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Her baby daughter was delivered seven weeks early by emer-
gency Caesarian section and is in critical condition. The girl’s
10-month-old brother, who was in a child restraint in the
backseat, is also in critical condition. The accident happened
when a car, thought to have been traveling at up to 80 kmph
(the speed limit), failed to stop. Days later, another fatality
occurred—this time a truck driver. The truck left its lane,
jumped the guard rail, and hit an embankment. Both acci-
dents happened in fine driving conditions on the city’s edge.

Perhaps the drivers could have avoided these accidents
if they had received a warning about the impending situa-
tion. Almost every driver has experienced a warning from
a passenger, perhaps about an obscured car while merging
or a jaywalking pedestrian in a blind spot. Such warnings
could save countless lives every day.

We believe that, in the near future, such assistance will
come from the vehicle itself. Many vehicles already employ
computer-based driver assistance in the form of antilock
braking systems or adaptive engine management systems.
However, more than a decade after autonomous-system
technologies emerged, systems such as those that Univer-

sität der Bundeswehr Munich1 and Carnegie Mellon Uni-
versity’s NavLab group2 developed have not been realized
commercially. A key distinction between existing systems
and promising R&D systems is driver and vehicle manufac-
turer acceptance. Because a paradigm shift to autonomous
vehicles is unlikely, intelligent-vehicle technologies must
make it to the road by subsystems instead. These subsys-
tems should solve a small, well-defined task that supports,
not replaces, the driver.

At the Australian National University’s Intelligent Vehi-
cle Project, we are developing such subsystems for

• Driver fatigue or inattention detection
• Pedestrian spotting
• Blind-spot checking and merging assistance to validate

whether sufficient clearance exists between cars
• Driver feedback for lane keeping
• Computer-augmented vision (that is, lane boundary or

vehicle highlighting on a head-up display)
• Traffic sign detection and recognition
• Human factors research aids

Systems that perform such supporting tasks are gener-
ally called driver assistance systems. Although we can’t
know the actual circumstances of the accidents we men-
tioned earlier, we believe that implementing DAS could
prevent similar accidents or at least reduce their severity.

DAS goals
Robustness is of paramount importance for systems in

cars driven on public roads. Solutions to sensing and detec-
tion problems must be reliable. Fortunately, roads are de-
signed to be high contrast, predictable in layout, and gov-
erned by simple rules. This makes the sensing problem
somewhat easier, although by no means trivial. Comple-
mentary sensors and algorithms can reduce a catastrophic
failure’s likelihood, but robust systems must incorporate
performance metrics and graceful failure modes from the
start. Systems must be operable in all driving environments.

This means systems must be able to handle urban envi-
ronments as well as highways. Urban environments have
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proved difficult owing to an explosion in the
diversity of road scenarios and the lower
signal-to-noise ratio of content in cluttered
urban scenes. Human drivers rely much
more extensively on predicting the behavior
of other road users and pedestrians in these
scenarios than in highway situations. These
powers of higher reasoning, which often
involve making eye contact with other road
users, are not easily modeled and will not
come easily to AI systems.

As with most computer vision problems,
DAS systems that work 80 to 90 percent of
the time are orders of magnitude simpler to
implement than systems that work 96 to 99
percent of the time. System designers often
face choosing a pedantic system that contin-
ually reports false positives or an undercon-
fident system that must continually admit
that it can’t help at the moment. The ANU
Intelligent Vehicle Project addresses this
dilemma by observing the driver. Monitor-
ing the driver—particularly where the driver
is looking—can avoid many interruptions.
That is, if the driver is looking at a potential
problem or an uncertain area in the road
scene, a warning is irrelevant. This strategy
is based on DAS’s higher goal to assist dri-
vers by informing them of occurrences of
which they might not be aware, not second-
guessing drivers’ choices when they are
paying attention. So, in a complex traffic
scene, as long as the driver has noted an
identified hazard, such as an overtaking car,
or an unpredictable hazard, such as wander-
ing pedestrian, the system gives no alert.

Finally, driver assistance systems must
also be

• Intuitive. Their behavior makes immedi-
ate sense in the context of the standard
driving task.

