𝜆௦  that minimizes the overall difference (sum over 𝑘 ൌ 1, 2, … , 5). 

Mathematically,  𝜆௦ ൌ arg minఒೞ ෍ ෍𝐷௜൫𝑓௜ െ 𝑓ሚ஛ೞ,௜௞ ൯ଶ௜∈ிೖ௞ୀሼଵ,…,ହሽ , (15) 

where 𝐷௜ is the area-weight for vertex 𝑖 (Fig. 3b). In practice, we used the grid resampling (Garcia 2010) 

data in the disk (resample with 200x200 grid for the parametric unit disk) to approximate the estimation 

of 𝜆௦. 
2.2.3. Algorithm 

We summarize the Diffeomorphic Registration for Retinotopic Maps (DRRM) algorithm in Alg. 1.  

Algorithm 1. Diffeomorphic Registration for Retinotopic Maps 

Data: Subject's raw retinotopic map 𝑆 ൌ ሺ𝐹ௌ,𝑉ௌ, 𝑣௦,𝜎௦,𝑅௦ଶሻ,  template retinotopic map 𝑇 ൌሺ𝐹் ,𝑉 ,𝑣் ,𝜎்,𝑅ଶ்ሻ, and threshold 𝜖. 

Result: Registration function 𝑓 from the subject raw retinotopic map to the template retinotopic map.  

1. Compute conformal parametrization for subject 𝑢௦ ൌ 𝑐௦ሺ𝐹ௌ,𝑉ௌሻ, and template 𝑢் ൌ𝑐்ሺ𝐹்,𝑉 ሻ;  
2. Take identity mapping as initial, 𝑓ሺ𝑢௦ሻ ← 𝑢௦; 

3. repeat 

a) Update registration function 𝑓̅ regardless of diffeomorphism, according to Eq. 7. 

b) Compute Beltrami coefficient 𝜇 for 𝑓̅, according to Eq. 5. 

c) Project Beltrami coefficient to get 𝜇′, according to Eq. 8. 

d) Compute diffeomorphic mapping 𝑓መ by LBS on the projected coefficient 𝜇′;  
e) Apply Laplacian smoothing to get 𝑓ሚ from 𝑓መ, according to Eq. 14. 

f) Compute 𝛿𝑓 ൌ maxห𝑓ሚ െ 𝑓ห, and update 𝑓 ← 𝑓ሚ 
4. until  𝛿𝑓 ൏ ϵ and ‖𝜇‖ஶ ൏ 1 

5. return 𝑓. 



2.3 Data and Atlas 

We applied DRRM to one synthetic and two real retinotopy datasets. The synthetic data is mainly used 

to compare the registration performance of DRRM with other state-of-the-art methods. Two real 

retinotopic map datasets, Human connectome project (HCP) (Kay et al. 2018) and Studyforrest 

(Sengupta et al. 2016), are used to demonstrate the application of DRRM to human retinotopic maps.  

2.3.1 Synthetic data 

We generated a synthetic dataset that included subject and template retinotopic maps using the double-

sech model proposed by Schira et al. (2010):  𝑢ሺଵሻ ൅ 𝑖𝑢ሺଶሻ ൌ 𝑘 ⋅ ln൫𝑣ሺଵሻ ⋅ exp൫𝑖𝑣ሺଶሻ ⋅ 𝑓௔൯ ൅ 𝑎൯, (16) 

where 𝑓௔ ൌ sech൫𝑣ሺଶሻ൯଴.ଵ଼∗ୱୣୡ୦൫଴.଻଺ ୪୭୥൫௩ሺభሻ/௔൯൯
, 𝑎 ൌ 10, and 𝑏 ൌ 90. The model is applicable to V1-V3 

simultaneously by setting a shear value 𝑠 for each area and concatenating them along with 𝑣ሺଶሻ. Namely, 𝑣ሺଶሻ in Eq. 16 is concatenated by 𝑣ሺଶሻ ൌ ቄ𝑠ଵ𝑣௜ሺଶሻ|𝑣௜ ∈ 𝑉ଵቅ ∪ ቄ𝑠ଶ൫𝑣௜ሺଶሻ േ 𝑠ଵ𝜋/2൯|𝑣௜ ∈ 𝑉ଶቅ ∪ ቄ𝑠ଷ൫𝑣௜ሺଶሻ േ
𝑠ଵ𝜋/2േ 𝑠ଶ𝑠ଵ𝜋൯|𝑣௜ ∈ 𝑉ଷቅ. We can generate different retinotopic maps by manipulating the parameters. 

