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Aiming at the problems of low classification accuracy and time-consuming properties in traditional remote sensing image
classification methods, a remote sensing image classification method of ecological garden landscape based on improved U-Net
model is proposed. Firstly, the remote sensing images of ecological garden landscape are collected by s185 multirotor unmanned
aerial vehicle (UAV) system and preprocessed by min-max standardization and data enhancement. Then, the asymmetric
convolution block and attention mechanism are used to improve the U-Net model to form the Att-Unet network model, so as to
overcome the problems of easy overfitting of the model and incomplete small target detection. Finally, the fully connected
conditional random field is introduced into the classification postprocessing to refine the segmentation results. Based on the Keras
learning framework, the proposed method is experimentally demonstrated. The results show that the recall, precision, F1 value,
and accuracy of the proposed method in the remote sensing image of ecological garden landscape are 0.854, 0.801, 0.836, and
0.982, respectively, and the classification test time is 8.9s. The overall performance is better than other comparison methods, which

can provide theoretical support for the dynamic monitoring of the development of ecological garden.

1. Introduction

The classification and identification of vegetation are the basis
for the study of the status and dynamic changes of the eco-
logical garden landscape. Early vegetation remote sensing
image classification is often carried out through large-scale
remote sensing images, which is more suitable for northern
ecological gardens with simple vegetation types and large plots
[1, 2]. The southern ecological garden landscape has the
characteristics of complex structure and fast growth, which
brings great difficulties to the fine classification of vegetation.
The traditional remote sensing image classification process
usually includes three steps. First, the image preprocessing
technology is applied to register and denoise the image, so as
to eliminate the image difference caused by imaging factors.
Then, the difference image is generated by image difference,
ratio, and other methods. Finally, the difference image is
classified, and detailed features are extracted from it for

classification [3]. Generally speaking, the basis for identifying
the types of ecological garden landscapes is the difference in
the spectral characteristics of vegetation. The analysis of
vegetation spectral characteristics and species identification
based on the measured reflectance spectrum data is an im-
portant content of remote sensing theoretical research. It helps
to grasp the spectral separability of different vegetation types,
so as to more effectively carry out species identification [4,5].

In recent years, with the rapid development of high-
resolution satellites, high-resolution remote sensing image
data has increased dramatically, which has provided con-
venience for the application and research of remote sensing
images. But at the same time, there is a problem that, for the
original remote sensing image interpretation processing
speed, it is difficult to meet the existing needs. Therefore,
research on an efficient and accurate remote sensing image
classification and recognition model has become an urgent
need [6,7]. At present, there have been many researches on
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remote sensing image classification technology, and the
application of land vegetation cover classification has been
relatively mature, but the classification application of remote
sensing image of ecological garden landscape is still less [8].
There are mainly two remote sensing image classification
methods, namely, traditional classification models and
classification models based on deep learning [9].

The traditional computer classification method is to
extract spectral information on the basis of pixels to de-
termine the category of the pixels [10]. The basic idea is that,
in the same feature space, pixels of the same type of features
are clustered together, while pixels of different types of
features are separated from each other. The classification
effect of remote sensing images is closely related to the
classifier and classification algorithm. Commonly used
classification algorithms include supervised methods such as
maximum likelihood method, minimum distance, and
Mahalanobis distance, and unsupervised methods such as
k-means [11]. Yuan et al. (2019) proposed a method based
on rearranging local features to solve the problem of high
correlation between remote sensing image categories and
local features [12]. By fusing side classes to combine global
and local features to enhance image representation, the
accuracy of image classification still needs to be improved.
Dano U L et al. (2020) compared and analyzed three image
classification algorithms such as the minimum distance
based on the application of remote sensing and geographic
information system (GIS) computer programs [13]. Hu S
et al. (2021) proposed an evolutionary expansion and
contraction method for remote sensing image data pro-
cessing [14]. After expanding multiple data streams into
subspaces, data stream mining and image bound model
learning are dynamically completed, which improve the
accuracy of image recognition. However, the performance of
image classification for complex ecological garden vegeta-
tion remains to be verified.

