
Abstract
The first chapter proposes a brief historical overview of some of the main 
insights developed over 65 years of research in Artificial Intelligence 
(AI), by introducing the early vision of the discipline (based on a mutual 
collaboration with Cognitive Psychology) and its “paradigm shift”, which 
started from the mid-1980s of the last century. Starting from that period on, 
AI and the interdisciplinary enterprise known as Cognitive Science started 
to produce several sub-fields, each with its own goals, methods, and criteria 
for evaluation. The reasons for the current renewed interest of a cognitively 
inspired approach in AI research are discussed.

When Cognitive Science was AI

Cognitive Science and Artificial Intelligence (AI) are, nowadays, scientific 
research fields each endowed with a specific autonomy and research agenda. 
According to the Oxford Dictionary, the term “Artificial Intelligence” is defined 
as “the theory and development of computer systems able to perform tasks 
normally requiring human intelligence, such as visual perception, speech recog-
nition, decision-making, and translation between languages”, while “Cognitive 
Science” is defined as “the study of thought, learning, and mental organization, 
which draws on aspects of psychology, linguistics, philosophy, and computer 
modelling”.

Despite the current different focuses and objectives of each, these two disci-
plines have many common interests and share the idea of studying the “mind”, 
its emergent properties, and its functioning in natural and artificial systems, 
respectively.

1
COGNITIVE SCIENCE AND ARTIFICIAL 
INTELLIGENCE

Death and rebirth of a collaboration



2  Cognitive science and AI

The history of these two research fields is, in fact, strongly interconnected. 
Research in AI – the birth of which dates back to the now-legendary “Dart-
mouth Workshop” (McCarthy et al., 1955) held in the summer of 19561 – has, 
indeed, been historically inspired by the experimental research in psychology.2 
Notable examples of such intellectual connections are represented by the early 
AI systems/frameworks developed until the 1980s. Most of them, indeed, were 
explicitly designed with a “cognitively oriented” inspiration. In the following 
sections, we briefly present few famous examples of such systems and formalisms 
(though the list is far from being exhaustive) with the aim of introducing some of 
the main modelling paradigms and assumptions that have characterized, and still 
characterize, the research in AI and cognitive modelling. Each of the systems/
formalisms reviewed below can be considered important either because they 
have achieved some important milestones in terms of performances or because 
has introduced some relevant ideas that have fostered meaningful developments 
in the study and the realization of “artificial minds”.

From the general problem-solver to the society of mind: 
cognitivist insights from the early AI era

One of the first developed AI systems, at the end of the 1950s, is the pioneering 
work of Herbert Simon, John Clifford Shaw, and Allen Newell on the General 
Problem Solver (GPS). GPS was a system able to demonstrate simple logic theo-
rems and its decision strategies were explicitly inspired by human verbal proto-
cols3 (Newell, Shaw & Simon, 1959). The underlying idea of this approach was 
that the computer system had to approximate the decision operations described 
by humans in their verbal descriptions as closely as possible. In this way, when 
the program ran on the computer, it would be possible to identify its problems, 
compare them with the description of the human verbalization, and modify 
them to improve its performance. In particular, the GPS system was able to im-
plement a key mechanism in human problem solving: the well-known “means-
ends analysis” (or M-E heuristics). The M-E heuristics implemented in GPS 
works as follows: the problem solver makes a comparison between the current 

	 1	 The organisers of this even were some “giants” of the history of the Computer Science field from 
the last century: John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude Shannon. 
The workshop, during which McCarthy proposed the use of the term “artificial intelligence” 
to identify the new emerging discipline, ran for several weeks and saw the participation of many 
researchers. The notes taken by Ray Solomonoff (one of the participants at the workshop) are 
available online at http://raysolomonoff.com/dartmouth/.

	 2	 It must be noted that, at that time, there wasn’t a “Cognitive Science” field. However, all 
the disciplines (philosophy, psychology, computer science, anthropology, linguistics, and 
neurophysiology) and the cultural elements that would have later be called upon to form the 
interdisciplinary field of “Cognitive Science” were already present.

	 3	 This technique is also known as the “thinking aloud protocol” in the psychological literature 
(Ericsson & Simon, 1980) and consists of recording the verbal explanations provided by people 
while executing a given laboratory task.

http://raysolomonoff.com
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situation and a goal situation; then, it computes and evaluate the “distance” 
between these two states and tries to find, in memory, suitable operators able to 
reduce such difference. Once a suitable operator is found, it is then applied to 
change the current situation. The process is repeated until the goal is gradually 
attained via a process of progressive distance reduction. There are, however, 
generally no guarantees that the process will succeed. This kind of heuristic was 
also used to solve, in the decades to come, problems in a number of domains. In 
order to be executed, in fact, it “only” required an explicit domain representa-
tion of the problem to solve (a problem space), operators to move through the 
space, and information about which operators were relevant for reducing which 
differences.4 GPS can be arguably considered the first cognitively inspired AI 
system ever developed.

A decade after the development of GPS, a Ph.D. student of Herbert 
Simon5 at Carnegie Mellon University (then still named Carnegie Institute of  
Technology) – Ross Quillian – developed another influential idea in the con-
text of AI of cognitive inspiration; he invented the Semantic Networks: a psy-
chologically plausible model of human semantic memory implemented in a 
computer system. The idea (Quillian, 1968) was that human memory is asso-
ciative in nature and that concepts are represented as sort of nodes in graphs 
and are activated through a mechanism of “spreading activation”, implemented 
through a marker passing algorithm, allowing the propagation of information 
through the network to determine the strength of the relationships between 
concepts. In this setting, the higher the activation of a node in the network, the 
more contextually relevant that node/concept was assumed to be for the task 
in focus. Interestingly enough, the research on Semantic Networks paved the 
way for both the development of the first graph-like, knowledge-based systems 
and formalisms (which make use of so-called symbolic representations) as well as 
the improvement of the so-called connectionist or sub-symbolic systems, since the 

	 4	 As we will see in more detail in the following sections, the ingredients required for the execu-
tion of this kind of heuristic strategy – essentially based on a “search space” approach to problem 
solving – explicitly supported the so-called “symbolic approach” for the study, analysis, execu-
tion, and replication of intelligent behaviour in artificial systems.

