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ABSTRACT 
Intuitive human-robot collaboration requires adaptive modalities 
for humans and robots to communicate and learn from each other. 
For diverse teams of humans and robots to naturally collaborate 
on novel tasks, robots must be able to model roles for themselves 
and other team members, anticipate how team members may 
perceive their actions, and communicate back to team members to 
continuously promote inclusive team cohesion toward achieving a 
shared goal. Here, we describe a set of tasks for studying mixed 
multi-human and multi-robot teams with heterogenous roles to 
achieve joint goals through both voice and gestural interactions. 
Based around the cooperative game TEAM3, we specify a series of 
dyadic and triadic human-robot collaboration tasks that require 
both verbal and nonverbal communication to effectively 
accomplish. Task materials are inexpensive and provide methods 
for studying a diverse set of challenges associated with human-
robot communication, learning, and perspective-taking. 

CCS CONCEPTS 
• Computing methodologies → Cognitive robotics; Spatial 
and physical reasoning; Reasoning about belief and knowledge; 
• Human-centered computing → Interface design 
prototyping; Natural language interfaces; Collaborative 
interaction.  
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Figure 1: In the game TEAM3, three players with distinct 
roles work together to build a structure. Each role requires 
different skills that make TEAM3 an interesting challenge 
for triadic multi-human and multi-robot collaboration. 

1 INTRODUCTION 
The potential for multi-human multi-robot teams to form and 
collaborate on novel open-ended tasks offers both great 
opportunities and challenges [1]. For example, effective disaster 
response requires a diverse set of human expertise that could be 
supported by a variety of robot collaborators performing tasks 
such as search, rubble removal, structural inspection, medical 
support, evacuation, and logistics [2]. When time is critical, robots 
will be expected to adaptively respond to evolving team 
composition, changing priorities, and task requirements. To 
address this, robots need to have a representation of the perceived 
mental model of humans collaborators – an artificial theory of 
mind [3]–[5]. To determine the mental models of teammates 
through natural interactions, a language-capable robot must 
communicate effectively to establish common ground for 
collaboration [6]. For these interactions to be inclusive, robots 
must be able to adapt their approaches for communication and 
task allocation to meet the individualized needs of their teammates 
[7]–[11].  
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To develop and evaluate approaches for robust natural 
communication, we sought a collaborative task that requires 
teamwork with distinct roles that currently available robots could 
perform if they were provided sufficient communication and 
learning skills. Furthermore, we sought an inexpensive and easy to 
implement task to enable scalable collection of video data sets for 
machine learning. Here, we describe how materials from the 
collaborative tower building game TEAM3 [12] may be used to 
study communication and learning strategies in teams. Briefly, 
TEAM3 is played in groups of three players, with each player 
taking on one of three roles: the Architect, who knows what tower 
the team must build but can’t speak; the Builder, who needs to 
build the tower but can’t see; and the Supervisor in the middle who 
must facilitate communication between the two (Fig. 1).  

Using TEAM3, human and human-robot collaboration can be 
studied using variously constrained communication (e.g., speech, 
gesture) and sensing (e.g., vision, listening, touch) modalities. We 
specify a set of dyadic and triadic interactions using TEAM3 for 
incrementally developing capabilities that would enable robots to 
participate in TEAM3. Finally, we describe a prototype 
implementation of a TEAM3 interaction using the robot Sawyer.  

2 RELATED WORK 
A fundamental aspect of communication is the ability to refer to 
objects [13]. Referring expression generation (REG) is a core 
component of many natural language generation systems [14]–
[16]. When the robots’ task domain can be defined, such as in 
warehouse logistics, natural language referring expressions can be 
interpreted and mapped to task specifications [17]. To perform 
new tasks in more open and dynamic environments, robots will 
need to be able to learn relevant information on the fly from 
humans, as in interactive task learning  [18], [19]. For robots to 
communicate effectively during task learning and execution, 
research has been devoted to more challenging aspects of open-
world REG [20]. This includes strategies for using context such as 
spatial relationships [21]–[23] and affect [24], perspective taking 
[25]–[27], and autonomously handling misinterpretations and 
ambiguities [28]–[30]. Interactive visual grounding of referring 
expressions (INGRESS) achieved object manipulation using natural 
language with perspective correction and interactive 
disambiguation unconstrained by object categories or expressions  
[31]. Language-conditioned learning (LANCON-LEARN) [32] uses 
an attention-based approach to learn new manipulation skills 
based on reasoning about relationships between skills and task 
objectives through natural language and interaction. ProgPrompt 
leverages a programmatic large language model prompt structure 
to enable plan generation across situated environments, robot 
capabilities, and tasks [33].  