With the development of deep learning, its advantages
such as strong ability to automatically extract features, less
manual intervention, and being not limited by the input size
of the image have gradually become prominent. And this
advantage provides a new idea for the classification of re-
mote sensing images of ecological gardens [15]. ShujunLiang
et al. (2019) proposed a maximum likelihood classification
model for soil remote sensing images combined with deep
learning network [16]. Extract soil targets in remote sensing
images through deep learning network and use maximum
likelihood method to classify soil remote sensing images.
However, the problem of image category diversity and
category similarity is still not well resolved. H. Song et al.
(2020) proposed a new dual-channel densely connected
convolutional network based on deep learning and multi-
source remote sensing data to automatically classify surface
remote sensing images [17]. The dual channel dense con-
nection convolution network carries out feature extraction
and integrates hyperspectral and radar features to output
accurate classification results. However, the detailed feature
processing of the feature image needs to be improved. Zhang
C. et al. (2019) proposed a multiscale dense network for
hyperspectral remote sensing image (HRSI) classification
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[18]. It makes full use of and combines different scale in-
formation in the entire network structure to realize the
feature extraction and classification of two-dimensional
remote sensing images. However, some global or local in-
formation of HRSI is ignored. Convolutional neural network
(CNN) is an emerging computer processing model. Many
scholars have applied it to remote sensing image classifi-
cation processing and achieved good research results. Zhao
F. et al. (2018) used the pretrained CNN model as a feature
extractor to extract deep-level features from the fully con-
nected layer to complete the accurate classification of HRSI
images [19]. But the robustness and computational efficiency
of the model are not good. Cheng G. et al. (2018) proposed a
deep CNN to improve remote sensing image scene classi-
fication performance [20]. By optimizing the new dis-
criminant objective function for training, the regularization
learning is strengthened, and the classification model is
more discriminative. However, the degree of discrimination
is not high for objects with high similarity in the scene.

Aiming at the problem that most of the existing remote
sensing image classification methods do not easily meet the
complex and changeable ecological garden landscape, a
remote sensing image classification method of ecological
garden landscape using an improved U-Net model is pro-
posed. The innovations are summarized as follows:

(1) Since the U-Net model is prone to overfitting during
training, the proposed Att-Unet model uses asym-
metric convolution blocks instead of standard
convolution operations to enhance the robustness of
the convolution kernel and the central skeleton of the
network. In addition, the attention mechanism is
introduced to strengthen the learning of change
characteristics to solve the problems of complicated
remote sensing image background and easy-to-miss
detection of small target changes.

(2) Considering that many vegetations in ecological
gardens are relatively similar, the probability of
adjacent pixels belonging to the same category is
higher. The conditional random field is introduced
into the Att-Unet model, and the extracted feature
map is input as the conditional random field to
improve the fineness of target edge segmentation.

The remaining chapters of this paper are arranged as
follows: the second chapter introduces the remote sensing
image data source and image preprocessing process. The third
chapter introduces the classification method of remote sensing
images based on the improved U-Net model. In Chapter 4,
experiments are designed to verify the performance of the
proposed method. The fifth chapter is the conclusion.

2. Remote Sensing Image Data Source and
Image Preprocessing

2.1. Remote Sensing Image Acquisition. The acquisition of
remote sensing images of an ecological garden in the suburbs
of Harbin, Heilongjiang Province, mainly uses the S185
unmanned aerial vehicles (UAV) system, as shown in
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Figure 1. The system mainly includes Cubert S185 hyper-
spectral data acquisition system, six-rotor electric un-
manned aerial vehicle system (maximum load is about 6 kg,
endurance time is 15min-30 min), and three-axis stabiliza-
tion gimbal and data processing system.

The remote sensing image data acquisition system is
mainly composed of the German Cubert S185 airborne high-
speed imaging spectrometer and a micro control unit (used
for data acquisition and data storage). During flight oper-
ations, the S185 is precalibrated by black and white radia-
tion, and the exposure time is automatically matched. When
the altitude is 100m, the flight speed is 4.8 m/s, the sampling
interval is 0.8s, the heading overlap rate is about 80%, and
the side overlap rate is about 70%, it can simultaneously
acquire 125 effective bands of hyperspectral data (450nm-
946 nm) and clear images with a spatial resolution of about
2.6 cm.

