[1]
J. Lippold and D. Kotecki, Welding Metallurgy and Weldability of Stainless Steels. (2005).
Google Scholar
[2]
K. D. Ramkumar, N. Arivazhagan, and S. Narayanan, Comparative assessment on microstructure and mechanical properties of continuous and pulse-current GTA welds of AISI 304 and Monel 400,, Met. Mater., vol. 52, p.287–298, (2014).
DOI: 10.4149/km_2014_5_287
Google Scholar
[3]
W. Zhang, W. Jiang, X. Zhao, and S.-T. Tu, Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation,, Int. J. Fatigue, vol. 109, p.182–190, (2018).
DOI: 10.1016/j.ijfatigue.2018.01.002
Google Scholar
[4]
K. D. Ramkumar, A. Chandrasekhar, A. K. Singh, S. Ahuja, and N. Arivazhagan, Effect of Filler Metals on the Structure–Property Relationships of Continuous and Pulsed Current GTA Welds of AISI 430 and AISI 904L,, Metallogr. Microstruct. Anal., vol. 4, no. 6, p.525–541, (2015).
DOI: 10.1007/s13632-015-0236-y
Google Scholar
[5]
A. Moteshakker and I. Danaee, Microstructure and Corrosion Resistance of Dissimilar Weld-Joints between Duplex Stainless Steel 2205 and Austenitic Stainless Steel 316L,, J. Mater. Sci. Technol., vol. 32, no. 3, p.282–290, (2016).
DOI: 10.1016/j.jmst.2015.11.021
Google Scholar
[6]
M. Jafarzadegan, a Abdollah-Zadeh, a H. Feng, T. Saeid, J. Shen, and H. Assadi, Microstructure and Mechanical Properties of a Dissimilar Friction Stir Weld between Austenitic Stainless Steel and Low Carbon Steel,, J. Mater. Sci. Technol., vol. 29, no. 4, p.367–372, (2013).
DOI: 10.1016/j.jmst.2013.02.008
Google Scholar
[7]
J. Kangazian, M. Shamanian, and A. Ashrafi, Dissimilar welding between SAF 2507 stainless steel and Incoloy 825 Ni-based alloy: The role of microstructure on corrosion behavior of the weld metals,, J. Manuf. Process., vol. 29, p.376–388, (2017).
DOI: 10.1016/j.jmapro.2017.08.012
Google Scholar
[8]
T. Vigraman, R. Narayanasamy, and D. Ravindran, Microstructure and mechanical property evaluation of diffusion-bonded joints made between SAE 2205 steel and AISI 1035 steel,, Mater. Des., vol. 35, p.156–169, (2012).
DOI: 10.1016/j.matdes.2011.09.063
Google Scholar
[9]
R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds,, Mater. Charact., vol. 59, no. 4, p.447–453, (2008).
DOI: 10.1016/j.matchar.2007.03.004
Google Scholar
[10]
M. Sadeghian, M. Shamanian, and A. Shafyei, Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel,, Mater. Des., vol. 60, p.678–684, (2014).
DOI: 10.1016/j.matdes.2014.03.057
Google Scholar
[11]
A. Eghlimi ,M. Shamanian, M. Eskandarian, A. Abolian, M. Nezakat , J. A. Szpuna, Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and high strength low alloy steel,, Surface & Coatings Technology 264,150–162, (2015).
DOI: 10.1016/j.surfcoat.2014.12.060
Google Scholar
[12]
B. I. Mendoza, Dissimilar Welding of Superduplex Stainless Steel/HSLA Steel for Offshore Applications Joined by GTAW,, Engineering, vol. 02, no. 07, p.520–528, (2010).
DOI: 10.4236/eng.2010.27069
Google Scholar
[13]
P. B. Srinivasan, V. Muthupandi, W. Dietzel, and V. Sivan, An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels,, Mater. Des., vol. 27, no. 3, p.182–191, (2006).
DOI: 10.1016/j.matdes.2004.10.019
Google Scholar