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Abstract—A generalised solver for the manipulator non-
revisiting coverage path planning (NCPP) problem is proposed in
this paper. Nonlinear manipulator kinematics and the imposition
of task-specific constraints dictate that applying conventional
coverage path planning (CPP) solutions based on 2D template
matching or cellular decomposition schemes on the target sur-
face invariably results in the robot path being an alternat-
ing sequence of task-executing movements and reconfiguring
movements. Likewise, coverage paths designed directly in joint-
space cannot ensure task-space non-repetitiveness. More recent
state-of-the-art works have proposed finite-step optimal NCPP
solutions where singularities are however expressly disregarded.
Directly incorporating singular configurations violates the local
bijectivity and finite-to-one property in the kinematic mapping,
and cannot be properly modelled within existing schemes. This
work leverages “valid” singularities, those that exhibit sufficient
manoeuvrability in suitable dimensions to allow continuation of
the tracking motion, thus further reducing the number of posture
reconfigurations. The scheme assumes a generic representation
of surfaces as discrete meshes, symbolising a null probability
to locate the points corresponding to valid but singular inverse
kinematic configurations, and constructs a practical method to
traverse a singularity without explicitly calculating it. Simulated
and realistic experiments are carried out where the suitability of
the scheme to reduce posture reconfigurations and achieve con-
tinuous coverage motions are compared with existing methods.
Three scenarios have been examined whereby the planner is able
to fulfil motions without discontinuities in all instances.

I. INTRODUCTION

Complete examination of an object’s surface with a non-
redundant manipulator is embodied in automated tasks such
as polishing [27], deburring [31], painting [13] [26] or surface
inspection [19] [14]. The need for non-repetitive coverage
path planning (NCPP) is paramount to avoid retracing in such
scenarios, yet the kinematic relationship of a typical rigid
body manipulator makes mapping between a desired task-
space path and the arm’s joint-space non-bijective, which in
effect drives coverage paths to be traditionally carried out in
the task domain [20] [34]. The result is often undesirable arm

reconfigurations that break up the planned continuity of the
end-effector (EE) path [11].

In further pursuing motions where the manipulator seeks
to minimise the number of imposed reconfigurations, a global
optimal cellular decomposition solution in joint-space has been
proposed that assembles joint-space partitions with minimum
sets [33] [35]. A simple case is illustrated in Fig. 1(a). Points
on the surface can be reached with a variety of robot poses,
which belong to a finite set of configurations (“elbow-up”,
“shoulder-left”, etc). The four solid colour regions shown
illustrate the disjoint sets of poses reachable as a continuous
collection with each configuration. As such, the kinematic
relationship between a connected joint-space set and its task-
space EE pose set is injective, and any arbitrary geometric
coverage path that may be adopted within the region is
guaranteed to be continuous in joint and path spaces.

To find the best visiting path for full object coverage, a
topological graph is created whose elemental cells are drawn
from intersecting the continuous configuration regions (three
cells emerge in this case). A cellular decomposition process
ensues that splits and merges subsets within cells, effectively
transforming the process into that of optimally colouring all
points in the graph with one of the possible colours in a way
that a minimum set is attained, which equates to a path with
the least number of EE lift-offs. The adoption of any coverage
path inside each of the coloured sub-regions will result in a
global path with maximum joint continuity [36].

Existing solutions to the non-redundant NCPP problem have
purposely disregarded singular configurations [33] and their
nearby ill-conditioned configurations [15]. This significantly
reduces the problem difficulty in that kinematics between
joint- and desired task-space poses becomes locally bijective,
thus operating in a finite-to-one scheme. This approach how-
ever removes the associated singular connectivity. In general,
there may exist surface points that are coverable by valid
singular configurations deemed suitable for the coverage task,



(a) NCPP, with full-rank manipulability constraints

(b) Singularity-assisted NCPP, with rank-deficient manipulability
constraints

Fig. 1. The proposed SNCPP over the standard NCPP solver. The optimal
non-redundant NCPP problem seeks to cover all the reachable points on the
surface of an object with minimal manipulator lift-offs. (a) Prior works ignore
singularities, making the manipulator kinematic mapping for the desired
EE poses finite-to-one and locally bijective. Visually, this is like a direct
superimposition of paintable colours onto the graph. (b) In contrast, this work
considers singularities. This is proven to improve joint-space connectivity,
reducing manipulator travelling. Yet the introduction of singularities breaks
local bijectivity and brings new challenges associated with infinite-to-one
kinematic mappings. For more details about the figure refer to the text.

conditioned on arm kinematics, the object’s pose and the
path geometry. This is illustrated by the black line depicted
bridging the configurations in Fig. 1(b). When they exist, these
valid singularities belong to a border set bridging previously
non-singular disconnectable sub-regions, and introduce a pose
transition where the EE does not depart the objects’s surface.

This, however, breaks the local bijectivity of the kinematic
mapping, and imposes an infinite-to-one mapping on those sur-
face points, which has not been considered in existing NCPP
graph solvers. The task of finding NCPP-suitable singularities
is non-trivial, and is only made harder by the discrete set of
mesh points that generally make up an object’s surface repre-
sentation: there is zero probability of identifying a singularity
by calculating the Inverse Kinematics (IK) in the limited set
of surface points. Existing cellular decomposition schemes
are thus not equipped to exploit this advantageous planning
proposition, and a suitable approach must be found able to,
simultaneously a) identify non-singular continuity among con-

figurations in the joint-space, and b) asymptotically explore the
existence–or absence–of suitable singularities between disjoint
sets of valid non-singular configurations. By appropriately
incorporating novel solutions to these two challenges within
the framework of an existing NCPP topological graph solver,
an improved manipulator motion can be proven guaranteed
and finitely solvable.

The novel contributions in this work can be listed as:
1) Generalisation to the NCPP problem whereby valid sin-

gularities given by rank-deficient manipulability-related
constraints can be capitalised on to improve continuity
in the resulting joint motions. The resulting scheme
is termed Singularity-assisted Non-revisiting Coverage
Path Planning (SNCPP).

2) Proof of the topological equivalence between singular-
ities and cells, so that singularities are proven to be
replaceable by cells–an established structure to solve
the NCPP problem. This process transforms the SNCPP
problem into a form amenable to be solved by existing
graph solvers.

3) Proof of the ability of the scheme to leverage singular
IK configurations in an implicit form, without the need
for an explicit calculation, thus overcoming the chal-
lenge of incorrectly identifying joint-space non-singular
connectivity on discrete surfaces.