The collection of UAV hyperspectral data should be
carried out on sunny days to avoid cloud shadows affecting
image quality. And the deflection angle should not be too
large during the acquisition time to avoid too large shadow
area in the image. The experimental data collection time was
within 10: 00-13: 00 on October 8th and October 10th, 2019.
The weather was fine and slightly clouded. A total of 12 UAV
hyperspectral images were acquired in 3 survey areas. In the
experiment, it was ensured that the amount of cloud and the
intensity of sunlight in the sky had little difference during the
collection of each sortie.

2.2. Data Preprocessing. A data normalization operation is
required to control the data distribution within a certain
range. Data normalization is an important preprocessing
step before model training [21, 22].

At present, the commonly used normalization methods
are min-max standardization and z-score standardization.
Min-max standardization is also called dispersion stan-
dardization, which maps data values to [0, 1]. This method is
suitable for data distributed in a limited range. The stan-
dardized data x" is calculated as follows:

x' = w, (1)
Xmax ~ Xmin
where x is the data before standardization, x,,, is the
maximum value of the sample data, and x,,;, is the mini-
mum value of the sample data.

Z-Score standardization is to use the mean and standard
deviation of the original data for standardization. This
method is suitable for situations where there is no obvious
boundary. The data standardized by z-score conforms to the
standard normal distribution; that is, the mean is 0 and the
standard deviation is 1. The calculation is as follows:

, x-X

x = , (2)
o

where X is the mean value of the data and ¢ is the standard
deviation of the data.

Appropriate data normalization methods have a great
impact on the effectiveness and accuracy of model training.

FIGURE 1: S185 multirotor UAV system.

Select min-max standardization to normalize the training
and verification images and reduce the data range of each
channel from the interval [0, 255] to the interval [0, 1].
In addition, data enhancement is an essential step in
deep learning image classification tasks. Commonly used
image enhancement methods can be roughly divided into
three categories: color transformation, geometric transfor-
mation, and cropping [23]. It is easy to lose important in-
formation in cropping operation, and geometric
transformation is more suitable for remote sensing images
with different shapes and angles. Therefore, geometric
transformation is mainly adopted, and the data enhance-
ment operation of random flip (including horizontal and
vertical flip) is performed on the sample to be trained after

cropping.

3. Remote Sensing Image Classification
Based on Improved U-Net Model

3.1. Modeling. The process of using Att-Unet model and
fully connected conditional random fields (CRFs) to classify
remote sensing images of ecological garden landscape is
mainly divided into two phases: training phase and classi-
fication and postprocessing phase. The entire classification
process is shown in Figure 2.

The upper part of Figure 2 is the training phase. The
training samples composed of multisource remote sensing
images and ground real data are input into the Att-Unet
model for feature learning, and the predicted probability
distribution map is obtained. Then, the cross entropy
function is used to measure the loss value between the
predicted classification result and the ground truth data. The
Adam optimization algorithm is used to reduce the loss
value, and the parameters in the Att-Unet model are con-
tinuously updated iteratively until the loss value is reduced
to a given threshold range; then, the training ends and the
optimal Att-Unet model is obtained. The lower part of
Figure 2 is the classification and postprocessing stage. It uses
the trained Att-Unet model to classify images to be classified
and obtains preliminary classification results. Then, com-
bined with the original image to be classified, fully connected
CRFs are used to adjust and optimize the classification
results to improve the misclassification phenomenon and
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FiGure 2: Classification process structure of the proposed model.

refine the edges of the features to obtain a more detailed and
accurate classification.

3.2. Att-Unet Model Training

3.2.1. Asymmetric Convolution Block. The U-Net network
has gone through 5 coding blocks in the feature extraction
part, and ten 3 x3 standard convolution operations. Re-
peated convolution operations will cause information loss in
the feature extraction part of the network, which is prone to
overfitting and affects the accuracy of detection [24]. The
internal structure of the U-Net network has been improved.
In the feature extraction process, an asymmetric convolution
block (ACB) is used to replace the 3 x3 standard convo-
lution to improve the accuracy of network change detection.
The structure of the ACB module is shown in Figure 3.