We started with visual coordinates on a grid and used the model with 𝑠ଵ ൌ 0.4, 𝑠ଶ ൌ 0.25, and 𝑠ଷ ൌ
0.2 for V1, V2, and V3, respectively to generate the template, and 𝑠ଵ ൌ 0.5, 𝑠ଶ ൌ 0.3, and 𝑠ଷ ൌ 0.15 to 

generate the subject’s retinotopic maps in V1/V2/V3. In the ideal case, the retinotopic maps of the subject 

and template can be fully aligned after registration. 

Then we enclosed both subject and template into a unit circle. We then generated the triangular 

mesh on the disk. This step is to ensure the data is of same format as real dataset where we map to disks 

during the registration. 

2.3.2 HCP retinotopy data 

The Human connectome project (HCP) (Kay et al. 2018) provides a large publicly available retinotopy 

dataset collected on 7T MRI scanners. The data collection, conducted on 181 healthy young adults (22-

35 years; 109 females, and 72 males) with normal or corrected-to-normal visual acuity, involved 

carefully designed retinotopy stimuli and resulted in a substantial amount of fMRI data (30 min, 1,800 

time-points) acquired at very high spatial and temporal resolutions (1.6 mm isotropic voxels, 1-second 

temporal sampling). The dataset provides an exciting opportunity to compare the registration methods. 

It was pre-processed by the HCP group to 32k mesh (Glasser et al. 2013). Here, we computed the pRF 

parameters using analyzePRF (Version 1.1) (Kay et al. 2013), with the following setting: (1) cubically 

detrend the fMRI signal; (2) stimulation image size 200x200; (3) compressive model with big receptive 

field size seed.  

2.3.3 Studyforrest retinotopy data 

The Studyforrest dataset (Sengupta et al. 2016) consists of 15 observers' fMRI data from the travelling 

wave experiment for retinotopic map on a 3T MRI system. The data are processed in the following steps. 

First, the T1 weighted structural images were used to reconstruct the cortical surface by Freesurfer 

(version 5.3.0) (Fischl and et al. 1999). Then we resampled the surface to 59k vertices. We then 

preprocessed the fMRI data: (1) we used SPM (Friston et al. 1996) (Version 12) to correct slice timing; 

(2) we used SPM to align all the fMRI volumes to the first volume for each run of the retinotopic 

experiment, including the expanding ring, contracting ring, clock-wise rotated wedge, and counter clock-

wise rotated wedge; (3) Then we projected the fMRI signal to the mid-surface (between pial and white) 

generated from Freesurfer. Once we have the fMRI signal on the surface, we used Kay’s analyzePRF 



(Version 1.1) to decode the fMRI signal with following settings: (1) linearly detrend the signal; (2) 

stimulation image size 640x640; (3) with traveling wave results (provided by 

https://github.com/psychoinformatics-de/studyforrest-data-retinotopy) as perception center seed for each 

vertex, and (4) compressive pRF model with big receptive field size seed. The data and code for 

reproducing the results are available on the OSF website https://osf.io/s25pe/. 

2.3.4 Retinotopic template  

We started with Benson and Winawer’s retinotopic model (Benson and Winawer 2018) and the group-

average retinotopic map from the HCP group 𝑇଴ ൌ ൫𝐹 బ் ,𝑉 బ , 𝑣 బ் ,𝜎 బ் ,𝑅 బ்ଶ ൯. We first transferred the BW 

retinotopic model from the “fsaverage” space to the “fsLR” space, and then followed the technique 

introduced in Sec. 2.2 to align it to 𝑇଴. The morphed template, denoted by 𝑇 ൌ ሺ𝐹் ,𝑉 , 𝑣்,𝜎்,𝑅ଶ்ሻ, was 

used as the template in DRRM for our registration.  