	 5	 Herbert Simon is arguably one of the most important scientists of the last century. His influence, 
indeed, went well beyond his original training in cognitive psychology. Simon was awarded a 
Nobel Prize in Economics for his studies on “bounded rationality”, which showed – differing 
from the classical decision models of the time – how humans are not optimal decision makers. 
This field of study has led to the development of an entirely new discipline that is nowadays 
known as “behavioural economics”. In addition, he was one of the founding fathers and main 
protagonist of the field of AI; along with people like Marvin Minsky, John McCarthy, Allen 
Newell, Nathaniel Rochester, and many others, he was an active participant in the Dartmouth 
Workshop. As a result of his “bounded rationality” theory in decision making, he was, one of 
the first scholars to point out, in both cognitive psychology and AI, the role played by heuristics 
as decisional shortcuts to solve complex problems. The application of the heuristic approach 
in the context of AI was one of the reasons behind him winning, in 1975, the Turing Award, 
together with Allen Newell. The particular meanings attributed to the term “heuristics” in the 
AI research, will be explained later in this chapter. 
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concept of “spreading activation” has been very influential in the context of the 
“connectionist” investigations (see Cordeschi, 2002: 235, on this point). Before 
proceeding further with our examples of early cognitively inspired AI systems, 
it is necessary to briefly introduce the above-mentioned basic notions of “sym-
bolic representations” (and paradigm) and “connectionist or sub-symbolic rep-
resentations” (and paradigm), since they have been, and still are, really crucial 
modelling methods in both the past and present AI and cognitive modelling 
communities. In particular, the notion of “symbolic representation” constitutes 
a core assumption of the so-called “symbolic paradigm” in AI and cognitive 
science (which will be better clarified in more detail later in the book). In short, 
according to this view, intelligence in natural and artificial systems is associated 
with the capability of storing and manipulating the information in terms of 
abstract “symbols” (representing, in many cases, some mental proxy associated 
with external physical objects) and on the capability of executing mental oper-
ations and calculations over such symbols. This view was (is) severely criticized 
by the so-called “connectionist or sub-symbolic paradigm”, according to which 
the organization of the “mental content” in natural and artificial systems is 
not based on any symbolic structure but is, on the other hand, (1) distributed 
in nature and (2) based on parallel models of computations (these are the two 
core assumptions of the “connectionist representations”), in a way that is more 
similar to the biological organization and processing mechanisms of neurons 
and synapses in our brain. From a modelling perspective, this approach has 
led to the development of the Artificial Neural Networks, or ANNs (partially 
inspired by the biological neural structure of our brain), and self-organizing 
systems. We will discuss later the impact of “neural” or brain-inspired methods 
in early (and modern) AI research.6 For the moment it is probably worth men-
tioning that, from a historical point of view, the “symbolic paradigm” repre-
sented the mainstream assumption in the context of both early AI and cognitive 
modelling research.

A confirmation of what was just discussed is provided by the next example 
of a cognitively inspired AI framework, which we are going to investigate: the 
notion of Frames (still a symbolic representational framework) operated by Mar-
vin Minsky almost a decade after Quillian’s proposal (Minsky, 1975). With this 
proposal, Minsky intended to attack another well-known “symbolic approach” 

	 6	 For the sake of completeness, it is also worth mentioning that within the cognitive modelling 
and AI communities another paradigm has been historically proposed relying on so-called 
“analog” or “diagrammatic” representations. In particular, according to the supporters of this 
school of thought, mental representations take the form of “pictures” in the mind. There are 
many different examples of analog representations proposed, one of the most famous corre-
sponding to the “mental models” by Johnson-Laird (1983, 2006). A general underlying as-
sumption of this class of representation is that “spatial cognition” abilities (represented via these 
“picture-like” schemas) are a core aspect of natural cognitive systems from which other intel-
ligent mechanisms emerge (e.g., the mental models by Johnson Laird have been notoriously 
proposed to model different types of inferences). 
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developed back then: the “logicist”7 position à la McCarthy for the representa-
tion of knowledge in artificial systems. In particular, Minsky argued that such a 
proposal was not able to deal with the flexibility of the commonsense reasoning 
that is so evident in human beings. Frames, on the other hand, were proposed for 
endowing AI systems with commonsense knowledge (including default knowl-
edge) about the external world.8 The type of knowledge organization proposed 
in the Frames enabled the first AI systems to extend their automated reasoning 
abilities from classical deduction to more complicated forms of commonsense 
and defeasible reasoning (going from induction to abduction). In this case, the 
idea of the Frames was directly inspired by the work of the psychologist Elea-
nor Rosch (Rosch, 1975) about the organization of conceptual information in 
humans known as the “prototype theory”9 as well as by the memory “schemas” 
proposed by the cognitive psychologist Bartlett (Bartlett, 1958). A simple ex-
ample and use case, done by Minsky himself, of a frame data structure is the 
following: let us imagine opening a door inside a house we are not familiar with. 
In this case, we typically expect to find a room that more or less is characterized 
by features that we have already seen in other rooms we have been in. Such 
features are referred to as a body of knowledge organized in the form of proto-
types (i.e., the typical room). The data structures that reflect this flexible way of 
using knowledge, which is typical of human beings, can be described as “frame 
systems”. Therefore, the “room frame” is a characterized by different types of 
information that includes – listed in appropriate “slots” – the typical features of a 
room, such as a certain number of doors, walls, windows, and so on. There could 
be various kinds of rooms – dining rooms, bedrooms, etc. – each constituting, in 
turn, a frame with more specific features, again listed in appropriate slots. This 
kind of representation also allows for individual differences in conceptualization; 
e.g., Francesca’s dining room might be quite different from Paola’s in various 
details, but it will always be part of one and the same kind of room frame. The 
proposal of the frames as data structures for commonsense reasoning was not  

	 7	 A brief overview of the logical approaches proposed in the 1970s to deal with commonsense 
reasoning (e.g., circumscription, fuzzy logic, etc.) is sketched out in the next chapter of the 
book. At this point, it is important to point out that the logicist tradition was (is) deeply rooted 
in the symbolic representation assumption, briefly elaborated on above and further detailed in 
the next section of this chapter. 