ACB is a convolution operation obtained by accumulating
convolution results of a set of convolution kernels of 3 x 3,
1x3, and 3x1. It is equivalent to adding two single con-
volution operations with 1x 3 and 3 x1 convolution kernels
at the center of the 3 x3 convolution kernel to obtain an
equivalent output. Using ACB to replace the standard 3 x 3
convolution of the feature extraction part can enrich the
feature space during the training process. The knowledge
learned by the model is incorporated into the square kernel,
the central skeleton part of the square convolution kernel is
enhanced, and the information loss caused by the convolution
operation is reduced. The robustness of the model to rotation
distortion is enhanced without adding additional parameters
and calculations, thereby improving the accuracy of the
model.

3.2.2. Attention Mechanism. The remote sensing image
contains a variety of features such as buildings, vegetation,

bare land, farmland, and waters. The proposed model only
focuses on ecological gardens, and other types of ground
objects are treated as background. The background situation
is more complicated, which greatly interferes with the ac-
curacy of the classification results. Therefore, the attention
mechanism is introduced in the step connection part of the
U-Net network to adjust the feature weights and suppress
the model learning features that are not related to the
changing pixels. Focus on learning features related to
changeable pixels and strengthen the model’s extraction of
features of changeable ecological gardens. The structure of
the attention mechanism is shown in Figure 4.In the
structure, d is the feature map matrix of the decoding part, e
is the feature map matrix of the coding part, H, W, and C,
respectively, represent the length, width, and number of
channels of the feature map, and wy and w, are the feature
weight matrix. The specific operation of the attention
mechanism is divided into three steps.

3.2.3. Feature Weight Extraction

(3)

where i and j correspond to the pixel positions in the feature
map and e (4, j) and d (i, j) are the pixels in the encoder and
decoder, respectively.

By performing global average pooling on the feature map
e of the encoding part and the feature map d of the decoding
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part, respectively, the weight matrices wy and w, of the
feature maps containing C channel information are
obtained.

(1) Feature weight w update is

Qu = \VT(31(‘°Z“' + wdT ))’
w = 62 (Qatt (e; ®att))’

where §, is the activation function of Rectified Linear Unit
(ReLU), 6, is the Sigmoid function, and ®,,, represents the
proportion of backpropagation learning.

The attention mechanism realizes the update of feature
weights through two fully connected layers. First of all, by
multiplying w, by e and wy by d, the full connection op-
eration of the encoding part of the feature map and the
decoding part of the feature map is realized, reducing the
amount of parameter calculation. Then, the result of the fully
connected layer is summed and then passed through the
ReLU layer, and the result is multiplied by the ¥ point to
make a full connection again. The weight matrices wq and w,
are learned through backpropagation, and the importance of
each element in the d and e matrices is obtained.

(4)

(2) Feature weight update
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FIGURE 4: Attention mechanism module.

Accordingly, the proportion of the d and e matrices to
continue forward propagation is adjusted. Finally, the
weight of each pixel is redistributed, and the weight matrix w
after the feature weight update is obtained through the
Sigmoid layer.

(2) The updated feature weights are mapped to the
feature map:

e =e-w (5)

Multiply the updated weight matrix w by the feature map
e. Increase the weight of the channel related to change pixels
in the feature map, and decrease the weight of the channel
related to other pixels. Obtain the feature map with the
attention mechanism, and step-connect it with the feature
map d to enter the next decoding layer.

3.2.4. Att-Unet Model and Model Training. The attention
mechanism is introduced into the U-Net network, and the
resulting Att-Unet network structure is shown in Figure 5.
Att-Unet introduces the attention gate in the skip con-
nection part of the U-Net network. A channel-level attention
control is performed on the underlying information and the
characteristics of the current channel. The characteristics of
different channels can be linked, and the characteristics of
the same type have mutual restrictions. Compared with the
image restored by direct upsampling, it is more refined, and
the classification accuracy is also improved [25].