2.4 Performance Evaluations 

We compared DRRM with several popular retinotopic and image registration methods, including Thin 

Plate Spline TPS (Sprengel et al), Bayesian (Benson and Winawer 2018), and D-Demos (Vercauteren et 

al. 2009). 

 TPS is a widely used non-rigid transformation method, which treats registration as two 

displacement functions approximated by two thin plate surfaces. To find these surfaces, landmark points 

are defined on both the source and target surfaces. TPS interpolates the thin plate surfaces based on the 

landmarks. Therefore, the precision of the registration results is dominated by the quality of the 

landmarks but not the other visual coordinates. 

 Benson and Winawer’s Bayesian registration framework, which  we call the “Bayesian method” 

for short, adopts a mass-spring-damp phiolophy to align subjects’ retinotopic maps to the template 

(Benson and Winawer 2018). It is a very intuitive method that treats edges as springs and nodes as mass 

balls. To encourage alignment of high quality points, well-potentials can be set to attract the mass balls 

to specific areas. Here, we set landmarks with infinite well. Because they are given by the experimenter, 

the landmarks define high quality points in retinotopic maps.  

 D-Demos is a popular diffeomorphic image registration method that projects the results from the 

simple-demon algorithm in each iteration to be diffeomorphic. One limitation of the simple demon is 

that it does not provide diffeomorphic registration. In D-Demos, diffeomorphic registration is achieved 

by projecting the displacements from the simple-demon algorithm to the space of diffeomorphic 

transformations in each iteration (e.g., by Jacobian).  

 Both TPS and D-Demos were designed for image registration and have not been used in retinotopic 

registration. We applied them to images with intensity determined by the eccentricity visual coordinates 

of the retinotopic maps first and then images with intensity determined by the polar angle visual 

coordinates second and reiterated the process several times.  

For the synthetic dataset, because we have the ground-truth displacement, we mainly compared the 

performance of these registration methods using the Registration Displacement Error. In addition, to 

evaluate whether the registration function is diffeomorphic, we calculated the number of flipped 

triangles, 𝑭𝒇𝒍𝒊𝒑,  in the registration function. If 𝐹௙௟௜௣ ൌ 0, the registration function is diffeomorphic.   

 For the real retinotopic datasets, because there is no ground truth, we evaluate the performance of 

registration by two types of metrics. The first type is about registration performance, including the 

magnitude of visual coordinate change to ensure topological (𝑑|𝑣|) and the number of flipped triangles, 𝐹௙௟௜௣. More specifically, 𝑑|𝑣| is the average of point-wise visual coordinate change which is calculated 

by the Euclidian distance between raw visual coordinate and the template-interpretated visual coordinate 



after registration. The second type metrices is related to the goodness of fit to the BOLD time series, 

including the Root Mean Square Error (RMSE), Akaike information criterion (AIC), and Pearson 

correlation (𝑝௖) defined in Eq. 3. Specifically, after registration, the parametric positions of the subject’s 

retinotopic maps were adjusted. We interpreted the visual coordinates of the vertices on the subject’s 

retinotopic maps from the template. If the registration is good, Reg. Error is small, which means the 

visual coordinate differences between the subject’s registered retinotopic maps and the template are 

small. If the RMSE is small, the registered retinotopic maps fit the BOLD signals well. Similarly, if the 

AIC is smaller, the registered retinotopic maps explain the data better with the same number of 

parameters; if the Pearson correlation is greater, the registered retinotopic maps explain the BOLD signal 

better. Since the template we adopted is topological, the registered retinotopic maps is topological when 𝐹௙௟௜௣ ൌ 0. 

 

3. RESULTS 

3.1 Performance on Synthetic Data 

We first calculated the ground-truth displacement based on the parameters of the generative model (Eq. 16) for the 

subject and template and generated noisy data for registration (Fig. 4).  

 

Figure 4. Template and Subject Retinotopic Maps (synthetic data): (a) The predefined template; (b) noiseless 

retinotopic map of a subject; (c) retinotopic map of a subject with weak noise (PSNR = 20); (d) retinotopic map of 

a subject with strong noise (PSNR = 10); (e) ground truth displacement.  Red curves are eccentricity contours, black 

curves are polar angle contours, and some landmarks/anchors are marked in (a)-(d).  