	 8	 As indicated elsewhere, “all the forms of commonsense reasoning can be seen as a bounded 
rationality phenomenon since they represent a plethora of shortcuts allowing us (i.e., 
“bounded-rational” agents) to make decisions in an environment with incomplete and uncer-
tain information” (Lieto, 2020: 56). 

	 9	 According to the prototype theory posited by Rosch, concepts are organised in our mind 
as “prototypes” (i.e., in terms of typical representative elements of that category) and such 
an organization explains many types of so-called “typicality effects” (i.e., of commonsense 
inferences) that we naturally perform in our everyday reasoning. We will return on this specific 
aspect later and more extensively in the book (particularly in Chapter 4), since commonsense 
reasoning represents one of the main areas of possible convergence between Cognitive Science 
and AI.
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completely successful from a computational point of view (since frame systems 
did not scale well) but was very influential for the development of research in the 
context of commonsense reasoning.

In those years, a proposal very much aligned with Minsky’s was put forth by 
Roger Schank and his “conceptual dependency” theory (Schank, 1972). Schank 
aimed at explaining natural-language understanding phenomena via psycholog-
ically plausible computational processes. He proposed identifying a small set of 
“semantic primitives”, the use of which would have made it possible to construct 
the representation of meaning for any English verb. In his original programs, a 
sentence was analyzed by making explicit its representation in terms of semantic 
primitives. Such primitives were considered common to all natural languages and 
constituted a sort of interlingua. This interlingua was then used to build the first 
machine translation systems (e.g., MARGIE, see Shank & Nash-Webber, 1975). 
When Schank passed from constructing programs translating single sentences to 
ones aimed at translating entire stories, he realized that it was necessary to take 
commonsense into account. In this respect, a relevant problem concerned the 
knowledge needed to derive meaningful inferences from the union of different 
sentences in a story, so as to make explicit the implicit beliefs and expectations 
assumed in the context of a story. To tackle this and other problems, Schank and 
Abelson (1977) endowed their program – SAM (Script Applier Mechanism) – 
with “scripts”. Scripts are a data structure for representing knowledge of common 
sequences of events (e.g., the sequence of events used to go out for dinner) and are 
used in natural-language processing systems as way to enable intelligent answers 
to questions about simple stories. A classic example used to explain the notion of 
a “script” (which is also tightly connected with the notion of a “Frame”) is the 
so called “restaurant situation”. Let us consider a situation of an agent going out 
to a restaurant for dinner. A script representing the restaurant situation is a data 
structure that would record the typical events associated with this scenario; e.g., 
entering the restaurant, asking for a table, sitting down, consulting a menu, eating 
the food, paying the check, etc. This kind of representational structure enabled 
early AI systems to answer questions about simple stories. For example, let us 
consider a story like this: “Mary went to a restaurant and ordered salmon. When 
she was paying, she noticed that she was late for her next appointment.” In this 
case, computerized systems were able to answer a question such as, “Did Mary eat 
dinner last night?” in a positive way (as we do). It is worth noticing that this infor-
mation is not explicitly provided in the story. Answering these types of questions 
is possible through the use of a “script” of the restaurant situation.

The capability of understanding natural-language instructions was also a 
crucial feature of Terry Winograd’s famous robotic system known as SHRDLU 
(named for the alphabetic symbols composing a row of keyboards in that era). 
In SHRDLU (Winograd, 1972), interactions with humans focused on a simu-
lated blocks world that humans could view on a graphics display and to which 
the system had direct access. Users drove the conversation via written text by 
typing sentences, including commands like, “Find a block that is taller than the 
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one you are holding and put it into the box” and “Is there anything that is bigger 
than every pyramid but not as wide as the thing that supports it?”. As reported 
in Langley (2017),

These inputs required not only the ability to parse quite complex structures 
and extract their meanings but also to draw inferences about relationships 
and execute multistep activities. The innovative system handled simple 
anaphora, disambiguated word senses, and had basic memory for its previ-
ous interactions.

SHRDLU was, therefore, an important advancement because it integrated 
sentence level understanding, reasoning about domain content, execution of 
multistep activities, and natural interaction with human users. At that time, there 
was no other artificial system able to show the same range of capabilities, and it 
offered a proof of concept that such an integrated intelligent system was possi-
ble. This accomplishment, of course, relied on some important simplifications: 
SHRDLU operated in a narrow and well-defined domain and had complete 
access to the entire state of the simulated environment. Nevertheless, it was an 
impressive achievement, which fostered further work on intelligent agents. To a 
certain extent, the integrated abilities exhibited by SHRDLU were the inspira-
tion also for the subsequent work of Allen Newell and his colleagues at Carnegie 
Mellon University, concerning the development of the first integrated cognitive 
architecture for general intelligence: SOAR (Newell, Laird, & Rosenbloom, 
1982).10

At the very time that SOAR was first being developed (by now we were 
already in the mid-1980s), another relevant proposal in the context of cogni-
tively inspired AI was made, once again, by Marvin Minsky, who introduced 
the evocative idea of the “Society of Mind” (Minsky, 1986, 2007) as a way 
to conceptualize, analyze, and design intelligent behaviour. This idea relies on 
the importance of considering, in natural and artificial agents, problem-solving 
activities “in layers” of interconnected micro-faculties (i.e., as a “society” of 
processes). In particular, Minsky suggested that the capability of dealing with 
commonsense knowledge11 is the grounding element of these layers of growing 
thinking capabilities. Such an approach has been historically impactful – not from 
an engineering perspective (since much more detail would have been needed in 
the Minsky proposal to specify how the processes can and should interact in an 

	10	 On the role of cognitive architectures for general intelligent systems we remind to (Lieto et al., 
2018). We will return to SOAR and to cognitive architectures over the course of the book. In 
addition to the SHRDLU influence, SOAR was heavily inspired by the heuristic search mech-
anisms already developed in the GPS system.