The remainder of this paper is organised as follows. Sec-
tion II reviews existing literature. Section III sets the SNCPP
problem scope. Section IV briefly reviews the current maximal
continuity graph painting solver. Section V formally analyses
relevant aspects of manipulator mobility around singularities.
The graph model is then generalised to solve the SNCPP
problem on analytic (Section VI) and discrete (Section VII
and Section VIII) surfaces. Experimental results from both
simulation and real-world experiments are then collected in
Section IX, with Final concluding remarks gathered in Sec-
tion X.

II. RELATED WORKS

The manipulator non-revisiting coverage path planning
(NCPP) is an integrated body of the classic coverage path
planning (CPP) problem [5], manipulator kinematics, and
special designing frameworks guaranteeing non-repetitive cov-
erage [32].

Early work on the CPP tasks has mainly adopted a hier-
archical cellular decomposition structure for path generation.
The target region is first partitioned into simple and easily
handled cells [23] [1], which can then be traced with low
level geometric coverage paths generated within each cell [2].
Cellular decomposition approaches address varying optimality
conditions, e.g. regularity of cells [3], applicability to various
kinds of target surfaces [1] or the division of the coverage
task for multi-robot parallel operation [12]. Likewise, dif-
fering aspects of coverage performance have been consid-
ered for geometric coverage path generation, such as time-
to-completion, energy minimisation [30] [18], coverage rate



maximisation [29], uniformity [36], path smoothness [7] or
coverage path updates when unknown obstacles appear [21].

When it comes to the specific object surface CPP with
manipulators, the most utilised coverage algorithms are di-
rectly drawn in the task-space of the object surface, home-
omorphically deforming pre-patterned coverage paths into
task-space target regions [1]. This approach is sometimes
also referred to as tool coverage path planning, rather than
manipulator coverage path planning. Or, as before, partitioning
the surface into cells and designing coverage path within each
cell through these same planar fitting schemes. However, such
coverage paths do not consider manipulator kinematics; the
EE is effectively regarded as the “robot”, thus ignoring any
manipulator-related constraints, and directly operating in the
target region–whether it be the object surface [17], a shell
of 3D points equidistant from the object surface [6] or the
most generic form of a two-dimensional manifold of desired
EE poses–for coverage. Hence they are only applicable when
the object surface is near-flat and suitably contained in size
to be strategically placed within reach in the manipulator
workspace [16]. Otherwise, the EE is inevitably lifted off the
surface, leading to undesirable manipulator pose reconfigura-
tions and coverage task discontinuities. A relatively dense set
of key points to be visited can also be placed strategically
on the surface for the task at hand, and the path searching
problem is solved via e.g. the Generalised Travelling Salesmen
Problem [10]. This is presented in a bush trimming setting
for instance where reaching the desired manipulator postures
for the correct cutting necessitated cumbersome rearrangement
motions, and undesired non-cutting arm readjustment motions
along the path [11].

It is arguable that for surface contact coverage tasks in par-
ticular, the cost incurred in joint discontinuities significantly
outweighs other metrics, e.g. by switching between differing
geometric paths such as boustrophedon [4] and spiral as pro-
posed in [7], or when undesirable transitions between position
and force/torque control [8] [22] [25] become unavoidable.
Redundant manipulators might be used to partly mitigate the
problem of frequent coverage interruption [9]. However, in
complex NCPP scenarios, redundant kinematics still cannot
guarantee the elimination of discontinuities.

More recently, a new scheme has been proposed [32],
where the manipulator NCPP was guaranteed to be solved
with minimum discontinuities. This was reached by con-
structing and enumeratively solving a topological graph of
continuous configuration cells. It was proven suitable to any
generic multiply-connected cells, and optimally solved in finite
steps [33] [37]. However, the authors purposely overlooked
the complex case of singular configurations which can bridge
different sets of non-singular configurations. This is so even
though singular configurations are prevalent and problematic
in most manipulator scenarios beyond the redundant case.
In this instance. an over-actuated manipulator will exhibit
an infinite number of alternate non-singular configurations to
visit during an NCPP motion so that singularity avoidance
algorithms for redundant kinematic systems can be effectively

Fig. 2. Difference between NCPP and SNCPP. Left: consideration of full-
rank manipulability-related constraints leads to the dismissal of singularities,
ensuring a locally bijective kinematic mapping between each connected joint-
space sub-set and task-space [33]. Surrounding ill-conditioned configurations
are also removed, forming a non-zero gap between connected joint-space sub-
sets, denoted as ϵsing. Right: by regarding valid singularities when they exist,
distinct non-singular configuration sub-sets are connected. This introduces
the potential to traverse across sub-sets without discontinuity but sacrifices
the property of local kinematic bijectivity, calling for a new mechanism to
handle singularities.

used to locally bypass singularities [28]. For the rest–the
vast majority of arms–the presence of singularities in a non-
redundant NCPP context essentially render the manipulator
under-actuated at these configurations. The motivation of
this work is observing the usefulness of these singularities
and leveraging them given a manipulation task that does
not require manoeuvrability along all dimensions (diagnosed
by rank degeneration in the Jacobian matrix). The scheme
proposed in this paper is thus able to properly incorporate valid
singularities for NCCP, leading to further lift-off minimisation.

III. PROBLEM STATEMENT

Given a manipulator and a work-cell where the geometry
of any obstacle in the environment is known and invariant, let
the surface of the object be denoted as M . For each surface
point, the EE pose required to visit that point is uniquely
determined, hence the task-space sub-set to be non-repetitively
covered forms a 2-dimensional manifold. For simplicity, we
do not literally differentiate between a surface point and the
unique EE pose required to visit this point. The manipulator
is assumed kinematically non-redundant, meaning that for
each surface point, there exists at most a finite number of
non-singular inverse kinematic configurations. Among these
configurations, only a finite number are valid–meaning they
satisfy all the task-specified constraints (e.g. collision-free,
being able to exert some pre-specified forces, etc.) across all
dimensions, along with other task-specific constraints.

The Non-revisiting Coverage Path Planning (NCPP) prob-
lem is that of finding a sequence of valid non-singular con-
figurations, guiding the tool trajectory to visit all desired
EE poses exactly once. Optimal NCPP solutions are defined
as the resultant paths with a minimum number of coverage
discontinuities. This problem has been proven solved [32] [33].
The Singularity-assisted Non-revisiting Coverage Path Plan-
ning (SNCPP) problem generalises NCPP by allowing for
manipulability-related constraints to be rank-deficient. In this
scenario, singular configurations along with their neighbouring



ill-conditioned configurations may be valid. This introduces
additional joint-space connectivity, potentially enhancing exe-
cution performance with fewer discontinuities compared to the
optimal NCPP solution. The distinct two schemes are visually
depicted by the example given in Fig. 2.