Suppose the image is divided into K categories. For the
pixel n{n = 1,2, ..., N} in each sample image, N is the total
number of pixels. Its true category label is expressed as
yitk=0,1,...,K - 1}. The K-dimensional output feature
vector obtained by forward propagation of the sample is
denoted as Op{k =0,1,...,K —1}. Then, the process of
finding the optimal solution of the model parameters can be
transformed into a process of narrowing the gap between the
output value O} and the ground truth data yj. Firstly, for
multiclass problems, the softmax function is usually used to
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convert the linear prediction values of all categories in the
feature vector O} into probability values. Then, the calcu-
lation formula of the predicted probability that the pixel n
belongs to the K-th category is

exp(0f)
ZkK:1 €xp (OZ)

After obtaining the probability value, use the loss
function to calculate the loss value between the ground truth
data and the predicted probability to quantify the difference
between the two. When the loss value is smaller, the clas-
sification is more accurate. The cross entropy function is
used to calculate the loss value. The formula is as follows:

Px (xn) = (6)

| N ¢
loss = N Z Z yilogp, (x"). (7)

n=1k=1

The process of model training is the process of opti-
mizing the loss function and reducing the value of loss, that
is, the process of adjusting and updating the Att-Unet model
parameters, also known as backward propagation. The ex-
periment uses Adam optimization algorithm for model
training and updates the parameters in the model layer by
layer. Adam algorithm is easy to implement, has high
computational efficiency and low memory requirements,
and is currently one of the commonly used optimization
algorithms in deep learning. When the loss value reaches a
certain threshold, the training stops.

3.3. Model Prediction. Model prediction refers to the for-
ward propagation process after the parameters of the model
are determined. The final model is used to solve the prob-
ability that each pixel in the image to be classified belongs to
each category. Then, use the argmax function to find the
dimension to which the maximum probability belongs, that
is, the pixel category label. The specific method is that, for
each pixel n{n =1,2,...,N} in the sample, the predicted
probability of belonging to the K-th category is obtained and

denoted as p; (x"). Then, calculate the category label K,, of
the pixel n as follows:

E(K) = Z Yu (Kn) + Z Yp (Kn’Km)’ (8)
n=1 E

In the model prediction process, in order to prevent
memory overflow, the image to be classified is usually
cropped into fixed-size image blocks for prediction. Then,
stitch together into the whole image. However, due to the
convolution operation, the boundary of the image block is
filled with 0. Therefore, the prediction method will make the
prediction accuracy of the boundary pixel of each image
block lower than the prediction accuracy of the center pixel.
The classified images obtained after splicing have obvious
splicing traces. In order to obtain higher prediction results, a
marginal abandonment strategy is adopted. A sliding win-
dow is used to obtain image blocks with a certain over-
lapping area. Then, for each predicted image block, the
classification result of a certain area in the middle is retained,
and the result of inaccurate edges is discarded and then
spliced in sequence. In this way, obvious splicing marks can
be avoided and the image prediction effect can be improved.

3.4. Fully Connected CRFs Postprocessing. Upsampling is
performed in the Att-Unet network decoder. This step can
restore the feature map to the original size. But it also causes
the loss of features, and the problem of blurred boundaries of
ground objects [26]. In addition, the convolution operation is
locally connected, which can only provide information in a
rectangular area around a pixel. Although repeated down-
sampling convolution operations can gradually increase the
area of the rectangle, even in the last convolution layer, the
correlation between one pixel and all other pixels in the entire
image cannot be obtained. In order to solve the above
problems and improve the accuracy of classification, the Att-
Unet network and fully connected CRFs are combined, by
calculating the similarity between two pixels to determine
whether they belong to the same category. In the model test,
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the output probability distribution diagram of the last layer of
the decoder is used as the unary potential energy of fully
connected CRFs. The position and color information in the
binary potential energy is provided by the original image. The
result of image postprocessing is used as the final output
result.