In addition to speech, the ability to recognize and produce 
nonverbal communication, such as gestures and eye gaze, can be 
used to reference objects and facilitate understanding between 
humans and robots. For example, robotic co-verbal gesture can 
increase listener attention and memory recall [34]. Implicit 
nonverbal communication can positively impact understandability 
of the robot, efficiency of task performance, and robustness of 

errors that arise from miscommunication [35]. Eye gaze can enable 
implicit communication, such as turn-taking cues, between 
humans and robots [36]–[40]. To build a large dataset of human 
gestures, charades can be used as a playful method to allow a robot 
to optimize its own gesture production and recognition abilities 
[41]. Personalized learning of gestures can also be achieved with a 
dialogue interaction [42]. 

For robots to learn new tasks from a human, robots must be able 
to develop a generalizable understanding of the task specification 
intended by the human and then be able to plan a sequence of 
actions to achieve task goals in the world. For training and 
evaluation of task learning and autonomous planning, block-based 
tower building provides a sequential task that is well-suited for 
HRI research. For example, tower building has been used to study 
goal inference based on past experiences and present context [43], 
flexible human-aware task planning [44], preferred interaction 
style with robots [45], the impact of a robot’s allocation behavior 
on interpersonal dynamics and collaboration in groups [46], the 
influence of robot emotion expressions [47], and human linguistic 
forms to refer to objects that cannot be seen at the time of 
reference [48]. A multimodal reinforcement learning framework 
leveraging gestures and speech to communicate intention was 
utilized to collaboratively build a Jenga tower [49].  

3 TASK GOALS 
Our task design goal was to identify a collaborative task that could 
be used to: 1) facilitate the collection of a corpus of data on a 
collaborative construction task with both verbal and nonverbal 
object referring; 2) evaluate the performance of robots in a task 
that requires them to perform a specific role in a team through 
varying combinations of verbal and nonverbal communication and 
task performance. To better facilitate crowdsourced video 
collection of humans performing a task, we sought a game that 
was inexpensive. By utilizing an existing game, we could start to 
leverage video that was already available online from the gaming 
enthusiast community. Importantly, we wanted a game with rules 
that were specifically designed for cooperation, as opposed to 
competition. This was to avoid the need to modify instructions, 
which could lead to confusion and not allow us to leverage 
existing video available online.  

To make the task feasible for current robots, we sought a game 
with pieces large enough to easily manipulate with a robotic arm 
with a gripper end-effector. The game should require object 
manipulation, including changes in object orientation, without 
requiring excessive fine motor control, dexterity, or balance. This 
was to help limit the need for extensively precise robotic control 
(e.g., assembling a house of cards) and maintain focus on higher 
level manipulations (e.g., “place object X upside-down on the left 
half of object Y…no no, not that far left”). Games that required 
tossing and catching were also avoided so precisely timed actions 
would not be necessary. Finally, we sought a game that required 
more than two players, to investigate non-dyadic interactions, 
without requiring more than 6 players, to avoid the challenges 
associated with recruiting large groups of people. From these 
requirements, the cooperative game TEAM3 was identified.  

92



TEAM3 Challenge                                                                                                                                           HRI '23 Companion, March 13–16, 2023, Stockholm, Sweden 
 

 

4 TASK AND TASK VARIANTS 

4.1 Task Description 
Each TEAM3 set includes two sets of five pieces – a pink X-shaped 
piece, a black T-shaped piece, a green S-shaped piece, a blue L-
shaped piece, and a yellow W-shaped piece. Each piece’s shape is 
composed of a set of 1×1-inch cubes, ranging from 3-5 cubic units. 
TEAM3 includes a set of “blueprint” cards that depict towers 
composed of a subset of pieces (for example, see Fig. 2 goal 
structure). Standard blueprints have only “flat” towers, where 
pieces stack so all cubic units are aligned in two dimensions. 
TEAM3 also includes three role cards – Architect, Supervisor, and 
Builder. Players select role cards before each round. 