	11	 Commonsense knowledge is acquired, according to the Minsky proposal, via “instinctive” 
or “learned” reactions, and is then processed towards the higher hierarchies of “deliberative”, 
“reflective”, “self-reflective”, and “self-conscious” thinking at the level of both individual and 
social context.
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efficient computer implementation) – but mainly for the idea of considering, 
from a methodological and modelling perspective, the classical problem-solving 
activity (which was already modelled in systems like GPS or SOAR) through 
this sort of layered conceptual view involving a multistep reasoning process. As 
we will see in the following sections, this layered approach influenced, under 
completely different assumptions, another protagonist of the AI story from the 
previous century: Rodney Brooks.12

This list of examples of early cognitively inspired AI systems reviewed so far 
is, of course, not exhaustive. However, all these early systems shared a common 
“view” about the study of intelligence in artificial systems. More precisely, all 
these systems adhere – at different levels – to the so-called “cognitivist tradition”13 
of AI, also known as GOFAI (Good Old Fashioned AI).

Such early view is successfully synthesized by Pat Langley (Langley, 2012), 
who said, “(Early) AI aimed at understanding and reproducing in computational 
systems the full range of intelligent behaviour observed by humans” (Langley, 
2012).

Langley identifies the following set of features that characterize the early AI 
period and the main cognitivist modelling assumptions:

-		  the role of symbolic representations as a building block upon which operate 
a set of manipulation operations to let intelligent behaviour emerge;

-		  the importance of a general cognitively inspired approach to the study of the 
mind and intelligence (what Pat Langley calls a “system view”);

-		  the main focus on the so-called “high level cognition” (the systems for natu-
ral language processing,14 for example, underwent a big development in this 
early period);

-		  the adoption of heuristics (we will return on this concept later) as a method 
for problem solving;

-		  the intrinsic interdisciplinary and exploratory nature of the research.

We will analyze in more details these aspects of the cognitivist tradition (and its 
differences from emergentist perspectives) in the next few sections of the chapter. 

	12	 Rodney Brooks is a roboticist and was previously an MIT Professor. He is the creator of 
“Herbert” the robot, the first mobile robot able to exhibit interesting reactive behaviours with-
out any central controlled activity. For more details about the particular layered architecture 
proposed by Brooks, known as “Subsumption Architecture”, we refer the reader to the next 
section.

	13	 As will be clarified in the following pages, the “cognitivist” tradition is deeply rooted in the 
so-called “symbolic paradigm” and was the dominant perspective during the early days of AI 
research. Cognitivist assumptions differ from those of the “emergentist” approaches, which are, 
on the other hand, rooted in the notions of bottom-up self-organisation (see Vernon, 2014).

	14	 A typical example of the systems developed in this period is Eliza (Weizenbaum, 1966), one of 
the first conversational agents (nowadays called “chatbots”), created to converse with a human 
being, simulating, at least up to a certain extent, the behaviour of a psychotherapist.
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However, from a historical perspective, it is worth mentioning that this approach 
to the study of the artificial did not come out ex-abrupto. It borrowed its original 
inspiration, even if grounded on different assumptions, from the methodological 
apparatus developed by scholars in cybernetics (Cordeschi, 1991). The origins of 
cybernetics, in fact, are usually traced back to the middle of the 1940s, with the 
release of the 1948 book by Norbert Wiener entitled Cybernetics: Or Control and 
Communication in the Animal and the Machine. An underlying idea of cybernetics 
was one about building mechanical models to simulate the adaptive behaviour of 
natural systems. As indicated in Cordeschi (Cordeschi, 2002): “The fundamental 
insight of cybernetics was in the proposal of a unified study of organisms and 
machines”. In this perspective, the computational simulation of biological pro-
cesses was assumed to play a central epistemological role in the development and 
refinement of theories about the elements characterizing the nature of intelligent 
behaviour in natural and artificial systems. Such kind of simulative approach, as 
mentioned, was inherited by the early AI research that used computer programs 
to reproduce performances, which, if observed in human beings, would be re-
garded as “intelligent”. The adoption of such a perspective was crucial in AI, 
for the development of both intelligent solutions inspired by human processes 
and heuristics (Newell & Simon, 1976; Gigerenzer & Todd, 1999) and for the 
realization of computational models of cognition built with the aim of provid-
ing a deeper understanding of human thinking, as originally suggested in the 
manifesto of Information Processing Psychology (IPP) (Newell & Simon, 1972). 
These two sides of the cognitivist tradition are nowadays still alive. They cor-
respond, roughly, to the research areas known as “cognitively inspired AI” (or 
“cognitive systems”) and “cognitive modelling” (or “computational cognitive 
science”), respectively.

Heuristics and AI eras

The notion of heuristics deserves, in this historical account, special attention. 
Usually, this term, derived from the Greek word “eureka”, indicates a non-
optimal problem-solving procedure adopting particular “shortcuts” to reach a 
given goal. This term has been ascribed two different meanings since the times 
of the first AI research. In its first sense, the term refers to the most detailed 
simulation possible of human cognitive processes, and it characterized the above-
mentioned IPP, introduced by Newell and Simon. In this view, a computer pro-
gram was considered to be a model providing a test of the hypothesis that the 
mind is an information-processing system. More precisely, “the program was 
considered to be a highly specific behavioral theory, concerning the behavior of 
an individual human problem-solver: a microtheory” (Cordeschi, 2002: 182).15 

	15	 In this view, the general theory of human information-processing was assumed to be derivable 
from a body of qualitative generalizations coming from the study of individual simulative pro-
grams, or microtheories.
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In another sense, the term refers to the possibility of obtaining the most effi-
cient (and efficacious) performance possible from computer programs, by allow-
ing also for typically non-human procedures, such as those where the computer 
can excel. Before the introduction of the term “heuristics” in AI – operated by 
Newell, Shaw, and Simon – there were already algorithmic procedures available, 
which might have been defined as heuristic in the second of these senses and 
which had already been tried out experimentally. The first among them were 
the procedures that allowed the program developed by Arthur Samuel to play 
checkers despite the combinatory explosion of moves (Samuel, 1959).