• Nonintrusive. They don’t distract or disrupt
the driver unless they deem it necessary.

• Overridable. The driver has ultimate
control and can refuse assistance.

The Transport Research
Experimental Vehicle

The Intelligent Vehicle Project’s platform
is the Transport Research Experimental
Vehicle, a Toyota Land Cruiser with a vari-
ety of sensors and actuators that support
various ITS-related research. Vision is the
primary sense used on board TREV, which
incorporates two major systems (see Figure
1). An ANU-developed CeDAR (Cable
Drive Active Vision Robot) stereo active

camera platform, which replaces the rear-
view mirror, monitors the road scene in front
of the vehicle. This system lets the cameras
rotate left and right independently on a shared
tilt axis. To monitor the driver, TREV uses
a dashboard-mounted faceLAB head-and-
eye-tracking system (www.seeingmachines.
com/technology/faceLAB.htm).

TREV also includes the typical range of
vehicle-monitoring devices: Global Posi-
tioning System technology, inertial-naviga-
tion sensing, and speed and steering-angle
sensors. Throttle and steering actuators sup-
port lane-keeping and automatic-cruise-
control-style experiments.

Robustness through intelligent
use of visual information

Despite many impressive past results in
visual processing, no single visual-process-
ing method can perform reliably in all traf-
fic situations. Achieving stable vision-based
subsystems will require executing multiple
image-processing methods and selecting
them on the basis of the prevailing condi-
tions. We have developed Distillation, a
visual-cue-processing framework that lets
us deal with such robustness issues. Distil-
lation combines a visual-cue-scheduling
and data fusion system with a particle filter
(see Figure 2). (Particle filtering is also
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Figure 2. The Distillation visual-cue-processing framework. On the left, visual cues 
execute on the basis of merit and available computational resources; on the right, a
particle filter combines the results.

Figure 1. The Transport Research Experimental Vehicle uses two vision platforms: the
CeDAR (Cable Drive Active Vision Robot) active-vision head and faceLAB passive
stereo cameras.
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known as the condensation algorithm or
Monte Carlo sampling algorithm.)

Distillation lets us

• Combine visual cues on the basis of
Bayesian theory

• Allocate computational resources over the
suite of visual cues on the basis of merit

• Employ top-down hypothesis testing
instead of reconstructive techniques that
are often poorly conditioned

• Integrate visual-cue performance metrics
so that we can safely deal with deterio-
rating performance

• Combine visual cues running at different
frame rates

We have also demonstrated Distillation for
indoor people tracking.3

As part of the Intelligent Vehicle Project,
we have developed two applications that
exploit the Distillation framework: one for
lane tracking and one for obstacle detection
and tracking.

Lane tracking
This application combines visual cues

such as edges for finding lane marks and
road color consistency with cues based on
physical-world constraints such as vanish-
ing points and plausible road shapes. From
these cues, it distills a winning hypothesis
of the vehicle’s position with respect to the
road and the geometry of the road ahead.

The Distillation framework reduces the
lane tracker’s search space. Distillation
concurrently estimates the road width, the
vehicle’s lateral offset from the road’s cen-

terline, and the vehicle’s yaw with respect
to the centerline. The application estimates
the horizontal and vertical road curvature
in the far field.

Figure 3 shows the lane tracker’s output
in several situations using four different
cues.

Obstacle detection and tracking
This application has three main levels.

The most primitive level uses a set of “bot-
tom up” whole-image techniques to search
the image space for likely obstacle candi-
dates. This level primarily uses stereo dis-
parity and optical flow. Although the dis-
parity and flow information are very noisy,
we can combine them to form a 3D depth
flow field (see Figure 4). We can then use
this field to coarsely segment for potential
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Figure 3. Lane tracker results. Yellow lines indicate the estimated lane boundary. Tracking is robust against shadows, obstacles, and
misleading lines on the road.



obstacles using clustering of 3D-flow vec-
tors in the near to medium range.

We can also use color consistency to
derive possible obstacle candidates.

The application injects sets of particles
representing each obstacle candidate into
the particle filter state space inside the Dis-
tillation framework. Distillation then tracks
the obstacles between frames.