At the start of each round, the Architect draws a blueprint card 
that is kept hidden from the other players. The Builder closes their 
eyes and the game pieces are shuffled around on a table so they 
are within easy reach of the Builder. The Architect starts a 3-
minute timer and begins the round by gesturing to the Supervisor, 
who will speak to the Builder. During gameplay, the Architect can’t 
speak or make any verbal sound, and must only communicate in 
gestures. Gestures may include hand signals, facial expressions, 
clapping, etc. However, the Architect is not permitted to point at 
any construction piece on the table. The Supervisor interprets 
Architect gestures and may provide the Builder with verbal 
instruction. The Builder builds the tower with their eyes closed, 
following the Supervisor’s instructions. 

4.2 Team Variations 
For variations of TEAM3 where a robot may take on one or more 
TEAM3 role, we define each variation as a set T containing players 
PJ, where player P is an element of the set {H, R}, with H = a 
human player and R = a robot player, and J is the set of jobs (i.e., 
TEAM3 roles) that player has. More precisely, J is a nonempty 
subset of {A, S, B} where A = Architect, S = Supervisor, and B = 
Builder. Thus, T = {HA, HS, HB} represents standard TEAM3, with 
three humans having exactly one job each (n.b., set notation 
omitted around elements of J for brevity). If we prevent any two 
players in T from having the same job and require all jobs be 
assigned to someone, then there are two sets with only one player, 
twelve dyadic team sets, and eight triadic team sets.  

4.3 Dyadic Teams 
For dyadic teams, there are three job set pairings (Table 1):  

Architect-Supervisor and Builder: In this pairing, the first player 
knows the target structure and must communicate that 
information to the second player to build. While the traditional 
Architect could only use nonverbal gestures, the Architect-
Supervisor can communicate verbally, as the traditional Supervisor 
has this ability, and we suggest abilities be additive in this case. 
When a robot is Architect-Supervisor, it must guide a human who 
can’t see to build the tower using verbal communication. When a 
robot is Builder, it builds the tower following human speech and 
without optical sensors.  

Architect and Supervisor-Builder: In this pairing, the first player 
knows the target structure and must communicate to the second 
player through gestures. If abilities are additive, the second player 
can speak and see while building the tower, although a potential 
variation could allow the Supervisor-Builder to see the gestures of 
the Architect, but not be able to see the tower they were building. 
When a robot is Architect, it must guide the Builder to build the 
tower using only gestures. When a robot is Supervisor-Builder, it 
builds the tower following Architect gestures, with optical sensing 
potentially limited to viewing the Architect but not the blocks. 

Supervisor and Architect-Builder: Here, the Architect-Builder knows 
the goal structure but cannot see the game pieces. Restricting the 
Architect-Builder from communicating verbally to the Supervisor 
could be interesting to consider. 

4.4 Triadic Teams 
Triadic teams can be categorized by the number of robots involved 
(Table 2). Considering a robot in each role: 

Robot as Architect: The robot provides gestural feedback to the 
Supervisor on how to guide the Builder. The robot Architect will 
need to adjust gestural feedback based on both how the Supervisor 
is interpreting its gestures, as well as the state of the Builder.  

Robot as Supervisor: The robot interprets Architect gestures to build 
an internal model of what the tower should be, and then provides 
the Builder with instructions for how to achieve that. The robot 
Supervisor will need to adapt its instructions to Builder actions if 
the Builder’s actions are not producing a tower that matches the 
robot’s internal model of what the tower should be.  

Robot as Builder: Robot’s actions are driven by Architect speech. 
However, as the robot Builder acts, if it maintains an internal 
model of the tower’s state, it will be able to avoid collisions and 
understand commands such as placing a block atop another.   

Table 2: Triadic (“Three-Player”) Teams 

# Robots Team Variants 

0 {HA, HS, HB} 

1 {HA, HS, RB}, {HA, RS, HB}, {RA, HS, HB} 

2 {HA, RS, RB}, {RA, RS, HB}, {RA, HS, RB} 

3 {RA, RS, RB} 

 

Table 1: Dyadic (“Two-Player”) Teams 

P1 P2 Team Variants 

A+S B {HA,S, HB}, {HA,S, RB}, {RA,S, HB}, {RA,S, RB} 

A S+B {HA, HS,B}, {HA, RS,B}, {RA, HS,B}, {RA, RS,B} 

S A+B {HS, HA,B}, {HS, RA,B}, {RS, HA,B}, {RS, RA,B} 
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Figure 2: Speech-based TEAM3-specific interaction flow 
with robot as Builder. 