The fact that these two tendencies, reflected in the double meaning of the term 
“heuristic”, coexisted in AI was immediately clear. As reported in Cordeschi 
(2002: 190), in 1961, while discussing a presentation of GPS given by Simon 
during a seminar at MIT, Minsky drew a distinction in AI research between 
those who were willing to use “non-human techniques” in constructing intelli-
gent programs and those, like the Carnegie-Mellon group, who were interested 
in simulating human cognitive processes.16 This distinction is crucial, since it 
outlines the emergence of different research agendas that were already present at 
that time. In the following decades these early distinctions became deeper and 
determined the difference between “Nature-” or “Human-inspired” approaches 
to the development of artificial systems versus “Machine-oriented” approaches 
to the solution of a given problem.

Modelling paradigms and AI eras: cognitivist and  
emergentist perspectives

As briefly illustrated in the previous sections, the early days of AI were mainly 
characterized by the “cognitivist” assumption that intelligent activity in both 
living and artificial systems was possible due to the capability of encoding knowl-
edge about the external world via “internal” abstract symbolic representations, 
directly corresponding to elements of the reality. In this setting, intelligent be-
haviour (e.g., in language, vision, planning, etc.) was viewed as the expression 
of operations carried out on such symbols and the motto of this early phase (also 
known as “cognitivism”, see e.g., Vernon, 2014) was synthesized by the expres-
sion “cognition is computation”. Here, the word “computation” was intended to 
mean the capability of manipulating such symbolic structures. The theoretical 
reference framework that inspired such an assumption, in both cognitive psy-
chology and artificial intelligence, was the so-called “Physical Symbol System 

	16	 As reported in Cordeschi (2002), Minsky emphasized that these two tendencies were distin-
guished “in methods and goals” from a third tendency, which “has a physiological orientation 
and alleges to be based on an imitation of the brain,” i.e., neural net and self-organizing system 
approaches. We will discuss later in this book the “neural” or brain-inspired methods in early 
(and modern) AI research. As anticipated, such approaches belong to the so-called “connection-
ist agenda”. 
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Hypothesis” (PSSH), introduced by Newell and Simon (1976). According to this 
theory, intelligent beings are physical symbol systems. In this framework, sym-
bolic representations were not only a denotational means for referring to entities 
of the external world but also a means for denoting other internal symbolic struc-
tures (thus allowing to hypothesise an internal information processing mecha-
nism able to overcome the classical Input-Output direct mapping assumed by the 
behaviourist tradition17). In this view, symbolic systems are assumed to be realizable 
by means of different “hardware” (e.g., a Von Neumann architecture or a natural 
brain18) and symbolic processing is considered a necessary and sufficient condi-
tion for intelligent behaviour. In particular, the apparatus of such a hypothesis 
assumes that an intelligent agent should be equipped with the following elements 
(Newell, 1990):

•	 Memory Systems (to contain the symbolic information)
•	 Symbols (to provide a pattern to match or index other symbols)
•	 Operations (to manipulate symbols)
•	 Interpretations (to allow symbols to specify operations)
•	 Symbolic Capacities for

-	 Compositionality
-	 Interpretability

With respect to what was mentioned earlier about the “symbolic paradigm”, 
some additional clarifications are needed to fully grasp what concerns both the 
“Symbols” and the “Compositionality” requirements identified by Newell in the 
above mentioned list.

	17	 Behaviourism (in this context we are referring to so-called “methodological behaviourism”, 
which is different from “philosophical behaviourism”) is a methodological approach to the 
study of behaviour in natural systems, born at the beginning of last century, and based on the 
observable analysis of the responses (e.g., the produced output) to certain stimuli (the input) 
manipulated via different types of reinforcement (this is also known as “operant conditioning”). 
Watson (1913), one of the founders of this approach, defined psychology as “a purely objec-
tive experimental branch of natural science” and its program as the “prediction and control of 
behavior”. As a consequence of this radical view, behaviourists did not consider/analyze the 
internal mechanisms driving a given behaviour (provided certain stimuli). The now-famous 
experiments done by the Russian physiologist and Nobel Prize winner Ivan Pavlov about the 
conditioned reflex of dogs and their automatic stimulus-response behaviour (where the stimulus 
was constituted by a “ringing bell” that the dogs had learn to associate to the arrival of food, 
and the response to the salivation caused by the bell ringing) was an important landmark in 
this tradition (as was his other work about so-called “classical conditioning”). This approach, 
was severely criticised by the cognitivist tradition in psychology, the “computationalist” view 
in the philosophy of mind, and Information Processing Psychology, which, on the other hand, 
assumed the presence of internal information processing mechanisms as driving forces leading 
to a manifest behaviour. 

	18	 This claimed “interchangeability” means that, in this framework, the physical instantiation 
(i.e., the “hardware”) per se is not important since the intelligent behaviour emerging via symbol 
manipulation is assumed to be independent of the particular form of the instantiation.
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For what concerns the “symbols”, as mentioned, the PSSH assumes that such 
abstract structures can refer to and be combined with (as is evident more clearly 
in the figure 1.1 below) other internal symbols and processes.

This possibility is important in light of the “compositionality” requirement. 
Compositionality is an important feature of symbolic systems and is also con-
sidered an irrevocable trait of human cognition. In a compositional system of 
representation, it is possible to distinguish between a set of primitive, or atomic, 
symbols and a set of complex symbols. Complex symbols are generated from 
primitive symbols through the application of suitable recursive syntactic rules: 
generally, a potentially infinite set of complex symbols can be generated from a 
finite set of primitive symbols. The meaning of complex symbols can be deter-
mined starting from the meaning of primitive symbols, using recursive semantic 
rules that work in parallel with syntactic composition rules. In the context of 
classical cognitive science, it is often assumed that mental representations are 
indeed compositional. A clear and explicit formulation of this assumption was 
proposed by Fodor and Pylyshyn (Fodor & Pylyshyn, 1988). They claim that 
the compositionality of mental representations is mandatory to explain funda-
mental cognitive phenomena (i.e., the generative and systematic character of 
human cognition) and they also show how the contrasting neural, distributed 
representations encoded in artificial neural networks are not compositional.19