IV. NCPP PRELIMINARIES

This section recounts existing notations and formulations
for finding non-redundant non-revisiting manipulator coverage
paths with a minimum number of EE lift-offs, or discontinu-
ities.

The kinematic relation of a robotic manipulator is written
as:

x = f(q) (1)

where f is a differentiable nonlinear vector function whose
structure and parameters are assumed to be known for any
given manipulator. The above equation can be differentiated
with respect to time as:

ẋ = J(q)q̇ (2)

where q is the (n × 1) vector of manipulator joint variables,
x is the (m × 1) vector of task variables, and J is the (m ×
n) configuration dependent Jacobian matrix (also known as
∂f/∂q). An upper dot denotes time derivative. And we will
denote a single configuration c = q.

Definition 1. (Manipulability) For a joint configuration c,
manipulability W (c) is defined as [38]:

W (c) =

√
det(JJ⊤) (3)

At a singularity, W (c) = 0.

Definition 2. (Valid Configuration) A valid configuration c
satisfies the following:

1) It is collision-free.
2) Point contact between the surface and the EE is estab-

lished.
3) A set of task-specific constraints represented by strict

inequalities are satisfied. The k-th constraint can be
generically written as:

Fk(c) > δk (4)

where {Fk} are assumed to be joint-space continuous
functions and δk is a set threshold.

The validation of constraints may be implicit. For instance,
for a task where the EE is required to horizontally exert a
force greater than 5N, the constraint is verified by computing
the force on each joint. It is deemed satisfied if all joints adhere
to their respective maximum force limits.

Definition 3. (Configuration Space) The set of all valid non-
singular configurations is referred to as configuration space,
denoted by C .

Definition 4. (Colour) A colour is defined as the index of a
path-connected sub-set of valid non-singular configurations in

the configuration space C . Hence C is divided into disjoint
sets,

C = C1 ⊔ C2 ⊔ · · ·CL (5)

The colour of the configurations in Ci is labelled as i. Besides
indexing by numbers, colours may also be referred to as actual
words, “red”, “green”, “blue”, etc.

Please note that for the sake of symbolic consistency, in the
algorithmic sections, even when a singular configuration may
be valid, they remain excluded from C .

Definition 5. (Cell) A cell Vi (where i is its index) is a
maximal path-connected set1 of surface points such that

1) Each point corresponds to a finite number of IK config-
urations.

2) For any two points, their IK solutions are pairwise
continuous, i.e.,

∀ϵ > 0, ∃δ > 0,

∀m1, m2 ∈ Vi, s.t. ∥ m1 −m2 ∥< δ,

∀c1 ∈ IK(m1), ∃c2 ∈ IK(m2), d(c1, c2) < ϵ

(6)

where d(·, ·) is the joint-space distance.

The constraints for configuration validity {Fk} are all strict
inequalities. As such, each cell is an open set.

Each coverable surface point is associated with a finite
set of colours, representing the colours corresponding to its
valid inverse kinematic configurations. By definition, all points
within a cell correspond to the same set of colours, the possible
colours of the cell.

Definition 6. (Edge) An edge Ei is a maximal connected curve
of surface points e shared by the boundary of two cells Vj and
Vk, i.e.,

Ei = Ei(Vj , Vk) = {e|∀ϵ > 0,∃m,m′ ∈ B(e, ϵ),

m ∈ Vj ,m
′ ∈ Vk, j ̸= k}

(7)

where B(e, ϵ) is an open ball centred at e with radius ϵ.

A topological graph is defined as the group of cells {Vi}
equipped with the adjacency of cells specified by edges {Ej}.

It has been observed that in the presence of full-rank manip-
ulability constraints, the non-redundant kinematic relationship
between configuration space and surface (i.e., the desired 2D
manifold of EE poses) is locally bijective. This has been
visually interpreted as the equivalence between painting a
point in the graph and assigning a valid inverse kinematic
configuration to cover this point. Therefore, the NCPP problem
has been modelled in a purely abstract form, painting the
whole graph with a minimum number of coloured regions. For
full details of the enumerative solving procedure see [32] [33].

1The term “path-connected” means every two surface points in the same cell
yield a curve connecting them which is fully in the cell. The term “maximal”
means the cell cannot include any other surface points. All path-connected
surface points outside the cell do not satisfy the specified conditions.



(a) (b) (c)
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Fig. 3. Illustration of the admissible tool motion on an idealised surface
(light blue) at two singular configurations for the UR5, a typical example of a
six-revolute joints manipulator. The robot has three types of singularities and
two examples of wrist singularities are provided where axes 2 (shoulder), 3
(elbow), 4 (the first wrist joint), and 6 (the last wrist joint) are parallel. (a)
Wrist singularity with wrist link 5 perpendicular to the ground. (b)(c) EE can
only move horizontally on the surface, shown as a blue curve. No joint can
control the pitch angle. (d) Wrist singularity with wrist link 5 parallel to the
ground. (e)(f) EE can only move vertically on the surface, shown as a red
curve. No joint can control the yaw angle.

V. SNCPP: CONTINUOUS SURFACES

The distinct characteristics of manipulator configurations
in the vicinity of singularities that give rise to the SNCPP
solution proposed in this paper are hereby formally analysed.

A. Mobility under Rank-Deficient Manipulability Metrics

In the SNCPP problem, manipulability-related constraints
are no longer required to be of full-rank. Instead, they are
assumed to be rank-deficient. This paper employs the trans-
lational manipulability [39] of a 6-DoF serial manipulator for
easy illustration, expressed by

F1(c) =

√
det(J̄J̄⊤) (8)

where J̄ is the top three rows of the Jacobian J. In the
remaining paper, we will still refer to Fk(c) for generality.

Definition 7. (Assistive Point) A surface point coverable with
a valid singular configuration is denoted as an assistive point.

A point covered by a singular configuration may also be
coverable by a finite set of valid non-singular configurations.

B. Admissible Direction to Visit Valid Singularities

A singularity impedes omni-directional movements of the
EE on the 2-dimensional task-space manifold. Having lost
1 DoF, a 1-dimensional null-space simultaneously appears.
However, effortless motion along this null-space dimension is
typically discouraged in a coverage task (for illustration, in a
polishing task this would equate to keeping the tool statically
on the same surface point, which could potentially damage
the surface). Consequently, losing 1 DoF implies that only

motion along the remaining 1D manifold is permitted 2. The
admissible motion at a singularity for the useful case when 1
DoF is lost [24] must thus follow a path on a plane, as proved
next. This is an important observation that will be of relevance
to be able to efficiently traverse through singularities. Please
refer to Fig. 3 for example with the kinematics of a UR5.