 

5 PROTOTYPE DEVELOPMENT 

5.1 Motivation 
Having identified TEAM3 as a collaborative task useful for 
studying effective verbal and nonverbal referring expression 
behavior, we propose TEAM3 as a challenge task for 
human/multi-robot and multi-human/robot interactions. To 
demonstrate human-level TEAM3 play, robots must 1) learn how 
to play TEAM3 from human instruction and then 2) be effective in 
any of the three TEAM3 roles. While our longer-term goal is to be 
able to explain TEAM3 to a robot and then evaluate its ability to 
achieve human performance levels, we first sought to establish a 
robot could perform in a TEAM3 role with a domain-specific set of 
actions. We focused on demonstrating a robot in the Builder role, 
using a Sawyer robot (Rethink Robotics) with a microphone and 
speakers to enable voice communication.  

5.2 Interaction Design 
When humans perform the Builder role, they benefit from the 
ability to search for and identify specific blocks from touch alone. 
While we could provide a series of verbal commands to the robot 
to be able to locate and grasp specific blocks on the table, we 
hypothesized the subsequent manipulation of blocks via voice 
commands to a specific orientation to build the tower would be 
time-intensive and frustrating. Rather than have the robot 
continuously manipulate objects live, we utilized Sawyer’s face 
display to show a representation of the robot’s internal model of 
the goal structure (Fig. 2). Using this approach, we propose an 
interaction flow where: 1) the goal structure is specified using 
voice commands on the display screen; 2) once the goal structure 
is complete, the robot’s end effector is guided by voice commands 
to locations of blocks on the table; 3) as each block is reached and 
grasped, knowledge of the orientation of the block is provided to 
the robot by rotating a 3D block model on the display screen to fit 
its actual orientation in the gripper via voice commands; 4) once 
the orientation of the block in the end effector is determined, the 
robot can execute a motion plan to reorient it into its previously 
determined goal position in the target structure.    

5.3 Implementation 
A catkin workspace with Sawyer-specific dependencies [50] was 
setup on a development workstation running Ubuntu 20.04 LTS 
and ROS Noetic [51]. Demonstration code was developed in 
Python 3.2. For speech generation, Amazon Polly was used [52]. 
The child-like voice “Kevin” was selected based on a survey 
administered to eight people, which included three other voice 
choices with names removed. A set of computer speakers were 
affixed to the back of Sawyer’s facial display to play voice clips. 
Similar to [53], we used the Python library SpeechRecognition [54] 
with PyAudio [55] and Google Speech Recognition. To provide 
Sawyer with animated facial expressions, we adapted code from 
[56]. A graphical interface for constructing TEAM3 towers using 
voice commands was developed using Turtle graphics [57]. 

 

5.4 Progress, Challenges, and Next Steps 
Using the face display interface, we can build TEAM3 towers using 
a domain-specific set of voice commands to select blocks, set their 
position and rotation, and confirm when the tower is complete and 
ready to physically construct. Prior to implementing the physical 
block reorientation workflow, we examined Sawyer stacking 
blocks from set positions that didn’t require reorientation. Sawyer 
was successful at building some TEAM3 towers, although blocks 
tended to shift upon release. As we improve placement 
consistency, we intend to develop the interaction workflow 
further in a simulation environment. To demonstrate a {HA, RS, RB} 
interaction with gesture recognition, we intend to incorporate a 
Furhat robot as Supervisor, as in Fig. 1. 

6 CONCLUSION 
We propose using TEAM3 as a tower construction task to collect 
verbal and gestural referring forms and study triadic interactions. 
TEAM3 requires minimal training, setup, and materials while 
demanding communication and coordination that is challenging 
even for humans. TEAM3 may be useful as a benchmarking task 
for both interactive task learning and intuitive human-robot 
communication for object manipulation and multi-task planning. 
TEAM3 variations may be utilized to develop foundational skills 
needed to achieve human levels of play without prior domain 
understanding. TEAM3 may also be useful for evaluating 
approaches for robots to adaptively communicate shared goals 
with teammates. TEAM3 requires this to be done across multiple 
teammates, each with personalized needs and responsibilities. 
Robots capable of adaptive multimodal communication will help 
promote more intuitive and inclusive human-robot teaming. 
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