[1]
Courtois N, Merier W, Algebraic attacks on stream ciphers with linear feedback, In: Advances in Cryptology-EUROCRYPT 2003, LNCS 2656. Berlin, Heideberg: Springer, 2003. 345-359.
DOI: 10.1007/3-540-39200-9_21
Google Scholar
[2]
Courtois N, Fast algebraic attacks on stream ciphers with linear feedback, In: Advances in Cryptology-CRYPTO 2003, LNCS 2729. Berlin, Heidelberg: Springer, 2003. 176-194.
DOI: 10.1007/978-3-540-45146-4_11
Google Scholar
[3]
Armknecht F, Krause M, Algebraic attacks on combiners with memeory, In: Advances in Cryptology-CRYPTO 2003, LNCS 2729. Berlin, Heidelberg: Springer, 2003. 162-175.
DOI: 10.1007/978-3-540-45146-4_10
Google Scholar
[4]
N. Courtois and W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feedback, Advances in Cryptology-Eurocrypt 2003, Berlin: Springer- Verlag, 2003, 345-359.
DOI: 10.1007/3-540-39200-9_21
Google Scholar
[5]
W. Meier, E. Pasalic, and C. Carlet, Algebraic attacks and decomposition of Boolean functions, Advances in Cryptology-Eurocrypt 2004, Berlin: Springer-Verlag, 2004, 474-491.
DOI: 10.1007/978-3-540-24676-3_28
Google Scholar
[6]
Braeken A, Preneel B, On the algebraic immunity of symmetric Boolean functions., In: Progress in Cryptology-INDOCRYPT 2005, LNCS 3797. Berlin, Heidelberg: Springer, 2005. 35—48.
DOI: 10.1007/11596219_4
Google Scholar
[7]
Carlet C, A method of construction of balanced functions with optimum algebraic immunity, Available at http: /eprint. iacr. org/2006/149.
Google Scholar
[8]
Dalai D K, Gupta K C, Maitra S, Cryptographically significant Boolean functions: Construction and analysis in terms of algebraic immunity, In: FSE 2005, LNCS 3557. Berlin, Heidelberg: Springer, 2005. 98—111.
DOI: 10.1007/11502760_7
Google Scholar
[9]
Dalai D K, Maitra S, Sarkar S, Basic theory in construction of Boolean functions with maximum possible annihilator immunity, In: Designs, Codes and Cryptography. Heidelberg: Springer. 2006, 40(1): 41—58.
DOI: 10.1007/s10623-005-6300-x
Google Scholar
[10]
Li N, Qi W F, Construction and count of Boolean functions of an odd number of variables with maximum algebraic immunity, Available at http: /arxiv. org/abs/cs. CR/0605139.
Google Scholar
[11]
Qu L J, Feng G Z, Li C, On the Boolean functions with maximum possible algebraic immunity: construction and a lower bound of the count, http: /eprint. iacr. org/2005/449.
Google Scholar
[12]
Claude Carlet, Xiangyong Zeng, Chunlei Li, Lei Hu, Further properties of several classes of Boolean functions with optimum algebraic immunity, In: Des. Codes Cryptogr. (2009) 52: 303–338.
DOI: 10.1007/s10623-009-9284-0
Google Scholar