The performance metrics for the four methods are listed in Tab. 1. To evaluate the influence of noise on 

registration results, we reported each value with two levels of noise (PSNR = 20 and 10) and separated 

them by “/”.   

Method 
Registration Displacement Error 𝑭𝒇𝒍𝒊𝒑 

Mean Max 

TPS*  0.59/0.59 1.19/1.19 0/0 

Bayesian* 0.86/0.86 1.66/1.66 1/0 

D-Demos  1.77/1.77 2.54/2.54 0/0 

DRRM* 0.44/0.44 0.97/0.96 0/0 

Table 1. Comparing registration performance relative to the ground truth. Each cell has two values, for the low and 

high fMRI noise conditions, respectively. Landmarks (the circled positions in Fig. 4) were used if the method accepts 

them (marked with "*" symbol); We conducted the same experiment in both noise settings. The results are separated 

by “/”. 



We found that (1) DRRM achieved the smallest registration displacement error and ensured the 

diffeomorphism (𝐹௙௟௜௣ ൌ 0) in both conditions; (2) TPS, which moves the landmarks to match targets 

and interpolates the rest of the maps by smooth spline, was the fastest method. However, its precision 

was dominated by the quality of the landmarks but not the visual coordinates for the rest of the region; 

(3) The D-Demos method can ensure diffeomorphic results for image registration. However, distortions 

may be introduced by treating the visual coordinates as two separate images and registering them 

iteratively; (4) The Bayesian method was proposed specifically for retinotopic registration. However, it 

had many tuning parameters, and it is difficult to achieve diffeomorphic registration with small errors.  

3.2 Human Retinotopic Template 

The group-average retinotopic map from the HCP group was cut and conformally mapped to the 2D 

parametric disk (Figs. 5ab), i.e., 𝑢 ൌ 𝑐ሺ𝑉 ሻ. It formed a closed region in the fsLR sphere. Let the mapping 

from cortical surface to the fsLR sphere be 𝑉௦௣௛௘௥௘ ൌ 𝑔ሺ𝑉 ሻ, then the mapping from fsLR to the disk is 

given by ℎ ൌ 𝑐 ∘ 𝑔ିଵ, which maps from the fsLR sphere to the disk. We then fixed ℎ and ℎିଵ so that 

subjects’ retinotopic maps can be mapped to the same disk with Freesurfer’s spherical registration.

 

Figure 5. The Human Retinotopic Template (left hemisphere). (a) decoded polar angles of the group-average HCP 

retinotopic map in the disk domain; (b) decoded eccentricities of the group-average HCP retinotopic map in the disk 

domain, (c) BW’s retinotopic model in the 2D domain, (d) the final template, (e) the template on the fsLR sphere. 

We then transferred BW’s retinotopic model (defined on the fsaverage sphere) to the fsLR space 

(by a rotation) and mapped it to the 2D disk by ℎ (Fig. 5c). After registering the flattened BW retinotopic 

model (Fig. 5c) to the average HCP retinotopic map (Figs. 5ab), we obtained a new retinotopic model 

(Fig. 5d), which was our template and can be projected back to the “fsLR” sphere (Fig. 5e) by ℎିଵ.  

3.3 Registration of the retinotopic maps in HCP 

We applied DRRM to register individual subject's V1/V2/V3 retinotopic maps in the HCP dataset to the 

template. The results for the first observer’s left hemisphere are shown in Fig. 6. Specifically, the 

subject’s raw pRF results (Figs. 6ab) were registered to the template (Fig. 5d) using DRRM. The 

registered results are shown in Figs. 6cd. 

 

Figure 6. Before and after registration for the first observer: (a) the eccentricity of first subject, (b) polar angle of 

first subject, (c) registered polar angle, and (d) registered eccentricity. In (c)(d), data with eccentricity >8° are 

removed for clear comparation (since subjects’ max eccentricity is 8°).  