Theorem 8. Given a valid singular configuration which has
lost 1 DoF, the movable end-effector direction along the
surface is unique. In other words, all tool paths visiting an
assistive point with a valid singular configuration have the
same unit tangent direction (subject to reversal).

Proof: The explicit formula for the tool path is given by
dimension decomposition. Applying singular value decompo-
sition to J

J = UΣV⊤ (9)

where U, V are orthonormal matrices. The rank of Σ is 5
because the configuration is one-DoF singular, so we denote

Σ = diag(σ1, · · · , σ5, 0), σ1 > · · · > σ5 > 0 (10)

Early work [24] has named the accessible space coordinates
ˆ̇x and the modified joint-space velocity ˆ̇q as

ˆ̇x = U⊤ẋ (11)
ˆ̇q = V⊤q̇ (12)

Then the instant tool motion (i.e., the tool velocity) is exe-
cutable if and only if it occupies the effective rows in the
modified joint space, which is referred to as being restricted
in a sub-manifold:

ẋ is executable ⇔ x satisfies ˆ̇x6 = 0 (13)

This imposes an additional one-dimensional constraint on the
motion direction of the tool on the surface. To reveal this,
denoting

q̇− ≜ V[ˆ̇q1, · · · , ˆ̇q5, 0]⊤, q̇⊥ ≜ V[0, · · · , 0, ˆ̇q6]⊤ (14)

the first 5-DoF modified joint space motion q̇− is effective,
performing the admissible (one-dimensional) tool motion, and
the last velocity component q̇⊥ performs the null motion.

It is noteworthy that whilst the EE may have zero velocity
along the degenerated dimension, it may have non-zero ac-
celeration. In other words, the tangent of the EE trace at the
assistive point must align with the admissible direction, whilst
it can have non-zero curvature.

VI. GENERALISATION OF THE GRAPH PAINTING MODEL

In this section, the SNCPP problem of an object’s surface
with analytic expressions is formally modelled as a topological
graph, and optimally solved with the proposed algorithm. It
will give rise to the central difficulty in seamlessly incorpo-
rating singularities into the existing cell-edge graph structure.

2Evidently, surrendering another DoF means no EE motion is permitted.



A. Traversing Assistive Points

The state-of-the-art (SOTA) topological graph framework
to solve the NCPP problem is unable to consider singularities,
given that the region that assistive points occupy is a zero
area, meaning that the spatial distribution of assistive points
cannot be represented as an open region. They are a point
or a curve of points, which have not been modelled into the
graph. One strategy is representing the assistive point as a cell
instead, as shown by the dotted circle in Fig. 4. It remains to
be proven, however, whether solving the modified topological
graph can yield the optimal solution of the original graph.
Should a singularity be visited, yet not the assistive point but
a cell region be marked as visited, the surface points coverable
by each possible colour could still be covered without an EE
lift-off. This is described by the following theorem.

Theorem 9. (Location of Assistive Point) Any assistive point
is located at the reachable boundary of exactly two colours.

Proof: Let the assistive point be denoted as s, and the
singular configuration visiting s be denoted as cs. The two
colours connectable by the singular configuration are indexed
as i and j. Given Theorem 8, there exists a joint-space
motion cγ whose task-space tool curve γ visits s in the
admissible direction. Hence cγ is the continuous motion in
Ci that connects to cs,

∀ϵ > 0, ∃m ∈ γ ∩B(s, ϵ), s.t.
∃c ∈ IK(m), c ∈ Ci

(15)

Since cs /∈ Ci, s is on the reachable boundary of colour i. The
same is true for colour j.

Next, it is proven that s is not located at the boundary of
other colours. Let Cs be the set of non-singular configurations
that cover s. If Cs is empty, the theorem is proven. Otherwise,
assuming that s can also be visited by N valid non-singular
configurations,

Cs = {c1, · · · , cN} (16)

every cj ∈ Cs must satisfy all constraints,

Fk(cj) > δk, ∀k, ∀j = 1, · · · , N (17)

Given that all constraints {Fk} are strict inequalities and
continuously defined, there exists a joint-space open neigh-
bourhood Uj where all constraints still hold,

Fk(c) > δk +
1

2
(Fk(cj)− δk) > δk,

∀j, ∃Uj , ∀k, ∀c ∈ Uj

(18)

Since the manipulator forward kinematics (FK) is locally
homeomorphic in the vicinity of every non-singular config-
uration, FK(Uj) is also an open set,

cj ∈ Uj ⇒ s ∈ FK(Uj),∀j = 1, · · · , N (19)

and so must be the intersecting area,

s ∈ As ≜ ∩N
j=1(FK(Uj)), ∀j = 1, · · · , N (20)

Fig. 4. Illustration of Theorem 9. Wherever an assistive point of two
colours exists, an assistive cell can be constructed in its vicinity which acts
equivalently to the singularity: it maintains the ability to bridge the two colours
whilst not affecting the connectedness of any other colour.

Fig. 5. Illustration of enumeratively solving a graph with a singularity. Upper
branch: disregarding the singularity, a minimum of 6 regions are required to fill
the whole graph, which is the optimal solution for the normal NCPP problem.
Lower branch: introducing the singularity, the central blue and green regions
are connected, leading to a reduced number of regions, 5, a better solution.

Recalling that N is a finite set, the finite intersecting of open
regions must thus be a non-zero area. For any colour covering
s, it can also cover the whole area As. So let B(s, δ) ⊂ As be
an open ball entirely contained within As, then δ is a non-zero
clearance between s and the reachable boundary of any other
colour. This means that s is not located at the boundary of
other colours.

When assistive points form a curve on the surface, Theo-
rem 9 is still applicable. In summary, an assistive cell can
always exists, as defined by:

Definition 10. (Assistive Cell) For a connected set of assistive
points, the assistive cell is a minimal open region that encloses
the assistive points.

In the Fig. 4 example, the two colours connectable by
visiting the singularity (blue and green) cannot fully cover
all points in the cell, so the possible colours (only one
here, {red}) will be set as the colour of the non-singular
configurations at the assistive point. There could be more in
general.

B. Graph Solver

After the topological graph has been constructed, with the
aid of the assistive cells, connectivity between the two colours
of a singularity is binary, either connecting or disconnecting.
See Fig. 5 for an illustration of the branching in the enu-
merative processes. If the two colours (green and blue in this
case) are assigned to be connected by visiting the singularity,
the assistive cell is marked as “filled”. This prevents other
colours from repetitively visiting the assistive point. After the
graph is fully painted, the number of painted regions is reduced



Fig. 6. Difference between observing connectivity by singularity visiting and
merging colours connectable by singularity visiting. The resulting geometric
coverage path generated in the coverable region of the merged colour cannot
be continuously tracked in joint-space (top branch). Four motion segments
with three reconfiguration motions are required. The preferred graph construc-
tion calls for the correct differentiation of colours whilst correctly observing
the connectivity through a singularity, ending up with 2 reconfigurations.

by 1 if both a blue region and a green region are adjacent
to the assistive cell. If the connection is disregarded, it is
equivalent to regarding the assistive cell as an ordinary cell.
Either way, the remaining part of the graph does not have any
undetermined connectivity derived from singularities and can
be subsequently optimally solved as a regular graph [33].

