Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

for

The Effect of Sub-Zero Temperature on the Formation and Composition of Secondary Organic Aerosol from Ozonolysis of Alpha-Pinene

K. Kristensen^a, L. N. Jensen^a, M. Glasius^a and M. Bilde^a

^{a.} Department of Chemistry, Aarhus University, DK-8000 Aarhus C., Denmark

Calculating chamber volume

The following procedure was developed to accurately determine the volume of the smog chamber once inflated with dry purified air.

At 293 K, the smog chamber is flushed and filed to an initial volume ($V_{Chamber}$) with dry purified air. Ozone is then added to the chamber at 10 L min⁻¹ for 18 min resulting in an initial ozone concentration ($[O_3]_i$) of 103.1 ppb ozone. During ozone addition, chamber volume is increased by 180 L (10 Lmin⁻¹ x 18 min, V_{O3}^{add}). A known volume (2029 L, $V_{removed}$) is then removed from the chamber by pump and flow meter, during which the ozone concentration inside the chamber remains the same. A known volume of ozone-free purified air is added to the chamber (V_{clean}^{add}), thus diluting the ozone concentration. The new ozone concentration ($[O_3]_{new}$) is measured and used for calculation of the initial chamber volume, $V_{Chamber}$, using the following equation:

$$V_{Chamber} = \frac{\left(\frac{[O_3]_{new}}{[O_3]_i}\right) * V_{clean}^{add}}{1 - \left(\frac{[O_3]_{new}}{[O_3]_i}\right)} + V_{removed} - V_{O3}^{add}$$
$$V_{Chamber} = \frac{\left(\frac{87.5ppb}{103.1ppb}\right) * 557L}{1 - \left(\frac{87.5ppb}{103.1ppb}\right)} + 2029L - 180L = \underline{4971L}$$

Subsequent additions of ozone-free air are performed and the above calculations repeated with new V_{clean}^{add} and $[O_3]_{new}$ values. The above mentioned chamber volume experiment was conducted twice to evaluate on the repeatability of filling the smog chamber. Table 1S shows the calculated $V_{Chamber}$ values for different $[O_3]_{new}$

 $[O_3]_i$ ratios obtained during the two experiments.

Tabel 1S. Calculated chamber volumes for fully inflated camber

Exp. #	$[0_3]_{new}$	V _{Chamber}
	$[0_3]_i$	(L)
1	0.85	4971.0
	0.75	4989.7
	0.67	4995.1
	0.60	4888.3
2	0.95	4995.8
	0.89	5001.2
	0.84	5108.2
	0.79	4921.6
Average		4983.9
Std.dev.		64.6

Chamber	Volume	S/V	Material	Active	Particle Wall Loss Rate	Ozone Wall Loss	NO ₂ photolysis	Reference
	(m³)	(m⁻¹)		mixing	(h-1)a	Rate (h⁻¹)	rate (min ⁻¹)	
AURA	5	3.5	FEP	No	0.06 (AS), 0.08 (SOA)	0.01	0.19	This study
Ilmari	29	2	FEP	No	0.09 (AS)	n/a	0.62	1
TSC	3	5	FEP	No	0.07	0.04	0.23	2
GIG-CAS	30	2.1	FEP	Yes	0.17 (AS)	0.02	0.49	3
PSI	27	2	FEP	No	0.21 (SOA)	0.04	0.12 (Xenon arc	4,5
							lamp)	
PSI-	9	2.9	FEP	No	0.25 (BC)	n/a	0.48	6
mobile								
EUPHORE	200	1	FEP	Yes	0.18 (SOA)	0.03	n/a	7,8
Caltech	28	2.1	FEP	No	0.09-0.18 (SOA)	n/a	1.5	9
UCR	90	1.4	FEP	No	0.29 (SOA)	n/a	0.19	10
SAPHIR	270	1	FEP	Yes	0.27 (SOA)	n/a	n/a	11
CMU	12	n/a	FEP	No	0.40 (SOA)	n/a	n/a	12

 Table 25. Smog chamber specification overview comparing the AURA chamber with other similar chamber facilities.
 a Particle type (AS = Ammonium sulfate, BC =Black carbon, SOA = Secondary Organic Aerosol) associated with listed wall loss rates is shown in parenthesis.