Robustness through driver
monitoring

Driver monitoring can

• Reduce false alarm rates.
• Directly detect driver fatigue through head

slumping and prolonged eye closure.4

• Detect driver inattention to the road
scene in general or particular regions.

• Direct DAS attention: “The driver is
looking in a particular direction; why?”

If we augment driver monitoring with
information about the vehicle and traffic
state, we can make additional inferences
about the driver. For example, by correlat-
ing automated lane tracking and driver
gaze monitoring, we can eliminate consid-
erable tediousness from human-factors
style experiments.

Seeing Machines developed the faceLAB
driver-monitoring system in conjunction
with ANU and Volvo Technology Corpora-
tion. FaceLAB uses a passive pair of cam-
eras to capture video images of the driver’s
head. It then processes these images in real
time to determine the 3D pose of the per-
son’s face (± 1 mm, ± 1 degree) as well as
the eye gaze direction (± 3 degrees), blink
rates, and eye closure. Figure 5 shows the
experimental setup.

The results in Figure 6 show a clear
directional bias based on the prevailing
road curvature. That is, when driving on a
road that curves to the right, the driver
focuses more on objects on that side, and
vice versa. Figure 7 shows a strong correla-
tion between the vehicle yaw angle from
the lane tracker and the gaze direction.
That is, the driver is more likely to veer in
the direction is which he or she is gazing.

These preliminary results seem to indi-
cate that some of the assumptions about
driver gaze that we encapsulated into our
subsystems seem justifiable. (For exam-
ple, two common assumptions are that
drivers tend to gaze at the inner edge of
curves in the road ahead and that drivers
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Figure 4. Obstacle detection and tracking: (a) the left image from a stereo pair; (b) a 3D
surface from stereo disparity (the rectangle indicates the region of 3D depth flow); 
(c) 3D depth flow.
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periodically glance [not stare] at the lane
of oncoming traffic.) One such subsystem
under development is a lane-keeping sys-
tem that applies a restorative force to the
steering wheel if the car approaches the
lane boundaries. If the driver looks as if he
or she is preparing to change lanes, the
subsystem reduces this corrective force in
the relevant direction until the lane change
is complete.

The Intelligent Vehicle Project is still in
its early days. Vehicle and pedestrian detec-
tion, blind-spot monitoring, and road-sign
detection are all in the pipeline, as are new
interfacing systems and context-relevant
driver feedback systems such as force feed-
back and auditory signals.

The need for such driver assistance sub-
systems is real. Until each vehicle comes
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Figure 6. Proportions of viewing direction on left and right curvature roads. When 
driving on a road that curves to the right, the driver focuses more on objects on that
side, and vice versa.

Figure 5. The integration of lane tracking with driver eye gaze tracking. The top left
shows the lane tracker’s output. The top right shows the video camera arrangement.
The bottom shows segmentation of the field of view for analysis.
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with its own inbuilt set of vigilant passen-
gers, may the number of lives lost be low.
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Figure 7. Reconciliation between gaze direction and vehicle yaw angle. The driver is
more likely to veer in the direction in which he or she is gazing.
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Mining the Web for Actionable Knowledge

Recently, there is much work on data mining on the Web to discover novel and
useful knowledge about the Web and its users. Much of this knowledge can be
consumed directly by computers rather than humans. Such actionable knowledge
can be applied back to the Web for measurable performance improvement.

For this special issue, we invite original, high-quality submissions that address all
aspects of Web mining for actionable knowledge. Submissions must address the
issues of what knowledge is discovered and how such knowledge is applied to
improve the performance of Web based systems. We are particularly interested
in papers that offer measurable gains in terms of well-defined performance crite-
ria through Web data mining. Topics of interest include but are not limited to

. Web information extraction and wrapping

. Web resource discovery and topic distillation

. Web search

. Web services

. Web mining for searching, querying, and crawling

. Web content personalization

. Adaptive Web sites

. Adaptive Web caching and prefetching

Submissions should be 3,000 to 7,500 words (counting a standard figure or table as 
250 words) and should follow the magazine’s style and presentation guidelines (see 
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