VII. SNCPP: DISCRETE SURFACES

Unlike the aforementioned SNCPP solution on a continuum,
connectivity between two configurations in a discrete surface
setting is recognised by their joint-space distance. In doing so,
two configurations that lie on opposite sides of a singularity,
therefore belonging to different colours in the analytic case,
may be recognised as a single colour in the discrete case.
This is misleading in that a geometric path between the two
merged configurations will appear as continuous in joint space,
even though they are unconnectable everywhere except at the
singularity. See Fig. 6 for an illustrative example.

Moreover, it is often the case that a small tool displacement
near a singularity requires long joint-space detours, however
continuous without visiting the singularity. This indicates that
two continuous but near-singular configurations (i.e., having
the same colour) may easily develop into large joint-space
displacements. On purely joint metrics they would likely be
wrongly recognised as disconnected configurations, and la-
belled with different colours. Therefore, a specific mechanism
to handle discrete representations for the SNCPP beyond the
continuous analysis is needed to be able to apply the proposed
graph modelling solver.

A. Further Definitions

Some further definitions are required to formally describe
the asymptotic modelling and solving of the NCPP problem
on discrete surfaces. See Fig. 7 for the conceptual illustration
of symbols. Let the set of surface points M be assumed finite,

M = {m1, · · · ,mN} (21)

Fig. 7. Physical meaning of symbols. NCPP (left) and SNCPP (right).

all of which have only non-singular IK solutions {cmij}
Ki
j=1,

where Ki is the number of IK solutions. Thus the configuration
space CD is also a finite set:

CD = {cmij , j = 1, · · · ,Ki, i = 1, · · · , N} (22)

Remark 11. Colour assignment to configurations in the
discrete case is the same as in the continuum surface case,
i.e., two configurations are of the same colour if they can be
non-singularly connected without EE lift-off, regardless of how
their continuity is discretely recognised. Thus decomposition
based on colours for C in Eqn. (5) remains valid. The set of
IK configurations captured from discrete surfaces belonging
to colour i is denoted as CDi.

Definition 12. (Discrete Task-Space Adjacency) The adja-
cency between point mi and mj is denoted as mi ↔ mj ,
determined by the input data. For instance, two vertices of a
mesh are adjacent only when they are the endpoint of an edge.

Definition 13. (Discrete Joint-Space Continuity) The joint-
space continuity of two configurations is judged by a param-
eter ϵcont, i.e.,

c1, c2 are continuous ⇔

{
FK(c1) ↔ FK(c2),

d(c1, c2) < ϵcont
(23)

where d(·, ·) is the joint-space distance.

Definition 14. (Discretisation Resolution) ϵreso is defined as
the maximum distance between the adjacent configurations
belonging to the same colour,

ϵreso = max
c,c′∈CDi,

FK(c)↔FK(c′),∀i

d(c, c′) (24)

ϵreso quantifies how densely the continuous joint-space is
discretised into distant configurations.

Definition 15. (Singular Discretisation Resolution) ϵsing is
defined as the minimum distance between two adjacent con-
figurations belonging to different colours,

ϵsing = min
c∈CDi,c

′∈CDj ,

FK(c)↔FK(c′),i ̸=j,∀i,j

d(c, c′) (25)

ϵsing quantifies how far apart the non-singular configurations
are, which cannot be connected without visiting singularity.



B. Asymptotic Parameter Variations and Valid ϵcont

This subsection provides a proof of a discouraging result:
For a high-resolution discrete surface aiming to obtain more
configurations near potentially existing assistive points (even
without the knowledge of their locations) and achieve a high-
resolution optimal SNCPP solution, a valid choice for ϵcont
does not exist.

Given a surface mesh constructed from sensed data (e.g. an
RGBD camera), ϵreso and ϵsing would end up with some fixed
values, and only ϵcont can be arbitrarily set by the coverage
path planner. The following relations between parameters have
to be satisfied:

1) ϵreso < ϵcont. Otherwise, non-singularly connectable IK
configurations would be recognised as disconnectable
and be labelled as different colours.

2) ϵcont < ϵsing. Otherwise, configurations near a singular-
ity, which are non-singularly disconnectable, would be
recognised as connectable and be labelled as the same
colour.

From 1) and 2), ϵreso < ϵsing is implicitly required. However,
it is proven next that this relation does not hold as the discrete
surface resolution increases.

Lemma 16. As the surface resolution grows, ϵsing → 0.

Proof: (See Fig. 8(a) for illustration). Let the assistive
point be denoted s, and the two colours connectable by visiting
singular configuration be indexed i and j. By Theorem 8,
there exists a joint-space motion cγ whose task-space tool
curve γ visits s in the admissible direction. For an arbitrarily
small threshold ϵ > 0, there exist two points m1 and m2 on
γ whose IK in cγ have different colours, i.e.,

∀ϵ > 0, ∃δ > 0, ∀m1, m2 ∈ γ ⊂ B(s, δ),

∃c1 ∈ IK(m1) ∩ Ci, c2 ∈ IK(m2) ∩ Cj ,

d(c1, c2) <
1

2
ϵ

(26)

Since all constraints {Fk} are given by strict inequalities, there
exists a joint-space neighbourhood of m1 where all constraints
still hold,

∃U(m1), ∀m′ ∈ U(m1),

∃c′ ∈ IK(m′) ∩ Ci, d(c′, c1) <
1

4
ϵ

(27)

The same is also true for m2

∃U(m2), ∀m′′ ∈ U(m2),

∃c′′ ∈ IK(m′′) ∩ Cj , d(c′′, c2) <
1

4
ϵ

(28)

Since U(m1) and U(m2) are non-empty open sets, they
are of non-zero area. Hence with non-zero probability, two
such points m1 and m2 on the surface can be recognised
as adjacent, with a distance between their IK less than ϵ. In

(a) Lemma 16 (b) Lemma 17

Fig. 8. Auxiliary figures.

summary,

∀ϵ > 0, ∃U(m1), U(m2) as defined above
∀m′ ∈U(m1), ∀m′′ ∈ U(m2),

∃c′ ∈ IK(m′) ∩ Ci, ∃c′′ ∈ IK(m′′) ∩ Cj ,

d(c′, c′′) < d(c′, c1) + d(c1, c2) + d(c2, c
′′)

=
1

4
ϵ+

1

2
ϵ+

1

4
ϵ = ϵ

(29)

Thus, with non-zero probability, m′ and m′′ are captured on
the discrete surface, leading to the addition of c′ and c′′ to
CD. Then by definition,

ϵsing ≤ min
c′∈CDi,c′′∈CDj

d(c′, c′′)

≤ d(c′, c′′) < ϵ
(30)

Hence ϵsing converges to 0 when increasing surface resolution.