Figure 1S. A) Chamber illustration with placement of the six temperature sensors (five outside Teflon bag and one at Teflon bag centre). **B)** Temperature and RH measurements during OH-oxidation experiment with all 24 UV lights on. **C)** Temperature and RH measurements during dark ozonolysis experiment at 293 K. **D)** Temperature and RH measurements during dark ozonolysis experiment at 258 K.

Figure 2S. The NO₂ photolysis rates (min⁻¹, bottom) at 293 K and 258 K with 24, 16, and 8 UV lamps on (top).

Figure 35. A) The NO₂ photolysis rates (min⁻¹, bottom) after correction for dark chemistry at 293 K (red) and 258 K (blue) and mixing ratios (not corrected) of O_3 , NO, NO₂, and NO_x (molecules cm⁻³) after all 24 UV lamps are turned on (t=0 min). **B)** Temperatures during the NO₂ photolysis experiment at 258 K as measured by the temperature sensors shown in Figure 1S. Changes in photolysis rate at 258 K is attributed to changes in UV output as a consequence of changing temperatures initiated by heating from the UV lamps and subsequent cooling by the cold-room cooling system.

Figure 4S. Concentration of O_3 (ppb), α -pinene (ppb), wall loss corrected SOA mass ($\mu g \text{ m}^{-3}$), particle number (cm⁻³, not wall loss corrected) during the two dark ozonolysis of α -pinene experiment performed at 258 K (**A**, Exp. 1.1 & 1.2) and 293 K (**B**, Exp. 2.1 & 2.2) **C**) Concentration of α -pinene (ppb), wall loss corrected SOA mass ($\mu g \text{ m}^{-3}$), particle number (cm⁻³, not wall loss corrected) during the two OH-initiated oxidation experiment performed at 293 K (Exp. 3.1 & 3.2).

Figure 5S. A) "Triangle plot" for α -pinene SOA formed from ozonolysis at 293 K (Exp. 2.2, red) and 258 K (Exp. 1.2, blue) and photooxidation at 293 K (Exp. 3.2, yellow). The outline of the triangle (Ng et al., 2010) is shown in grey dashed line. **B)** Van Krevelen diagram for SOA formed from α -pinene ozonolysis and photooxidation experiments. The green crosshair squares denotes known alcohol, aldehyde carboxylic acid oxidation products from α -pinene oxidation. The purple squares denote dimer esters identified in α -pinene SOA form ozonolysis experiments. Lines with slopes of 0, -1 and -2 are represented by grey dashed lines.

gure 65. Top: Example of UHPLC/ESI-qTOF-MS chromatogram of particle filter sample collected from 258 K (Blue) and 293 K (red) ozonolysis of α -pinene experiments. Bottom: Extracted Ion Chromatograms of five of the total 31 identified dimer esters.