The energy function of fully connected CRFs is calcu-
lated as follows:

E(K) =) yu(K,)+ ) ¥p(KuK,): 9)
n=1 E

The first term yy; (K,,) of the energy equation is a unary
potential energy function. It is used to measure the prob-
ability of the pixel point belonging to the category label K,,
when the color value of the pixel point # is C,,. The second
term of the energy equation is a paired potential energy
function v, (K, K,,), which is used to measure the prob-
ability P(K,,, K,,,) of two events occurring at the same time,
and describes the relationship between each pixel and other
pixels. The color and the pixels that are relatively close
together are classified into one category, and the calculation
formula is as follows:

G
Yp (Kn’ Cm) = U(Kn’ Cm) z ngg (fn’ fm)’
g=1

K (f”,fm)

where U is the label probability function, which calculates
the probability that the pixel n and the pixel m belong to the
same class. If K, # C,,,, then U (K,,,C,,) = 1; otherwise, it is 0.
w9 is used to balance the function. «{ is the Gaussian kernel
function. The 3 (f,, f,.) expression is

) = eb( S5 £ A (o f)) (1D

where f, and f,, represent the feature quantity of pixel n
and pixel m.

w9 in (10) is the weight of Gaussian Ki. Each Gaussian
kernel 9 is characterized by a symmetric positive precision
matrix A9, which defines the shape.

For remote sensing image classification problems,
k(f» fm) is usually used in dual-core potential, and the
expression is

RO N L 0 e Y
K(fn’fm)_w exp( 29?( 2‘9123

2
+o® exp<—”L" z_sﬁ‘m” >)

Y

(10)

(12)

where L, and L,, are the pixel position and I,, and I,,, are the
amount of pixel color. The first item on the right side of the
formula is called the appearance kernel, and the second item is
called the smooth kernel. The appearance kernel assumes that
adjacent pixels with similar colors are likely to belong to the
same category, and the function of the smoothing kernel is to
eliminate isolated small areas. The function of formula (12) is to
judge whether similar pixels belong to the same category. If the
pixels belong to the same category, the energy function value is

relatively small. Conversely, if the pixels do not belong to the
same category, the energy function is relatively large.

In the classification of ecological garden remote sensing
images, the use of this energy function can make the clas-
sification of garden features and neighboring features more
accurate. When pixels in similar areas are judged to be of
different types, the energy function value will become larger.
When the areas with differences are judged to be the same
type, a larger energy value will also be produced. Through
multiple iterations, the value of the energy function is
minimized to obtain the final result. In this way, the in-
formation of the entire image is used to refine the edge of the
garden and improve the accuracy of classification.

4. Experiment and Analysis

Att-Unet network will perform a lot of calculations and
consume a lot of memory and video memory during
training, which requires high hardware. However, due to the
price and experimental environment, a balance is pursued in
terms of platforms. The proposed model is built based on the
deep learning framework Keras, and the deep learning ex-
perimental environment is built according to the main-
stream configuration environment. The basic software and
hardware configuration are shown in Table 1. A total of 1200
images were collected. After preprocessing, 900 images were
randomly selected for model training, and the remaining 300
images were used for model testing.

4.1. Evaluation Index. F1-Score is used as an evaluation
index, which is an important index to measure the accuracy
of classification problems and is the harmonic average of
recall and precision. When using F1-score to evaluate model
accuracy, Fl-score and accuracy rate Acc are calculated as
follows:

Precision x Recall

F1=2 —
Precision + Recall
. TP
Precision = ——,
TP + FP
(13)
TP
Recall = ——,
TP + FN
TP + TN
Acc = )
TP + TN + FP + FN

where TP represents the number of positive categories that
are correctly classified, TN represents the number of neg-
ative categories that are correctly classified, FP represents the
number of misclassified positive categories, and FN repre-
sents the number of negative categories that are mis-
classified. In the experiment, the positive category is the
number of pixels of the change category, and the negative
category is the number of pixels of the nonchange category.

4.2. Training Curve. Through multiple experiments, con-
sidering the model calculation efficiency, result accuracy,
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TaBLE 1: Configuration of basic hardware and software system.

Hardware configuration Parameter Software configuration Parameter
System Ubuntu 16.04 GPU-Driver 384
CPU Intel E5-1630 CUDA 10.0
Memory 16 GB Python 3.6
Hard disk 1T Keras 2.2.4
Graphics card NVIDIA GTX970 Tensorflow 1.4.0
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FIGURE 6: Training curve of improved U-Net model.

and hardware, the experiment finally set the number of
iterations to 300 and the batch size to 25. Adadelta was
chosen as the optimizer, and the initial learning rate was set
to 0.01. The accuracy and loss value changes obtained by the
proposed model training are shown in Figure 6.