In contrast to the result just presented, it is hereby proven
that for arbitrarily fine surface meshes, ϵreso does not converge
to zero. This is because of the non-flatness of the configuration
space near singularities: With non-zero probability, two surface
points near an assistive point can be captured, whose IK
solutions belong to the same colour but have a non-zero joint-
space distance.

Lemma 17. As the surface resolution grows, ϵreso ↛ 0.

Proof: See Fig. 8(b) for auxiliary illustration. Let the
assistive point be denoted as s, the valid singular configu-
ration covering s be cs, and the colour connectable to cs
be indexed as i. By Theorem 8, there exists a joint-space
continuous curve cγ whose task-space tool curve γ visits s
in the admissible direction. So for arbitrarily small threshold
ϵ′ > 0 there exists a point m′ on γ whose IK is close to the
singularity,

∀ϵ′ > 0, ∃δ′ > 0, ∀m′ ∈ B(s, δ′) ∩ γ,

∃c′ ∈ IK(m′) ∩ Ci, d(c′, cs) < ϵ′
(31)

And within an open ball centred at c′ with radius 1
2ϵ

′, the
task-space image of the ball, U(m′), is a region surrounding



m′,

∃U(m′), ∀m̄′ ∈ U(m′),

∃c̄′ ∈IK(m̄′) ∩ Ci,

d(c̄′, cs) ≤ d(c̄′, c′) + d(c′, cs) <
3

2
ϵ′

(32)

and U(m′) is of non-zero area, because c′ is non-singular.
Meanwhile, except the admissible direction, s cannot be

visited along other directions. Let there be another task-space
tool curve γ̄ that visits s along another direction. The inability
of continuously tracking γ̄ means the existence of an ϵ′′ gap
between cs and its nearby configurations:

∃ϵ′′ > 0, ∀δ′′ > 0, ∃m′′ ∈ B(s, δ′′) ∩ γ̄,

∃c′′ ∈ IK(m′′) ∩ Ci, d(c′′, cs) ≥ ϵ′′
(33)

And within an open ball centred at c′′ with radius 1
2ϵ

′′, the
task-space image of the ball, U(m′′), is a region surrounding
m′′,

∃U(m′′), ∀m̄′′ ∈ U(m′′),

∃c̄′′ ∈IK(m̄′′) ∩ Ci,

d(c̄′′, cs) ≥ d(c′′, cs)− d(c̄′′, c′′) >
1

2
ϵ′′

(34)

and U(m′′) is of non-zero area, because c′′ is non-singular.
In this case, for any γ̄, we can find a non-zero ϵ′′. Fix ϵ′′,

we set

ϵ′ =
1

6
ϵ′′, ϵ =

1

4
ϵ′′ (35)

then with non-zero probability a discrete surface point m̄′ is
captured from the region U(m′) constructed above, and also,
with non-zero probability m̄′′ is captured from U(m′′). By
definition,

ϵreso ≥ max
c̄′,c̄′′∈CDi

FK(c̄′)↔FK(c̄′′)

d(c̄′, c̄′′)

≥d(c̄′, c̄′′) (for the c̄′ and c̄′′ as defined above)
≥d(c̄′′, cs)− d(cs, c̄

′)

>
1

2
ϵ′′ − 3

2
ϵ′ = ϵ

(36)

Hence ϵreso does not converge to 0 when increasing surface
resolution.

In summary, as the resolution of the input discrete surface
increases, Lemma 16 and Lemma 17 yield{

ϵreso → ϵ∗reso > 0

ϵsing → ϵ∗sing = 0
⇒ ∄ϵcont s.t. ϵ∗reso < ϵcont < ϵ∗sing (37)

Hence an additional strategy is necessary before the correct
topological graph can be constructed on discrete surfaces.

VIII. DISCRETE SNCPP: JOINT-SPACE SEPARATION

A higher-level joint-space separation algorithm is presented
to implicitly leverage singularities in a discrete SNCPP setting.

Fig. 9. Decomposition of the topological graph for singularity traversal.

A. Joint-Space Separation and Valid ϵregu

The problem of incorrect graph initialisation is fundamen-
tally caused by the non-flatness of the configuration space
near a singularity. Configurations close in task-space may
be far in joint-space, leading to the convergence of ϵsing to
zero whilst keeping ϵreso large. A joint-space separation is
introduced to prevent ill-conditioned configurations from being
mixed with other non-singular configurations. This separation
is implemented by setting an auxiliary full-rank manipulability
threshold ϵregu. See Fig. 9 for illustration.

The parameter ϵregu functions similarly to ϵsing, the differ-
ence being that ill-conditioned configurations are not removed.
Besides, the user can arbitrarily set the volume indicating the
extent of ill configurations that should be distinguished. Af-
ter ill-conditioned configurations are excluded, the remaining
configurations are all non-singular and locate on the flat part of
the configuration space, close to the standard NCPP problem.
In this case, ϵsing has a non-zero lower bound regardless
of the surface resolution whilst ϵreso converges to zero with
increasing surface resolution, allowing the user to choose the
most appropriate ϵcont. In summary, after applying the joint-
space separation strategy, ϵ∗sing > 0 whilst ϵ∗reso = 0, which
allows the user to choose a valid ϵcont.

B. Optimal Setting of ϵregu
The exclusion of valid non-singular but ill-conditioned con-

figurations, which are otherwise usable for coverage, results
in the un-coverage of potentially continuously coverable sur-
face regions. Clearly, the fewer ill-conditioned configurations
excluded, the less difference between the coverable regions of
each colour in the approximate normal NCPP problem and
that of the same colour in the SNCPP problem. Therefore, the
optimal solution is achieved when ϵregu is set as its smallest
possible value. In the example in Fig. 10, when ϵregu is set
to 0.14, some configurations with the colour blue and cyan
are excluded, resulting in a large uncoverable hole in the
centre of the circular surface. Whilst constructing the singular
traversability between blue and cyan eventually leads to an
optimal manipulator coverage path without discontinuity, the
ϵregu has been set too large and a smaller value should be
examined.