Carboxylic acid	Observed	Molecular formula	Error	O:C	H:C	Suggested Molecular Structure	% of SOA mass		
	111/2 (-)		(ppin)				293 K	258 K	293 K OH
Terebic acid	157.052	$C_7H_{10O_4}$	1.9	0.58	1.42	у он	0.45	0.14	0.80
Pinalic acid	169.087	$C_9H_{14}O_3$	0.5	0.33	1.55	HOHO	4.00	5.41	5.75
Terpenylic acid	171.067	$C_8H_{12}O_4$	1.3	0.50	1.50	ОН	2.20	1.07	1.87
MW 174	173.083	$C_8H_{14O_4}$	1.6	0.50	1.75	но он	0.28	0.08	0.23
MW 176	175.061	C ₇ H ₁₂ O ₅	0.4	0.71	1.71	Unknown	0.12	0.02	0.13
Pinonic acid	183.103	$C_{10}H_{16}O_3$	0.9	0.30	1.60	но	1.17	6.40	1.29
Pinic acid	185.083	$C_9H_{14}O_4$	1.6	0.44	1.55	но он	4.50	7.25	4.51
Diaterpernylic acid (DTA)	189.076	C ₈ H ₁₄ O ₅	0.3	0.63	1.75	но он	0.23	0.10	0.23
MW 190	189.076	C ₈ H ₁₄ O ₅	0.3	0.63	1.75	Ö Unknown	0.24	0.20	0.21
Oxopinonic acid	197.098	$C_{10}H_{14}O_4$	0.3	0.40	1.40	о остан	1.28	1.61	0.42
Hydrooxy-pinonic acid (OH-pinonic acid)	199.098	$C_{10}H_{16}O_4$	1.0	0.40	1.60	но	2.28	5.51	1.23
MW 202	201.077	$C_9H_{14}O_5$	0.7	0.44	1.55	но у он	0.29	0.77	0.56
3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)	203.056	C ₈ H ₁₂ O ₆	0.4	0.75	1.50	но	0.38	0.01	0.77
MW 206	205.072	C ₈ H ₁₄ O ₆	0.8	0.75	1.75	Unknown	1.10	0.48	1.19
MW 214	213.077	$C_{10}H_{14}O_5$	0.7	0.50	1.40	Unknown	173	2.61	0.61
Diaterpenylic acid acetate (DTAA)	231.087	$C_{10}H_{16}O_{6}$	0.1	0.60	1.60	но сон	0.22	0.09	0.25
Total						č	20.47	31.73	20.06

Table 3S. Carboxylic acids identified by UHPLC/ESI-qToF-MS analysis of collected particle samples along with observed m/z, molecular formula, O:C, H:C, suggested molecular structure and contribution to SOA mass formed at 293 K and 258 K ozonolysis of α -pinene and 293 K photooxidation of α -pinene.

Table 4S. Dimer esters identified by UHPLC/ESI-qToF-MS analysis of collected particle samples along with observed m/z, molecular formula, O:C, H:C, suggested molecular structure and contribution to SOA mass formed at 293 K and 258 K ozonolysis of α -pinene and 293 K OH-initiated oxidation of α -pinene. b.d. = below detection limit