It can be seen from Figure 6 that when the number of
iterations is 50, the proposed model tends to converge.
When the number of iterations exceeds 100, the model has
steadily converged. At this time, the classification accuracy
and loss value on the training set are close to 99.8% and
0.005, respectively. And the classification accuracy and loss
value on the validation set are about 99.3% and 0.02, re-
spectively. It can be demonstrated that the proposed model
has good convergence performance, fast convergence speed,
and ideal classification performance.

4.3. Att-Unet Classification Results. Typical vegetation in an
ecological garden in the suburbs of Harbin, Heilongjiang
Province, includes rape, sunflower, and reed. The Att-Unet
model is used to classify ecological garden landscapes of
different ages. The result is shown in Figure 7.

It can be seen from Figure 7 that the distribution of
typical vegetation in a certain ecological garden in the
suburbs of Harbin with different ages basically remains
unchanged. In the early years, most of the gardens were
wasteland and the ecological environment was harsh. Reeds

are distributed only near the water source. With the im-
provement of the ecological environment, the wasteland
began to be covered with grass, forming grassland. With the
continuous development of human activities and the driving
of natural evolution, the planting of artificial vegetation also
represents human intervention in garden vegetation,
changing the natural distribution pattern of garden vege-
tation. In recent years, large areas of rapeseed and sunflowers
have gradually appeared. Among them, the distribution of
rape flowers is concentrated in strips and shows a trend of
expansion. The change in the distribution area of reeds
showed an area that first decreased and then increased,
possibly due to the impact of earlier human activities. The
garden landscape distribution law obtained by the Att-Unet
model is consistent with the actual distribution law.
Therefore, the proposed model is effective. It is used to
analyze the evolution of the spatial distribution of typical
garden vegetation to infer its habitat changes and driving
factors so as to realize the dynamic monitoring and pro-
tection of the ecological garden landscape.

4.4. Comparison of U-Net and Att-Unet Classification Results.
In order to demonstrate the classification performance of the
Att-Unet network model, it is compared with the U-Net
model. The two classification results of ecological garden
remote sensing images are shown in Figure 8.
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FiGgure 7: Classification results of Att-Unet model.

It can be seen from Figure 8 that the image learned by the
U-Net network has salt and pepper phenomenon. Moreover,
the junction of different features is the mixed pixel, and the
classification situation is more complicated due to the lack of
clear and effective spatial information. The Att-Unet

network introduces an attention mechanism and is pro-
cessed by fully connected CRFs, which can better handle
small target classification. The boundary conditions are
obviously optimized, and the boundary of reed classification
is clearer.
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FiGure 8: Comparison of classification results of remote sensing images.

Through comparison, we can find that there are more
misclassifications of reeds. The main reason is that reeds are
scattered sporadically and staggered with other vegetations,
and the boundary characteristics between different vegeta-
tions are not obvious. This affects the U-Net network to
accurately extract the boundaries of the reeds. The Att-Unet
network joins the attention mechanism to avoid such
problems to a certain extent. Rapeseed flowers are widely
distributed and formed into patches, which are obviously
different from other vegetations, so there are very few
mistakes. However, because the image characteristics of
early rape plants are similar to those of reeds, the boundary
information is more blurred. In the U-Net network classi-
fication model, the pixels are independent of each other,
leading to inconsistent classification results of some adjacent
pixels, and the rape plants are mistakenly classified as reeds.
However, after the fully connected CRFs are processed, it
can effectively overcome the effects of different spectra or
foreign objects of the same spectrum, make up for the defects
of pixel-based classification, and improve classification
accuracy.

4.5. Comparison with Other Methods. The proposed method
improves U-Net network by introducing attention mecha-
nism and ACB convolution block. The improved Att-Unet
model detects changes in the ecological garden landscape in
remote sensing images. The training time comparison results
of different methods are shown in Table 2.

