
Chemosphere 308 (2022) 136252

Available online 30 August 2022
0045-6535/© 2022 Elsevier Ltd. All rights reserved.

Extraction of multi-scale features enhances the deep learning-based daily 
PM2.5 forecasting in cities 
Liang Dong a, Pei Hua b,c, Dongwei Gui e, Jin Zhang d,e,* 

a South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China 
b SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical 
Chemistry of Environment, South China Normal University, 510006, Guangzhou, China 
c School of Environment, South China Normal University, University Town, 510006, Guangzhou, China 
d State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 
210098, China 
e State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Multi-scale features of original data set 
were extracted by dual decomposition. 

• Decomposition could effectively extract 
the sequence feature information. 

• Secondary decomposition could further 
improve the model performance. 

• Long short-term memory neural net-
works outperformed other shallow 
networks. 

• Deep learning based on dual decompo-
sition made effective predictions of 
PM2.5  
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A B S T R A C T   

Characterising the daily PM2.5 concentration is crucial for air quality control. To govern the status of the at-
mospheric environment, a novel hybrid model for PM2.5 forecasting was proposed by introducing a two-stage 
decomposition technology of complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) and variational mode decomposition (VMD); subsequently, a deep learning approach of long short-term 
memory (LSTM) was proposed. Five cities with unique meteorological and economic characteristics were 
selected to assess the predictive ability of the proposed model. The results revealed that PM2.5 pollution was 
generally more severe in inland cities (66.98 ± 0.76 μg m−3) than in coastal cities (40.46 ± 0.40 μg m-3). The 
modelling comparison showed that in each city, the secondary decomposition algorithm improved the accuracy 
and prediction stability of the prediction models. When compared with other prediction models, LSTM effectively 
extracted featured information and achieved relatively accurate time-series prediction. The hybrid model of 
CEEMDAN-VMD-LSTM achieved a better prediction in the five cities (R2 = 0.9803 ± 0.01) compared with the 
benchmark models (R2 = 0.7537 ± 0.03). The results indicate that the proposed approach can identify the 
inherent correlations and patterns among complex datasets, particularly in time-series analysis.  
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1. Introduction 

Air pollution caused by PM2.5 (particles with aerodynamic diameter 
<2.5 μm) has been considered a critical problem threatening human 
health. These particles may trigger a variety of diseases, including 
asthma, nasal diseases, and cardiovascular diseases (Chen et al., 2020; 
Gong et al., 2019; Loftus et al., 2015; Sugiyama et al., 2020). According 
to recent studies, ambient PM2.5, the fifth-ranked risk factor for global 
death, caused the premature death of 4.2 million people worldwide in 
2015, thereby accounting for 7.6% of the total global deaths (Cohen 
et al., 2017; Zhang et al., 2020b). Under the influence of an increased 
exposure rate, population growth, and aging, it was estimated that 1.1 
million people in China died prematurely due to PM2.5-related diseases 
in 2015 (Cohen et al., 2017). In this regard, timely and accurate pre-
diction of PM2.5 concentration helps decision-makers implement effec-
tive early warning activities, which can help the public effectively 
arrange travel times and type of transportation, thereby reducing the 
impact of PM2.5 on their daily lives (Huang et al., 2021). 

In terms of modelling approaches, numerous deterministic and sta-
tistical methods exist for air pollution prediction. Deterministic methods 
based on theoretical meteorological emissions and chemical models can 
effectively simulate the distribution and dispersion of pollutants (Chen 
and Li, 2021; Hong et al., 2020). However, the model-building process of 
deterministic methods requires an appropriate application area, 
comprehensive emission data, sufficient information regarding the 
physicochemical processes of pollutants, and numerical calculations 
(Samal et al., 2021). Thus, deterministic methods for PM2.5 predictive 
modelling are complex and time-consuming, and the generality and 
accuracy of the obtained results may be lower than those of other 
methods (Lightstone et al., 2017; Masood and Ahmad, 2021). In 
contrast, statistical model-based data mining methods that aim to 
develop dependencies between input variables and air pollutant con-
centration, avoid complex modelling processes; thus, they can obtain 
accurate prediction results (Goudarzi et al., 2021). 