	19	 It is worth noting that, while standard compositionality is easily handled by symbolic system, 
“commonsense compositionally” (i.e., one involving typicality-based reasoning à la Rosch) has 
always been a problematic aspect to model. This problem is paradigmatically represented by the 
so called PET FISH problem: if we consider this concept, in its prototypical characterisation, 
as the result of the composition of the prototypical representations of the concepts “PET” and 
“FISH”, we soon realise that the prototype of pet fish cannot result from the composition of the 
“PET” and “FISH”. A typical pet – indeed – is furry and warm, a typical fish is greyish, but a 
typical pet fish is neither furry and warm nor greyish (typically, it is red). The pet fish phenom-
enon is a classic example of the difficulty to deal with when building formalisms and systems 
aiming at imitating this compositional human ability. Nowadays, a proposal to deal with the 
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FIGURE 1.1  �Overview of the internal dynamics of physical symbol systems (adapted 
from Vernon, 2014).
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Given this state of affairs, then, solving a problem for a physical symbol system 
means being able to perform a Heuristic Search within a problem space repre-
sented by symbolic structures. Here, in fact, the intelligent behaviour is assumed 
to emerge by generating and progressively modifying symbol structures until a 
solution structure (e.g., a goal) is reached. This overall assumption is known as 
the Heuristic Search Hypothesis20 and, as it is probably evident to the readers, 
some of the above-mentioned early systems like GPS (as well as the formalisms 
like the Semantic Networks and, as we will see, SOAR as well) are heavily built 
upon the PSSH and its Heuristic Search corollary.

Parallel to these “symbolic” developments, a radically different modelling ap-
proach based on neuron-like “subsymbolic” or “connectionist” computations 
(e.g., Grossberg, 1976; McClelland, 2010) was being explored. Proponents of 
this approach (one of the most successful in the so-called “emergentist” field21) 
maintain that many classic types of structured knowledge, such as graphs, gram-
mars, rules, objects, structural descriptions, programs, etc., can be useful yet 
misleading metaphors for characterizing “thought” in both natural and artificial 
systems. In particular, these structures are seen as epiphenomenal rather than 
real, emergent properties of more fundamental sub-symbolic cognitive processes 
(McClelland, 2010) (Figure 1.1).

In general, in contrast to the symbolic paradigm, the knowledge in these neu-
ral networks is distributed across a collection of units rather than localized as in 
symbolic data structures. The central idea of such models, in fact, is that a large 
number of simple computational units can achieve intelligent behaviour when 
networked together. This insight applies equally to neurons in biological nervous 
systems and to hidden units in computational models. The representations and 

problem of commonsense compositionality in symbolic systems was proposed in Lieto and Poz-
zato (2020) and applied to both cognitive modelling problems (e.g., the PET FISH) and in the 
context of computational creativity applications. Nonetheless, modelling commonsense reason-
ing (including commonsense compositionality) in a human-like fashion and with human-level 
performances remains an open problem in the context of symbolic systems.

	20	 The Heuristic search hypothesis has been very influential in AI since many algorithms (e.g., 
from the “hill climbing” to the “beam search” to the notorious A* algorithm) that have been 
developed to improve the efficiency of finding optimal or suboptimal paths in problems repre-
sented as a graph-like structure have been developed by starting from this hypothesis. For an 
introduction to these classical algorithms, we refer the reader to introductory books on AI (see 
e.g., Russell & Norvig, 2002). One of the first successful and convincing implementations of 
such “search-based” approaches (e.g., the A* algorithm) was in the robot Shakey, developed in 
1966 by Nilsson and colleagues (see Hart et al., 1968; Nilsson, 1971; Fikes et al., 1972).

	21	 The expression “emergentist approaches” is determined by the fact that the class of modelling 
frameworks of this tradition assume that the information to be processed is learned from the 
environment in a bottom-up way and intelligent behaviour (if any) is assumed to be an emer-
gent property coming from this interaction. Within emergentist frameworks we can include 
dynamical systems (using differential equations to model the dynamic of a system and its change 
over time, caused by the interaction with the environment) and enactive approaches (usually 
employing both connectionist and dynamical frameworks and assuming embodied agents). We 
refer to Vernon (2014, Chapter 2), for an introduction to such frameworks.
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algorithms used by this approach, therefore, were (and are) more directly inspired 
by neuroscience rather than psychology. As a consequence, differing from the 
PSSH, in this modelling framework (and in general all the so-called emergentist 
modelling frameworks) the “physical hardware” (e.g., the body) instantiating the 
actual computation is assumed to play an important role.

From a historical perspective, the connectionist movement took inspiration 
from the functional models of nervous cells, introduced in the pioneering work 
by Warren McCulloch and Walter Pitts (developed during the pre-cybernetic 
period and heavily influencing cybernetic research), showing how every “net” of 
formal neurons – if furnished with a tape and suitable input, output, and scan-
ning systems – is equivalent to a Turing machine22 (McCulloch & Pitts, 1943). 
Such initial insights were later enriched by research from Donald Hebb (Hebb, 
1948) about the learning processes in the nervous system23 and further studies 
of learning and classification processes in networks, à la McCullock and Pitts, 
lead to the development of the first artificial neural network (ANN) known as 
Perceptron (developed by Rosenblatt in 1958).24

After these pioneering works, during the 1960s, research on neural nets 
seemed to take a step back once a notorious book by Minsky and Papert (1969) 
showed the limitations of the then-existent Perceptron in discriminating very 
simple visual stimuli. Despite such limitations, however, various researchers con-
tinued to work on this framework and the “renascence of neural nets”, that took 
place in the 1980s, happened in ground that was still fertile. Nevertheless, “this 
renascence was marked by at least two crucial events, accompanied by the de-
velopment in those years of computers with great computing power, allowing 
them to simulate neural nets of increasing complexity” (Cordeschi, 2002: 213). 
In particular, in 1982, John Hopfield proved that symmetrical neural nets neces-
sarily evolve towards steady states – then interpreted as attractors in the dynamic 
system theory – and that they can function as associative memories (Hopfield, 
1982). In 1985, James MacLelland, David Rumelhart, and their collaborators 
introduced the approach known as parallel distributed processing (PDP) of in-
formation by starting a number of investigations on natural language acquisition 
by emphasizing the role of artificial neural networks and of parallel computation 

	22	 In 1936, Turing introduced the abstract computing machine bearing his name and explicitly 
construed a universal machine that could simulate, with appropriate encoding, any compu-
tation carried out by any Turing machine (including, of course, the universal one) (Turing, 
1936–37). 