It can be seen from Table 2 that [13] uses the minimum
distance method to classify remote sensing images. The
method is more traditional and the calculation is simple, so

TaBLE 2: Comparison of training time of different methods.

Method Training time/min
Ref. [13] 28
Ref. [16] 59
Ref. [17] 71
Proposed method 42

the overall training time is 28 minutes. Reference [16]
proposed a maximum likelihood classification method for
remote sensing images combined with deep learning net-
work. Reference [17] fuses deep learning and multisource
remote sensing data to propose a new dual-channel densely
connected convolutional network for automatic classifica-
tion of remote sensing images. The network scale of the two
methods is relatively large, and the parameter update takes a
long time. The proposed method uses the Att-Unet model,
which introduces an attention mechanism in the U-Net
model. The feature weight extraction and update in the
attention mechanism increase the amount of model pa-
rameters, thereby increasing the model training time to
42 min.

In order to demonstrate the performance of the pro-
posed method, it is compared with [13], [16], and [17]. The
results of each evaluation index are shown in Table 3.

It can be seen from Table 3 that, compared with other
methods, the proposed method has the best classification
accuracy. The recall rate, precision, F1 value, and accuracy
rate are 0.854, 0.801, 0.836, and 0.982, respectively. Because
the proposed method adopts the Att-Unet network model,
which introduces the attention mechanism and fully
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TaBLE 3: Comparison of experimental results of different methods.

Method Ref. [13] Ref. [16] Ref. [17] Proposed method
Recall 0.758 0.791 0.829 0.854
Precision 0.725 0.763 0.786 0.801

F1 0.698 0.760 0.805 0.836
Accuracy 0.894 0.939 0.961 0.982
Testing time/s 7.6 11.7 12.5 8.9

connected CRFs, it can better extract small target landscapes
from remote sensing images of ecological gardens and
achieve more detailed classification. And it uses the ACB
convolution block to replace the traditional convolution
structure, which simplifies the network model and can speed
up the classification to a certain extent. Therefore, the test
time is 8.9s, and the overall performance is relatively ideal.
Reference [13] uses the minimum distance method for re-
mote sensing impact classification, which is simple and easy
to implement, and the test time is only 7.6s. But the clas-
sification accuracy is lower than 0.9, and the overall per-
formance is poor. Reference [16] extracts remote sensing
image targets through a deep learning network and uses the
maximum likelihood method to classify remote sensing
images. However, the classification effect of similar remote
sensing images is not good, and its F1 value is 0.760, which is
0.076 lower than the proposed method. Reference [17]
proposed a new dual-channel densely connected convolu-
tional network for automatic classification of remote sensing
images. Among them, the dual-channel densely connected
convolutional network is used for feature extraction, and
hyperspectral and radar features are merged to output ac-
curate classification results. The model is complex, and the
test time is up to 12.5s. However, the classification accuracy
has been improved, which is only 0.015 lower than the
proposed method.

5. Conclusion

The remote sensing image records the detailed shape,
geometric structure, texture, and other characteristic in-
formation of the ground object. While providing high-
quality information, it also poses new challenges for effi-
cient and accurate remote sensing image classification. For
this reason, a classification method for remote sensing
images of ecological garden landscape using an improved
U-Net model is proposed. Among them, an asymmetric
convolution block and an attention mechanism are in-
troduced to improve the U-Net model. And the improved
Att-Unet model is used for remote sensing image classi-
fication of ecological garden landscape. At the same time,
fully connected CRFs are used for classification post-
processing to achieve more refined remote sensing image
classification. Experiments demonstrate that the classifi-
cation results of the proposed method are clearer, especially
for small landscape targets. And the recall rate, precision,
F1 value, and accuracy rate obtained are 0.854, 0.801, 0.836,
and 0.982, respectively. The classification test time is 8.9s,
and the overall performance is better than other com-
parison methods.
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It has obvious advantages in dynamic monitoring of
ecological garden landscape. However, the improved model
network framework is larger and the number of parameters
increases, which leads to a longer model training time.
Therefore, follow-up research should be carried out in the
direction of further improving the accuracy of the model and
accelerating the speed of model training.
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