Fortunately, the setting of ϵregu being too small is easily
identifiable: In the vicinity of a singularity, a configuration
would be assigned a colour different from all its neighbours,
covering a tiny cell, typically containing only one surface
point. Simultaneously, another colour appears to cover the
surrounding points excluding this particular one. Pictorially,
the reachable boundaries of these two colours coincide. In the
example in Fig. 10, when ϵregu is set to 0.05, four of the mesh



(a) ϵregu = 0.05

(b) ϵregu = 0.09

(c) ϵregu = 0.14

Fig. 10. Illustration of different choices for parameter ϵregu.

vertices have IK configurations which cannot be recognised
as connectable to other configurations by the given discrete
continuity threshold. These lead to the creation of four one-
vertex cells in the graph.

A practical binary search strategy is thus derived to find
the optimal ϵregu: determine upper and lower bounds of the
optimal ϵregu, and then proceed to search for the optimal
value in a binary manner. An illustrative example is given
by Fig. 10, where as indicated a value between 0.05 and 0.14
was the suggested boundary arrangement. Iteratively, the mid-
point choice ϵregu = 0.09 is then tested, and validated to still
yield a correct graph representation, setting a new boundary.
The new mid-point finer representation will be tested to assess
whether it becomes a better choice, ϵregu = 0.07 in this case,
and taken as the new boundary if so. Finally, a situation is
reached where further adjusting ϵregu to the middle value of the
bounds does not change the graph representation, indicating
the most suitable value for ϵregu, 0.09 in this example. It is
worth noting that determining the most suitable ϵregu does not
involve enumerative solving of the graph, hence the search
strategy is efficient.

IX. SIMULATED AND REAL-WORLD VALIDATION

Simulated and real-world examinations of the proposed
algorithm are presented to validate the scheme, including
comparisons with competing schemes. The Universal Robots
UR5 robot is used in all cases, except for the initial 2D toy
study described next. To enforce the non-redundant kinematic
setting, the last manipulator joint is kept locked. A coverage
task emulating a finishing/polishing application is adopted
throughout, whereby the EE (not shown in the figures) is a
self-rotating unit with the rotating axis coincident with the
last joint. The desired EE poses are thus perpendicular to
the surface to be polished. As the proposed algorithm does
not explicitly calculate singularity locations, various types of

singularities do arise given the UR5 Kinematics, including
shoulder, elbow and wrist singularities. However, given the
assumption that the 6-th joint sits perpendicular when in
contacts with the object surface (therefore cannot “intrude” the
object whilst traversing singularities), only wrist singularities
may be valid.

A. 2D Case Study

A simple 2-DoF case study is first described step-by-step
to better illustrate the workings of the proposed algorithm,
depicted in Fig. 11. Manipulator self-collision is neglected for
simplicity. Both the continuous and discrete cases are pre-
sented. Let the target EE poses be a curve whose upper part is
a half-ellipse, and the lower part a half-sphere, parameterised
by

α : [0, 2π) → R2, θ 7→ (x(θ), y(θ)) (38)

where
x(θ) =

√
2 cos θ

y(θ) =

{
sin θ, if θ < π
√
2 sin θ, if θ ≥ π

(39)

The manipulator is a two-link planar 2R robot, with link
lengths of 2 and 1. The rank-deficient manipulability constraint
is defined by requiring the EE to have the capability of exerting
a force along the tangent of the trajectory. A circular obstacle
of radius

√
14
16 ≈ 0.23 is placed at ( 12 , 0). As such, with any

non-zero clearance constraint to the obstacle, the manipulator
is unable to reach the rightmost point (

√
2, 0) on the curve.

In this case study, the assistive point is located at (0, 1)
where Joint 1 is π

2 rad. Obstacle avoidance prevents the ma-
nipulator from employing elbow-left configurations to cover
the curve corresponding to the interval (approximately) θ ∈
(5.26, 2π), nor can it use elbow-right configurations to cover
the curve corresponding to (approximately) (0, 1.03). Even
if manoeuvrability along all dimensions was not required,
existing NCPP schemes [32] [33] could only consider purely
non-singular cases. Hence, the valid singularity and a non-
minimal surrounding region must be removed, leading to a
section (around θ = π

2 ) becoming uncoverable, as shown by
Fig. 11(b).

To highlight the advantage of SNCPP, refer to Fig. 11(c).
Assuming the curve has an analytic expression, whether θ2
is greater or less than π is well-determined. Consequently,
“colours” are always correctly assigned to configurations.
Based on Theorem 9, the user can always designate an
open interval surrounding the assistive point as an assistive
cell, such as (π2 − 0.01, π

2 + 0.01), to transform the graph
with singularity back to a normal cell-node graph. In the
enumerative solving of the graph, a branch will be generated
that enforces the assistive cell to connect “red” on the right-
hand-side and “green” on the left-hand-side, ultimately leading
to the optimal solution, without discontinuity, unlike the non-
singular NCPP solution.

Next, we assume that the task-space contour is represented
by discrete data with a 0.01 sample, θ = 0, 0.01, 0.02, ..., 6.27



Fig. 11. Demonstration of a non-repetitive curve visiting using a non-redundant 2 DoF manipulator.

(a) Large ϵregu (b) Middle ϵregu (c) Small ϵregu

Fig. 12. Exclusion of configurations near a singularity conditioned by ϵregu.

(a) Coarse Surface (b) Middle Surface (c) Fine Surface

Fig. 13. Interactions between ϵcont, ϵregu and discrete surface resolutions.

(a discrete sample approximation to 2π − 0.01), where π
2 is

not included in the set. In the absence of an assistive point,
only the non-singular IK solutions are collected. Treating the
problem as a normal NCPP problem with this representation
is not applicable, as illustrated by Fig. 11(d). Section VII
has proven that incorrect assignment of colour is inevitable:
regardless of the value chosen for ϵcont to identify joint-space
continuity, either two non-singularly connectable configura-
tions are regarded as disconnectable, or two configurations
that stay on opposite sides of the singularity are regarded
as connectable. Adopting the proposed joint-space separa-
tion technique, the configurations unsuitable for coverage
are separated, and specifically used for singular transition,
whilst leaving other configurations for coverage, as depicted in
Fig. 11(e). A constrained RRT planner has been utilised in all
the examples shown in this work to find the path bridging cells,
in this case the red configuration on the right-hand-side, and
the green configuration on the left-hand-side, which constitutes
the optimal path without discontinuity.

B. Performance under Various Parameter Settings

From the parameters introduced for the proposed solver,
ϵsing and ϵreso correspond to intrinsic parameters–they are not
manually set. ϵcont determines whether the topological graph

Fig. 14. Simulated object surfaces that include valid singular configurations
(a generatrix of the cylinder, the central point of the saddle surface, and two
points on the rotational surface slope, whose precise locations are however
not captured by the discrete surface) when translational manipulability is
considered.