	23	 Roughly speaking, so-called “Hebbian learning” consists of the evidence that when the axon of 
a given cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing 
it, this kind of associative connection A→B leaves a trace in the nervous system that learns this 
simple associative rule.

	24	 The Perceptron was one of the first neural network architectures. This simple form of neural 
network consists of a first layer, corresponding to the sensory system (an analog for a retina), 
which is randomly connected to one or more elements in a second layer of nodes: the associa-
tion system. The latter consists of association cells, or A-units, whose output is a function of the 
input signal.
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in the study of cognitive phenomena. They showed how a learning algorithm 
based on error correction, known as “backpropagation”,25 made it possible to 
overcome the main limitations of neural nets described by Minsky and Papert 
(Rumelhart, McClelland, & the PDP Research Group, 1986).26 Back then, the 
achieved results had a strong echo since they were also considered the first ex-
ample countering the predominant (in both linguistics and AI) Chomskian view 
of language processing, which took moves from the book “Syntactic Structures” 
(Chomsky, 1957), declaring the primacy of syntax and grammars. Since these pi-
oneering works, connectionist systems have been widely adopted in a variety of 
applications in both the cognitive modelling and AI communities. Connectionist 
systems (and emergent systems in general) have been important in the AI land-
scape since they have provided more suitable solutions (with respect to the sym-
bolic approach) able to deal with the environment and with the processing of the 
perceptual aspects of sensory input. In particular, they have fought the tendency 
of (early) symbolic AI to consider, in an isolated way, perceptual systems, motor 
systems, and high-level cognitive functions etc.27 On the other hand, they have 
targeted the close interaction between the “mind” (natural or artificial), the body 
(i.e., the “hardware”), and environment.28 This has led, in some cases, to radical 

	25	 The backpropagation rule intervenes to change the weights of the connections between the 
hidden units, going backward from the error, which is calculated at the output units. Rosenblatt 
had anticipated the formulation of various aspects of this rule that, however, was fully formal-
ised by Geff Hinton, winner of the Turing Award Prize in 2019 for, among the other things, the 
invention of the backpropagation algorithm.

	26	 The work and its assumptions were not free from criticisms. See, for example, Pinker and Prince 
(1988) and the subsequent debate that dominated the late 1980s and 1990s.

	27	 This tendency was, in a later period, contrasted also within the cognitivist/symbolic approach 
by Allen Newell. While Simon, in fact, continued his development of “microtheories” or 
“middle-range” theories (see Cordeschi, 2002) by focusing on the refinement of the analysis 
of verbal protocol, Newell didn’t consider the construction of single simulative microtheories 
a sufficient means to enable the generalisation of “unifying” theories of cognition (the original 
goal of Information Processing Psychology). Therefore, diverging from Simon, he proposed 
building simulative programs independent from single cognitive tasks and able to include in-
variant structures of human cognition. In this way, he started the enterprise of studying and 
developing integrated and multi-tasking intelligence via cognitive architectures that would 
have led to the development of the SOAR system.

	28	 It is worth noticing, however, that in classic “cognitivist” tradition as well the importance of 
the environment in the deployment of intelligent behaviour was somehow recognised. Herbert 
Simon, in fact, in his lecture series on “The sciences of the artificial” (later published as a fa-
mous book with the same title), introduced the so-called “Ant metaphor”, which would later 
come to be known as “Simon’s Ant metaphor” and which can be described as follows: “An ant, 
viewed as a behaving system, is quite simple. The apparent complexity of its behaviour over 
time is largely a reflection of the complexity of the environment in which it finds itself ”. Simon 
then applies this consideration to human beings by suggesting that the apparent complexity of 
human behaviour is also largely a reflection of the complexity of the environment in which we 
live. Therefore he suggests that the environment should play an important role in building sim-
ulative models of cognition since “the behaviour takes on the shape of the task environment”. 
Despite these relevant insights, however, early AI systems assuming the PSSH did not succeed 
in integrating such aspects in their models and were severely criticized by proponents of the 
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assumptions that have proposed the complete elimination of the notion of “rep-
resentation” (intended in the cognitivist/symbolic sense) from the vocabulary 
of the cognitive and artificial sciences. This movement was led by the roboticist 
Rodney Brooks through the proposal of the so-called “Subsumption Architec-
ture” (Brooks, 1986, 1991). This proposal consists of a layered, decentralized, 
robotic control architecture that does not make any use of internal representation 
of the world (i.e., the motto of this view is “use the world as a model”), where 
the relevant parts of the control system interact and activate each other through 
sensing the world. Subsumption architecture has been very influential from an 
engineering point of view since a vast variety of effective, implemented robotic 
systems use it.29 It is based on the so-called “creature hypothesis”, according to 
which the most important part in the design of an intelligent artificial system 
can be reduced to the difficulty of building a machine that act as smart as an 
insect. In other words, the underlying assumption of such a hypothesis is that 
once the perceptual/reactive part of a “creature” (natural or artificial) is built, 
then building the rest of the intelligence features is an easy task to achieve. The 
figure 1.2 below shows the characteristics of this kind of architecture. Each layer, 
programmed by using finite state machines of problem solving was assumed to 
deal with specific tasks (e.g., the task of avoiding obstacles, wandering, seeking, 
etc.) and higher levels of the hierarchy subsume the actions of lower levels. The 
design of successive task-achieving layers is stopped once the overall desired task 
is achieved (Figure 1.2).

Such radical proposal, however, has also shown significant limitations. In fact, 
even if they lead, through the development of innovative architectures for decen-
tralized action control, to the ability of acting in non-structured environments in 
real time, these systems nevertheless showed their limitations when asked to deal 
with more high-level cognitive tasks, such as planning, reasoning, multi-agent 
coordination, and so on. Such tasks, on the other hand, were dealt with in a more 
satisfactory way via the symbolic approach, thus suggesting the practical utility of 
the notion of “representation”.