Method 𝑑|𝑣| 𝐹௙௟௜௣ RMSE 𝑝௖ AIC 

Raw 3.19844 0 1.15413 0.277 926.628 

TPS* 3.83371 0 1.11658 0.297 905.461 

Bayesian* 7.77147 23 1.14420 0.217 924.339 

D-Demos 3.49798 0 1.10149 0.315 896.865 

DRRM (proposed) 2.57908 0 1.09772 0.328 885.839 

Table 2. Comparing registration performance by registration error, predicting RMSE, Pearson Correlation, and AIC 

metric in V1/V2/V3 for the first subject. Landmarks/anchors are given for method marked with "*" symbol. 

Tab. 2 lists performance metrics of five registration methods. The “Raw” method did not touch the 

2D positions of the subjects’ retinotopic maps and directly used the template’s visual coordinates. Since 

the HCP’s retinotopic data has been pre-aligned by the MSMALL pipeline (Glasser et al. 2013), the 

“Raw” results are in fact from Multimodal Surface Matching (Robinson et al. 2018). DRRM achieved 

the minimum 𝑑|𝑣| , and provided the best fit to the BOLD time series (AIC=885.8 vs AICs>896).  

 We also applied DRRM to the V1/V2/V3 retinotopic maps of the first five observers in the HCP 

dataset. The results are listed in Tab. 3. Registered retinotopic maps with DRRM fit the fMRI time series 

better than the “Raw” method in 9 out of 10 instances. The reduced RMSE from the DRRM fits means 

that the registered visual coordinates were closer to the original pRF solutions.  

 

HCP 

Observers 
𝑑|𝑣| 𝐹௙௟௜௣ 

RMSE 𝑝௖ AIC 

Raw Reg. Raw Reg. Raw Reg. 

Observer 1 (L) 3.198 0 1.21750 1.19309 0.212 0.232 958.730 940.923 

Observer 1 (R) 1.806 0 1.18928 1.14984 0.255 0.299 943.992 921.975 

Observer 2 (L) 3.769 0 1.25944 1.19427 0.125 0.198 984.375 949.851 

Observer 2 (R) 2.586 0 1.23543 1.22117 0.165 0.180 969.625 962.295 

Observer 3 (L) 2.764 0 1.27915 1.27349 0.144 0.173 993.547 991.139 

Observer 3 (R) 2.796 0 1.20621 1.19763 0.209 0.240 958.584 952.908 

Observer 4 (L) 3.213 0 1.23915 1.13653 0.179 0.287 972.463 912.921 

Observer 4 (R) 3.167 0 1.23483 1.27859 0.175 0.130 967.670 993.482 

Observer 5 (L) 2.598 0 1.20925 1.13850 0.252 0.315 959.236 917.050 

Observer 5 (R) 2.698 0 1.14223 1.13958 0.286 0.304 912.874 912.342 

Table 3. Performance of DRRM-registered retinotopic maps of the first five observers in the HCP retinotopy dataset 

relative to “Raw” retinotopic maps in V1-V3 (7T). 

3.4 Improving 3T Retinotopic Maps 

We also applied DRRM to the Studyforrest retinotopy dataset (Sengupta et al. 2016). Results for the first 

subject are shown in Fig. 7. The raw retinotopic eccentricity (Fig. 7a) and polar angle (Fig. 7b) results 

were drawn on the inflated surface for the first subject’s left hemisphere. Then the results were transferred 

to the parametric disk (Figs. 7cd). After the registration, we updated visual coordinates for the subject 

(Figs. 7efgh).  

  



 

Figure 7. Retinotopic map on the left-hemisphere of the first observer in Studyforrest retinotopy dataset (Sengupta 

et al. 2016). (a) eccentricity map, (b) polar angle map, (c) eccentricity map on the disk, and (d) polar angle map on 

the disk. (e)-(h) shows the registered results correspondingly.  

The performance metrics of DRRM-registered and the raw retinotopic maps of the first five 

observers are listed in Tab. 4. The raw retinotopic maps were inferred from Freesurfer’s registration 

sphere.  We found no flipping triangles, indicating that DRRM was diffeomorphic. Registered retinotopic 

maps with DRRM fit the fMRI time series better than the raw retinotopic maps in 7 out of 10 instances. 