Dimer ester ID	Observed m/z (-)	Molecular formula	Error (ppm)	O:C	H:C	Suggested Molecular Structure	% of SOA mass		nass
10	111/2()		(ppin)				293 K	258 K	293 K O
MW302	301.164	C15H26O6	2.4	0.40	1.73	Unknown	0.03	0.02	0.03
MW310	309.168	C ₁₇ H ₂₆ O ₅	2.2	0.29	1.53	Unknown	0.15	0.03	b.d.
MW312	311.149	C ₁₆ H ₂₄ O ₆	1.2	0.38	1.50	Unknown	0.36	0.01	b.d.
MW314	313.164	$C_{16}H_{26}O_{6}$	4.2	0.38	1.63	Unknown он	0.29	0.06	b.d.
MW316*	315.144	$C_{15}H_{24}O_7$	2.2	0.47	1.60	HOLOGIC	0.06	0.01	b.d.
						° ° ° ° °			
MW328*	327.145	C ₁₆ H ₂₄ O ₇	-1.6	0.44	1.50	но	0.10	b.d.	b.d.
MW330*	329 160	CicHacOz	25	0 44	1.63	о но	0 12	0.05	hd
	5251200	018/12807	215	0.11	1.05	но	0.12	0.05	5101
MW332*	331.139	$C_{15}H_{24}O_8$	0.0	0.53	1.60	но	0.05	b.d.	b.d.
MW336	335.185	$C_{19}H_{28}O_5$	4.0	0.26	1.48	Unknown	0.15	0.10	b.d.
MW338 [‡]	337.200	C10H20Or	5.9	0.26	1.56	i " ſ°× i	0.53	0.19	b.d.
		- 19 - 50 - 5							
MW340*	339.180	$C_{18}H_{28}O_{6}$	2.3	0.30	1.56		0.32	0.17	b.d.
MW342*	341.159	C ₁₇ H ₂₆ O ₇	4.2	0.41	1.53	HO, X, J. C. H	0.72	0.10	b.d.
						, но о			
MW344a*	343.138	$C_{16}H_{24}O_8$	2.9	0.50	1.50	охулохулон	0.12	b.d.	b.d.
MM2446+	2/2 17/	C H O	4.0	0.41	1 65	о но	0.08	0.05	hd
101003440	545.174	C17H28O7	4.0	0.41	1.05	но	0.08	0.05	b.u.
MW352	351.183	C ₁₉ H ₂₈ O ₆	2.4	0.32	1.48	у Сульски страна с с Страна с страна с стран	0.58	0.49	b.d.
						ö ö ∕ ö ^{H0} `0 0 0			
MW354‡	353.194	$C_{19}H_{30}O_6$	6.0	0.32	1.58		0.21	0.25	b.d.
						^{HO} .o o o			
MW356*	355.173	C ₁₈ H ₂₈ O ₇	7.0	0.39	1.56	С С С С С С С С С С С С С С С С С С С	0.23	0.11	b.d.
N4\1/2EQ*	257 155	C H O	0.1	0.47	1 5 2	но	1 76	0.09	hd
10100 338	557.155	C17H26O8	0.1	0.47	1.55	ё уон 🔨 ё	1.20	0.08	b.u.
MW360	359.170	C17H28O8	2.8	0.47	1.64	Unknown	0.21	0.02	b.d.
MW362	361.147	C ₁₆ H ₂₆ O ₉	8.5	0.56	1.63	Unknown	0.02	b.d.	b.d.
						но			
						\sim \times \times \times			
MW368*	367.174	C ₁₉ H ₂₈ O ₇	3.8	0.37	1.47	or	0.94	0.74	b.d.
						HOPO			
NAVA/270+	260 100	C II O	4.1	0.27	1 50	<u>L</u> aalaa	0.22	0.11	hd
WW370*	369.190	C ₁₉ H ₃₀ O ₇	4.1	0.37	1.58	Г Х Т Х ОН	0.23	0.11	D.a.
MW372*	371.170	C ₁₈ H ₂₈ O ₈	2.1	0.44	1.56	но	0.45	0.07	b.d.
MW374	373.149	$C_{17}H_{26}O_{9}$	2.6	0.53	1.53	Unknown	0.04	0.02	b.d.
MW378*	377.144	$C_{16}H_{26}O_{10}$	1.5	0.63	1.63		b.d.	b.d.	b.d.
MW384	383.172	C19H28O8	-2.6	0.42	1.47	''` ×	0.23	0.06	b.d.
MW386*	385.183	C ₁₉ H ₃₀ O ₈	7.9	0.42	1.58	но состать он	0.07	0.03	b.d.
						∧ ö ò _{`OH} ∧ ö			
N 414/2004	207		2.0	0.50	4.50		0.24	0.05	
IVIW388*	387.164	C ₁₈ H ₂₈ O ₉	3.9	0.50	1.56	\sim X I I V V V	0.24	0.05	b.d.
MW400*	399.164	$C_{19}H_{28}O_{9}$	4.5	0.47	1.47	но	0.77	0.18	b.d.
				-		// o o _{oh} // ö			
MW405	405.174	C ₁₈ H ₃₀ O ₁₀	4.6	0.55	1.67	Unknown	0.02	0.01	b.d.
rotal							8.58	2.99	0.03