The classical move, in this case, was the adoption of hybrid approaches trying 
to connect low-level and high-level faculties by integrating neural and symbolic 
approaches. Investigations of the integration between “symbolic” and “subsym-
bolic” in AI have coexisted during recent decades, but despite the realization of 

“emergentist” paradigms. Emergentist modelling approaches, in fact, have proven to be more 
efficacious in modelling the environment and its intervention in the emergence of intelligent 
behaviour. 

	29	 The first implementation of such an architecture was executed in robots like “Allen” and 
“Herbert”, developed by Brooks and his group at MIT in the late 1980s. In particular, Herbert, 
a soda-can collecting robot, was able to exhibit the following capabilities (uncommon at that 
time): moving around in a real environment without running into obstacles; detecting soda 
cans using a camera and a laser; using an arm that could extend, sense, and evaluate whether or 
not to pick up the soda can, etc. Nowadays, Subsumption Architecture is employed in the most 
successful robotic platform so far: the Roomba robot!
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many hybrid systems, a general solution to the problem of the ad-hoc integration 
of such heterogeneous components does not yet exist. In particular, connection-
ist models have continued to achieve the best results in handling activities like 
pattern recognition and classification or associative learning. They have failed, 
however, in handling higher cognitive functions, like complex inference-based 
reasoning, which are better modelled by symbolic approaches.30 A well-known 
problem of these connectionist representations, for example, concerns the diffi-
culty of implementing compositionality in neural networks (Fodor & Pylyshyn, 
1988). Finally, another classical problem of artificial neural networks is repre-
sented by their “opacity”: a neural network behaves as a sort of “black box” 
and specific interpretation for the operation of its units and weights is far from 
trivial. Despite such foundational problems, today neural networks are used in a 
variety of fields that range from machine vision to natural language processing 
to autonomous cars, due to the success of the new generation of deep learning 
architectures. On the other hand, symbolic approaches also suffer from a num-
ber of problems, other than the above-mentioned ones of dealing with com-
monsense reasoning and commonsense compositionality; these range from the 
“frame problem” (McCarthy & Hayes, 1969) to the “symbol grounding” one 
(Harnad, 1990). In short, the frame problem consists of a difficulty in formally 

	30	 The novel generation of connectionist models based on deep learning have also recently gained 
attention for the results obtained in tasks like automated machine translation ( Jean et al., 2015). 
However, this success in language based tasks seems to be mainly obtained because that task 
has been treated as a machine vision task, where the structure (i.e., the patterns) of a source 
language had to be mapped and compared with the one of a target language. Despite these new 
achievements, deep learning language models still provide poor results, compared to other ap-
proaches, in high-level cognitive tasks, ranging from Question Answering and Narrative/Story 
Comprehension to Commonsense Reasoning.
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FIGURE 1.2  Brooks’ Subsumption Architecture (adapted from Brooks, 1999).
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representing, in logic-based representational languages, changes in an environ-
ment in which an agent (e.g., a robot) has to solve some tasks without having to 
explicitly resort to an enormous number of axioms to also exclude a number of 
intuitively obvious – for humans – non-effects. For example, if a robot places a 
cup on a table, it is necessary not only specify that the cup is now on the table, 
but also that the light remains on, that the table is still in the same place, that 
the robot is still in the same room, etc. The symbol grounding issue, on the 
other hand, concerns the problem of how to obtain the grounding between 
symbolic representations and the corresponding entities that they denote in the 
external world. This is notoriously hard for symbolic systems and is alleviated 
in connectionist systems, since the data they directly take in input (e.g., images, 
signals, etc.) are closer to the perceptual “real world” sensory data. Summing up: 
the last 65 years of applied research have shown that both the main modelling 
approaches developed in the context of cognitive modelling and AI communities 
have different strengths and limitations. In any case they are not able to account, 
if considered in isolation, for all aspects of cognitive faculties.

Death and rebirth of a collaboration

As showed in the previous sections, AI pioneers were explicitly inspired by re-
search on human cognition, and the cognitive approach was considered – without 
any doubt – to be the best strategy to pursue, so as to build intelligent machines 
(see Lake et al., 2017). Schank (1972), in the journal Cognitive Psychology, declared, 
“We hope to be able to build a program that can learn, as a child does, how to do 
what we have described in this paper instead of being spoon-fed the tremendous 
information necessary”. A similar sentiment was expressed by Minsky (1975):

I draw no boundary between a theory of human thinking and a scheme for 
making an intelligent machine; no purpose would be served by separating 
these today since neither domain has theories good enough to explain or 
to produce enough mental capacity.

This initial (excessive) enthusiasm, however, started to vanish (a fierce cri-
tique on the over-the-top optimism of that period was given by Hubert Drey-
fus, 1972) and, after the first few decades of pioneering collaborations, starting 
from the mid-1980s, AI and the new-born interdisciplinary field of Cognitive 
Science started to produce several sub-fields, each with its own goals, methods, 
and evaluation criteria. On one hand, this divorce from considering human or 
nature-inspired heuristics has led AI to achieving remarkable results in a variety 
of specific fields (by focusing on quantitative results and metrics of performance, 
and on a machine-oriented approach to the intelligent behaviour). On the other 
hand, however, it has significantly inhibited cross-field collaborations and re-
search efforts targeted at investigating a more general picture of what natural and 
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artificial intelligence is, and how intelligent artefacts can be designed by taking 
into account the insights coming from human cognition.

In the last few years, however, the cognitive approach to AI has gained renewed 
consideration, both from academia and the industry, in wide research areas such 
as Knowledge Representation and Reasoning, Robotics, Machine Learning, 
Bio-Inspired Cognitive Computing, Computational Creativity, and other re-
search fields that aspire to human-level intelligence. Nowadays, in fact, artificial 
systems endowed with human-like and human-level intelligence (McCarthy, 
2007) are still far from being achieved and, using the words of Aaron Sloman, 
“the gap between natural and artificial intelligence is still enormous” (Sloman, 
2014). This sort of “cognitive renaissance” of AI still considers the “cognition in 
the loop” approach as a useful one to detect and unveil novel and hidden aspects 
of cognitive theories by building properly designed computational models of 
cognition, which are useful to progress towards a deeper understanding of the 
foundational roots of intelligence (both in natural and artificial systems).