Fig. 15. Real-world experiment. Top: Four types of ill-conditioned con-
figurations. Middle: (from left to right) topological graphs before and after
joint-space separation, along with the coverable surface regions at four
different non-singular configurations. Bottom: pictures of two non-singular
configurations (wrist-flipped and wrist-unflipped), evidently not non-singularly
connectable, yet both become part of the resultant SNCPP path (please refer
to the supplementary video).

correctly models the SNCPP problem, being either correct or
incorrect. Thus only ϵregu needs to be optimally set, and its
choice is discussed in this section.

The first experiment–a support for the discrete case discus-
sions in Section VIII–illustrates the optimal choice of ϵregu by
running the SNCPP on a cylindrical surface. See Fig. 12 for
an illustration with three different test cases. The generatrix
of the cylinder is perpendicular to the ground, so the section



(a) (b) (c) (d) (e)

Fig. 16. Illustration of a manipulator motion near the singularity. The wrist has rotated for π rad, from a wrist-down configuration to a wrist-up configuration,
but the EE pose changes little.

of the cylinder considered has the same valid singularity at
every height as that of the equator of the sphere illustrated
in Fig. 3. Hence there exist a line of assistive points that
are singularly coverable, coinciding with the said generatrix.
Given the same surface, coverage performance under different
choices of ϵregu is visualised. In each testing case, ϵcont has
been carefully selected such that the joint-space continuity
among discrete configurations is correctly recognised. Large
ϵregu excludes a sizeable area of non-singular configurations
from the blue colour and green colour cells, leading to a
wide gap between their coverage regions. Whilst in all cases
a suitable ϵcont value can be drawn, the smallest ϵregu value
is naturally the best choice amongst them. This leads to the
second experiment, depicted in Fig. 13, where the amount
of excluded configurations for singularity visiting and pose
reconfiguration is examined. The same cylindrical surface
has been modelled with different resolutions. In each testing
case, ϵregu has been chosen to be the optimum, ensuring
the existence of a valid ϵcont for correct graph construction.
Results show that as the surface resolution grows, the region
of excluded configurations becomes restricted to a single mesh
column, the minimal configuration exclusion required by ϵregu,
allowing for asymptotic optimal coverage as the precision of
the discrete surface approaches infinity.

C. Algorithm Comparisons

The proposed coverage algorithm is compared with the
classic boustrophedon [4] motion planner and the SOTA NCPP
solution [33]. Neither of these algorithms is able to deal
with singularities, so for a fair comparison, a small subset of
near-singular valid configurations must be purposely removed.
As such, the remaining configurations are all non-singular,
forcibly introducing an additional lift-off by design, as there
is a need to adopt a different colour for the coverage of the
section. The algorithms are evaluated on four classic non-
planar surfaces: a cylindrical surface, a saddle surface and a
complex rotational surface in simulation, as well as a spherical
object in a real-world setting. The resolution of each discrete
surface is the same for all the algorithms applied. See Fig. 14
for illustration and Table. I for relative statistics. Results show
that the proposed algorithm generates a continuous NCPP
motion without discontinuity in all testing cases with minimal
surface area left for singularity visiting. Also, it establishes
the shortest task execution time and the least traversal motion

TABLE I
ALGORITHMS PERFORMANCE

Object Alg. Lift-offs LReconf LJoint LTask Time

Cylinder
boust [4] 53 409.16 491.87 170.26 1229.68

[33] 2 7.12 74.82 18.99 187.05
Ours 0 1.87 69.57 18.22 173.93

Saddle
boust [4] 10 56.02 218.52 16.15 546.30

[33] 2 11.15 173.95 13.43 434.88
Ours 0 0.23 162.75 12.70 406.88

Rotational
Surface

boust [4] 37 295.81 455.33 68.22 1138.33
[33] 4 29.57 172.86 20.77 432.15

Ours 0 1.50 147.30 10.06 368.25

Sphere
(real-world)

boust [4] 25 66.08 317.66 45.01 794.15
[33] 2 2.48 235.02 30.54 587.55

Ours 0 0.58 233.12 30.30 582.80
LReconf : Reconfiguration length (rad), derived by a constrained RRT.
LJoint: L2-norm Joint-space length (rad).
LTask: Task-space length (m).
Time: Motion time (s).

in the work-cell (revealed by the shortest task-space travelling
distance “LTask” and the fact that the EE never leaves the
surface). In contrast, the competing algorithms require a non-
zero number of reconfiguration motions, and show longer
“LReconf”, “LJoint”, “LTask”, and “Time”.

D. Real-world Experiment

A real-world experiment has been carried out to perform the
coverage task in the frontal (reachable) section of a sphere. See
Fig. 15. The existence of singularity is indicated by the non-
local-bijective assignment of configuration colours, as depicted
in Fig. 15 (middle part, leftmost). Multiple inverse kinematic
configurations of a single mesh vertex are assigned the same
colour, revealing the violation of local bijectivity. Additionally,
tiny cells appeared, indicating incorrect joint-space connectiv-
ity identification. After setting ϵregu, the correct topological
graph appears, depicted next to the incorrect graph. Four types
of configurations distribute almost symmetrically, as the sphere
is symmetric to the manipulator base. The full coverage
involves pose reconfiguration from wrist-down to wrist-up
configurations, imposing the traversal of a singularity, as
shown in Fig. 16. The reader is referred to the supplementary
video for further details and the full real-world motion.

X. CONCLUSION AND FUTURE WORK

This paper has proposed an algorithm to solve the non-
redundant manipulator SNCPP task. Existing solutions to



solve the NCPP problem have purposely disregarded singular
configurations. It is however shown that with the use of rank-
deficient manipulability-related constraints, there may exist
NCPP-suitable singularities whereby disjointed non-singular
configuration sets can be bridged together, thus leveraging
configuration continuity through singularities. SNCPP graph
modelling for continuum surfaces has been formulated and
analysed in detail first. It is proven that by enumerating
all possible connectivities at each singularity, the problem
can be transformed into a singularity-free topological graph
which can be subsequently solved by existing NCPP solvers.
Discussions on the practical strategy in dealing with the
SNCPP on discrete surfaces have also been presented, and
tested on simulated comparisons and a challenging real-world
evaluation, supplemented by a video with further details to
show the validity of the proposed scheme.

Currently, the enumerative solver for graphs without singu-
larities is of exponential complexity. The additional enumera-
tions presented by the introduction of each continuous set of
assistive points will further exacerbate the enumerative space,
hence the overall complexity remains exponential. Tractability
and scalability are therefore areas to be considered in future
work improvements.
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