The reduced RMSE from the DRRM fits means that the registered visual coordinates were closer to the 

original pRF solutions.  The results suggest that the DRRM-registered retinotopic maps fit the fMRI time 

series better than structurally registered retinotopic maps.  

 

Studyforrest 

Observers 
𝑑|𝑣| 𝐹௙௟௜௣ 

RMSE 𝑝௖ AIC 

Raw Reg. Raw Reg. Raw Reg. 

Observer 1 (L) 12.296 0 1.3715 1.3531 0.041 0.053 209.235 207.428 

Observer 1 (R) 12.226 0 1.1966 1.1536 0.127 0.186 191.380 185.485 

Observer 2 (L) 12.169 0 1.3980 1.3493 0.016 0.013 211.553 206.640 

Observer 2 (R) 12.432 0 1.2992 1.3388 0.098 0.041 201.517 204.709 

Observer 3 (L) 12.828 0 1.3938 1.3775 -0.004 -0.005 211.007 209.378 

Observer 3 (R) 11.953 0 1.3150 1.3028 -0.021 -0.015 202.969 201.753 

Observer 4 (L) 12.550 0 1.3956 1.4172 -0.007 -0.022 211.184 213.208 

Observer 4 (R) 11.604 0 1.3124 1.3058 0.049 0.059 203.362 202.649 

Observer 5 (L) 10.892 0 1.3658 1.3743 0.047 0.002 208.607 209.172 

Observer 5 (R) 11.184 0 1.3098 1.2805 0.024 0.067 202.630 199.730 

Table 4. Performance of DRRM-registered retinotopic maps of the first five observers of Studyforrest retinotopy 

dataset (Sengupta et al. 2016) relative to structurally registered retinotopic maps V1-V3 (3T). 

 

4. DISCUSSION  

In this work, we proposed a novel Diffeomorphic Registration for Retinotopic Maps (DRRM) to 

simultaneously register retinotopic maps of multiple visual regions. We introduced the Beltrami 

coefficient to ensure diffeomorphism in registering the visual coordinates of individual subject’s 

retinotopic maps to the template. We applied DRRM to synthetic, and real 7T and 3T retinotopic map 



datasets. We found that DRRM can preserve the diffeomorphic condition with optimized smoothness. 

Because we reduced unnecessary constraints and quantified the diffeomorphic condition in a more 

fundamental way, our registration method had more flexibility to align the subjects’ retinotopic maps to 

the template, compared with the spring-mass-damp system. Compared with D-Demons, the 

diffeomorphic space is favored in retinotopic maps: because retinotopic maps are approximately 

conformal (Schwartz 1977), the Beltrami coefficient is a good formulation after we conformally map the 

cortical surface to the 2D disk. In addition, DRRM was validated by the improved goodness of fit to the 

BOLD time series from both 7T and 3T retinotopy datasets. The goodness of fit metrics evaluates the 

performance of registration methods in terms of their ability to account for measurements. To our best 

knowledge, this is the first time that they are used to evaluate retinotopic map registration methods.  

One major advantage of diffeomorphic registration is the preservation of the topological condition 

(Tu et al. 2020b):  nearby neurons have receptive fields at nearby locations on the retina  (Wandell et al. 

2007). The raw pRF results cannot ensure such condition. Aligning a subject’s retinotopic map to a 

topological template would make the post-registration retinotopic topological and make it possible to 

accurately quantify properties of the retinotopic maps, including cortical magnifications, angle 

distortions, boundary differences, etc.  In addition, diffeomorphic registration can be used to 

automatically infer the boundaries of the visual areas, avoiding tedious and error-prone manual labeling. 

Moreover, because most visual boundaries are provided by structural registration with Freesurfer, some 

of the visual areas may be misplaced and eventually hidden after averaging. A diffeomorphic registration 

can emphasize retinotopic features and enable better identification of visual areas (Glasser and van Essen 

2011).  