Molecular structures suggested by *Yasmeen et al., (2010)¹³, [‡]Witkowski et al. (2014)¹⁴, [†]Zhang et al., (2015)¹⁵, ⁺Kristensen et al., (2016)¹⁶

References

- 1. A. Leskinen, P. Yli-Pirila, K. Kuuspalo, O. Sippula, P. Jalava, M. R. Hirvonen, J. Jokiniemi, A. Virtanen, M. Komppula and K. E. J. Lehtinen, *Atmos Meas Tech*, 2015, **8**, 2267-2278.
- 2. S. Wu, Z. F. Lu, J. M. Hao, Z. Zhao, J. H. Li, T. Hideto, M. Hiroaki and Y. Akio, *Adv Atmos Sci*, 2007, **24**, 250-258.
- 3. X. Wang, T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lu, J. Chen, S. Saunders and J. Yu, *Atmos Meas Tech*, 2014, **7**, 301-313.
- 4. D. Paulsen, J. Dommen, M. Kalberer, A. S. H. Prevot, R. Richter, M. Sax, M. Steinbacher, E. Weingartner and U. Baltensperger, *Environ. Sci. Technol.*, 2005, **39**, 2668-2678.
- 5. A. Metzger, J. Dommen, K. Gaeggeler, J. Duplissy, A. S. H. Prevot, J. Kleffmann, Y. Elshorbany, A. Wisthaler and U. Baltensperger, *Atmos. Chem. Phys.*, 2008, **8**, 6453-6468.
- S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger and A. S. H. Prévôt, *Atmos. Chem. Phys.*, 2013, **13**, 9141-9158.
- 7. M. Martín-Reviejo and K. Wirtz, *Environ. Sci. Technol.*, 2005, **39**, 1045-1054.
- 8. C. Bloss, V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee, D. E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. C. Wenger and M. J. Pilling, *Atmos. Chem. Phys.*, 2005, **5**, 641-664.
- 9. D. R. Cocker, R. C. Flagan and J. H. Seinfeld, *Environ. Sci. Technol.*, 2001, **35**, 2594-2601.
- 10. W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino and C. Song, *Atmos. Environ.*, 2005, **39**, 7768-7788.
- A. W. Rollins, A. Kiendler-Scharr, J. L. Fry, T. Brauers, S. S. Brown, H. P. Dorn, W. P. Dubé, H. Fuchs, A. Mensah, T. F. Mentel, F. Rohrer, R. Tillmann, R. Wegener, P. J. Wooldridge and R. C. Cohen, *Atmos. Chem. Phys.*, 2009, **9**, 6685-6703.
- N. M. Donahue, K. M. Henry, T. F. Mentel, A. Kiendler-Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. Mohler, T. Leisner, L. Muller, M. C. Reinnig, T. Hoffmann, K. Salo, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prevot and U. Baltensperger, *Proceedings of the National Academy of Sciences of the United States of America*, 2012, **109**, 13503-13508.
- 13. F. Yasmeen, R. Vermeylen, R. Szmigielski, Y. Iinuma, O. Boege, H. Herrmann, W. Maenhaut and M. Claeys, *Atmos. Chem. Phys.*, 2010, **10**, 9383-9392.
- 14. B. Witkowski and T. Gierczak, Atmos. Environ., 2014, **95**, 59-70.
- 15. X. Zhang, R. C. McVay, D. D. Huang, N. F. Dalleska, B. Aumont, R. C. Flagan and J. H. Seinfeld, *Proc. Natl. Acad. Sci.*, 2015, **112**, 14168-14173.
- 16. K. Kristensen, Å. K. Watne, J. Hammes, A. Lutz, T. Petäjä, M. Hallquist, M. Bilde and M. Glasius, *Environ. Sci. Technol. Lett.*, 2016, DOI: 10.1021/acs.estlett.6b00152.