Supplement of

Atmospheric ethanol in London and the potential impacts of future fuel formulations

R.E. Dunmore et al.

Supplementary Figures 1 and 2 show the emission source contributions for ethanol and acetaldehyde respectively from the National Atmospheric Emissions Inventory (NAEI) using the Passant (2002) VOC speciation profiles.

Supplementary Figure 1: Emission source contributions for ethanol from the NAEI. The Other category refers to the sum of categories that have less than 1% each: agrochemicals use, brewing, chemical industry, cider manufacture, coating manufacture, domestic adhesives, film coating, glass, industrial adhesives, landfill, non-aerosol automotive products, other industrial combustion (wood), paper printing, solvent and oil recovery, textile coating and wine manufacture.

Supplementary Figure 2: Emission source contributions for acetaldehyde from the NAEI. The Other category refers to the sum of categories that have less than 1% each: cement (non-de-carbonising), glass, house and garden machinery, miscellaneous-landfill gas, power stations, public services and solvent and oil recovery.

Supplementary Tables 1 and 2 show the linear regression coefficient values for all individual and grouped VOC species with ethanol.

Supplementary Table 1: Correlation of all individually quantified VOCS with ethanol during the ClearfLo campaigns. Values in bold indicate R correlations of greater than 0.75.

-	Correlation with Ethanol			Correlation with Ethanol	
Compound	Winter	Summer	Compound	Winter	Summer
Saturated			Aromatics continued		
Methane	0.88	0.75	m- and p-Xylene	0.88	0.90
Ethane	0.86	0.81	o-Xylene	0.86	0.90
Propane	0.89	0.89	Benzene, iso-propyl-	0.71	
n-Butane	0.89	0.85	Benzene, propyl-	0.84	0.67
iso-Butane	0.86	0.84	Toluene, 3-ethyl-	0.85	0.68
n-Pentane	0.91	0.88	Toluene, 4-ethyl-	0.77	0.66
iso-Pentane	0.89	0.87	Benzene, 1,3,5-trimethyl-	0.82	0.73
Cyclopentane	0.76	0.82	Toluene, 2-ethyl-	0.78	0.63
n-Hexane	0.91	0.79	Benzene, 1,2,4-trimethyl-	0.79	0.60
Pentane, 2+3-methyl-	0.89	0.88	Toluene, 4-isopropyl-	0.63	0.31
n-Heptane	0.80	0.84	Benzene, 1,2,3-trimethyl-	0.88	0.72
Butane, 2,2,3-trimethyl-	0.83	0.85	Indan	0.84	0
n-Octane	0.90	0.85	Benzene, tert-butyl-	0.28	0.41
Pentane, 2,2,4-trimethyl-	0.80	0.87	Benzene, 1,3-diethyl-	0.86	0.61
n-Nonane	0.88	0.77	Benzene, 1,4-diethyl-	0.86	0.79
n-Decane	0.89	0.65	Naphthalene	0.83	0.66
Nonane, 2-methyl-	0.83	0.66	Oxygenates		
n-Undecane	0.88	0.86	Acetaldehyde	0.89	0.91
n-Dodecane	0.88	0.79	Propanal, 2-methyl-	2	0.14
Unsaturated			Butanal	0.49	0.19
Ethene	0.88	0.85	Butanal, 3-methyl-	-	0.18
Acetylene	0.90	0.86	Butanal, 2-methyl-		0.17
Propene	0.86	0.81	Methacrolein (MACR)		0.16
Propadiene	0.88	0.81	Pentanal	2	0.19
Propyne		0.79	Hexanal	0.87	0.24
Butene, trans-2-	0.88	0.82	Benzaldehyde	0.69	0,72
1-Butene	0.91	0.82	Methanol	0.66	0.81
iso-Butene	0.90	0.89	Ethanol	12	-
Butene, cis-2-	0.88	0.82	Propanol	0.54	0.85
1,2-Butadiene	-	-0.17	Butanol	0.49	0.62
1,3-Butadiene	0.88	0.75	Acetone	0.80	0.75
Pentene, trans-2-	0.43	0.83	Butanone	0.81	0.31
1-Pentene	0.49	0.88	Ketone, methyl-vinyl- (MVK)	3	0.19
Isoprene	0.90	0.11	Pentanone, 2-		0.15
Styrene	0.80	0.41	Pentanone, 4-methyl-2-	0.70	0.22
α-Pinene	-0.37	0.36	Hexanone, 2-	-	0.17
Limonene	0.90	0.27	Cyclohexanone		0.18
Aromatics			Acetate, ethyl-	-0.48	0.23
Benzene	0.87	0.91	Halogenated		1960.00
Toluene	0.89	0.91	Methane, dichloro	0.85	0.78
Benzene ethyl-	0.85	0.90	Trichloroethylene	511600065	0.85

	Correlation with Ethanol		
Grouped species	Winter	Summer	
C ₆ Aliphatics	0.79	0.74	
C ₇ Aliphatics	0.85	0.77	
C ₈ Aliphatics	0.87	0.78	
C ₉ Aliphatics	0.85	0.73	
C ₁₀ Aliphatics	0.71	0.70	
C ₁₁ Aliphatics	0.87	0.65	
C ₁₂ Aliphatics	0.85	0.65	
C ₁₃ Aliphatics	0.88	0.70	
C_4 substituted monoaromatics	0.86	0.72	
C ₁₀ Monoterpenes	0.87	0.17	

Supplementary Table 2: Correlation of the grouped species with ethanol during the ClearfLo campaigns. Values in bold indicate R correlations of greater than 0.75.

Supplementary Figure 3 shows the time series comparisons between measured and modelled values for multiple species.

Supplementary Figure 3: Comparison between modelled values and observed for ozone (A), carbon monoxide (B), ethane (C), propane (D), >=C3 alkenes (E), and >=C4 alkanes (F), for winter (left) and summer (right) observation periods. Plots show the simulation without increase ethanol or aldehyde emissions ('GEOS-Chem') in magenta, with added EOH emissions ('GEOS-Chem+EOH') in red, and with both additional ethanol and acetaldehyde emissions ('GEOS-Chem+EOH+ALD2') in blue.

Supplementary Figures 4 and 5 show spatial changes in ozone and acetaldehyde concentrations between the 'GEOS-Chem' and 'GEOS-Chem+EOH' models.

Supplementary Figure 4: Spatial change in ozone concentration between ('GEOS-Chem') and additional ethanol emissions ('GEOS-Chem+EOH') for winter (left) and summer (right) observation periods. Actual changes in ppbv are shown below (B), and percentage changes are shown above (A).

Supplementary Figure 5: Spatial change in acetaldehyde concentration between ('GEOS-Chem') and additional ethanol emissions ('GEOS-Chem+EOH') for winter (left) and summer (right) observation periods. Actual changes in ppbv are shown below (B), and percentage changes are shown above (A).