There are numerous imperfections in retinotopic map data, arising from many sources, including 

partial volume effects of fMRI, eye movements during the experiment, and various sources of 

physiological and environmental noise. The question is: Does registration really improve the quality of 

retinotopic maps? This is a fundamentally challenging question. From the goodness of fit perspective, a 

method that accounts for more variance of the fMRI time series is better. However, over-fitting can be 

achieved with more complex models. Because it improved the goodness of fit without increasing the 

number of parameters compared to the pRF model and generated registered retinotopic maps that satisfy 

the topological condition (Wandell et al. 2007), we conclude that DRRM could improve the quality of 

retinotopic maps. With more accurate registration, our work may improve the interpretation of low-

quality retinotopic maps and facilitate adoption of retinotopic maps in clinical settings.   

 Despite the promising results, there are two caveats in our work. First, the retinotopic template is 

based on the prior knowledge about the visual regions. To our knowledge, there are other retinotopic 

templates with different topologies (e.g., Wang et al. 2015). These templates have different visual area 

delineations in higher-level vision areas. In future, we need to adopt the same framework with different 

templates to identify the best template. Second, we have run Benson and Winawer’s code with our data 

without tuning the hyper-parameters in the Bayesian registration method (Benson and Winawer 2018). 

Therefore, their results might be improved after more parameter tuning. Even so, the proposed DRRM 

method reduced some redundant constraints associated with edge shrinkage, angle shrinkage, and face 

shrinkage in the Bayesian registration framework. 

 

5. CONCLUSIONS AND FUTURE WORK 

We proposed a DRRM framework to simultaneously register retinotopic maps of multiple visual regions. 

We introduced Beltrami coefficient to monitor and maintain the topological condition, designed an 



iterative algorithm to achieve both diffeomorphism and topological condition preservation, and 

conducted extensive experiments to compare DRRM with other retinotopic map registration methods 

with different testing datasets. Compared with the state-of-the-art methods, DRRM achieved better 

accuracy and provided better fits to BOLD fMRI time series. In future, we plan to further improve the 

retinotopic template based on our new registration results. Furthermore, with the refined registration 

results, we will develop a hierarchical Bayesian approach (Lu and Dosher 2013; Molloy et al. 2018) to 

integrate information at both individual and population levels and/or across multiple visual areas. 
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Figures

Figure 1

Illustration of a retinotopy experiment and the registration process: (a) visual stimuli, (b) the visual
coordinate system, (c) structural MRI, (d) raw fMRI volumes, (e) preprocessed fMRI volumes, (f) cortical
surface extracted from structural MRI with projected fMRI signals, (g) a decoded retinotopic map, (h) a
raw retinotopic map projected on a �at surface, and (i) a registered retinotopic map.

Figure 2

Illustration of several spaces and registration in the parametric space (the template sphere is rotated for
illustration purpose.)



Figure 3

Illustration of a mapping function and the derivative computation. (a) an illustration of the mapping
function in the discrete domain, and (b) divergence approximation for a vertex.

Figure 4

Template and Subject Retinotopic Maps (synthetic data): (a) The prede�ned template; (b) noiseless
retinotopic map of a subject; (c) retinotopic map of a subject with weak noise (PSNR = 20); (d) retinotopic
map of a subject with strong noise (PSNR = 10); (e) ground truth displacement. Red curves are
eccentricity contours, black curves are polar angle contours, and some landmarks/anchors are marked in
(a)-(d).



Figure 5

The Human Retinotopic Template (left hemisphere). (a) decoded polar angles of the group-average HCP
retinotopic map in the disk domain; (b) decoded eccentricities of the group-average HCP retinotopic map
in the disk domain, (c) BW’s retinotopic model in the 2D domain, (d) the �nal template, (e) the template on
the fsLR sphere.

Figure 6

Before and after registration for the �rst observer: (a) the eccentricity of �rst subject, (b) polar angle of
�rst subject, (c) registered polar angle, and (d) registered eccentricity. In (c)(d), data with eccentricity >8°
are removed for clear comparation (since subjects’ max eccentricity is 8°).



Figure 7

Retinotopic map on the left-hemisphere of the �rst observer in Studyforrest retinotopy dataset (Sengupta
et al. 2016). (a) eccentricity map, (b) polar angle map, (c) eccentricity map on the disk, and (d) polar angle
map on the disk. (e)-(h) shows the registered results correspondingly.