With the development of artificial intelligence, artificial neural net-
works (ANNs) have become an effective and popular nonlinear statis-
tical technology for the prediction of PM2.5 concentration and they have 
been shown to have a high prediction accuracy (Teng et al., 2022). Some 
examples are back propagation (BP) neural networks (Liu et al., 2019), 
radial basis function (RBF) neural networks (Lu et al., 2004), general 
regression neural networks (GRNN) (Wang et al., 2019), and recurrent 
neural networks (RNNs) (Biancofiore et al., 2017). As an improved 
version of RNNs, long short-term memory (LSTM) introduces memory 
cells to explore the inherent abstract features and constant structure of 
time series (Boulila et al., 2021). Thus, LSTM has a strong ability to 
extract features from historical data and yield excellent results. With the 
development of deep learning technology in recent years, LSTM has 
been extensively used in the prediction of air pollutants, and has been 
shown to have clear advantages in dealing with time series (Aggarwal 
and Toshniwal, 2021; Menares et al., 2021). 

In addition, accurate and effective prediction of PM2.5 remains a 
substantial challenge owing to the limited understanding of the dynamic 
processes in the atmospheric environment. Previous studies have shown 
that an appropriate signal processing method is an effective way to 
extract hidden dynamic information from pollutant sequences and 
improve the prediction accuracy of the models. Qiao et al. (2019) in 
their study established a novel PM2.5 prediction method using wavelet 
transform (WT), stacked autoencoder (SAE), and LSTM. The case study 
showed that the proposed model had a higher prediction accuracy than 
that of the SAE-LSTM model at five different study sites. The basic idea 
behind the decomposition-based hybrid model is to decompose 
time-series data into several components characterised by more linear 
and smoother trends, thus making model prediction easier (Liu et al., 
2020a; Sharma et al., 2020). 

However, owing to their irregularity and non-stationarity (Niu et al., 
2016), original PM2.5 data cannot be determined completely using a 

single decomposition technique (Wang et al., 2017), and the 
high-frequency characteristics extracted by the single decomposition 
may affect the overall prediction performance of the model. Thus, 
further secondary decomposition is necessary, and this technique has 
achieved good results in a series of fields, such as wind speed forecasting 
(Sun et al., 2021), temperature forecasting (Xu and Ren, 2019), and 
streamflow forecasting (Wang et al., 2021b). However, few studies have 
applied two-stage decomposition technology to air pollutant concen-
tration prediction, especially in cities with unique meteorological and 
economic characteristics. 

Consequently, with the aim of targeting a better prediction perfor-
mance, a PM2.5 concentration prediction model based on two-stage 
decomposition technology and a deep learning method was developed 
in this study. The main aims of this study were: (1) to explore the ability 
of CEEMDAN-VMD two-stage decomposition to identify and separate 
tendencies, harmonic components, and irregular components of raw 
data, as well as determine the potential of LSTM to process the dynamic 
characteristics of PM2.5, (2) integrate CEEMDAN-VMD and LSTM to 
construct a hybrid model for PM2.5, and (3) corroborate the performance 
of the CEEMDAN-VMD-LSTM models with different performance 
measures. 

2. Materials and methods 

2.1. Study area and data 

Severe air pollution events in China are highly concentrated in four 
separate regions: the North China Plain, Yangtze River Delta, Pearl River 
Delta, and Sichuan Basin. Owing to the unique meteorological and 
geographical conditions in Northwest China (near the desert with four 
distinct seasons), PM2.5 has become the main air pollutant in the area. 
Therefore, five representative cities were selected as study areas: 
Urumqi (Northwest China), Guangzhou (Pearl River Delta), Chengdu 
(Sichuan Basin), Shanghai (Yangtze River Delta), and Shijiazhuang 
(North China Plain) (Fig. S1). Detailed descriptions of the economic 
conditions, geographic environment, and PM2.5 pollution of the five 
cities are presented in Text S1 in the Supporting Information. The 
geographical location, climate conditions, industrial structure, and 
economic scale of these five cities differ, resulting in different pollutant 
concentrations and air quality. A comprehensive study of these five 
cities will help rationally verify the practicability of the model and 
obtain more comprehensive and reliable experimental conclusions. 

The daily PM2.5 data series for the given cities from December 2, 
2013 to October 31, 2019 were collected from five air quality moni-
toring stations set up by the China National Environmental Monitoring 
Centre (CNEMC) (www.cnemc.cn, accessed December 2021). PM2.5 data 
for each city were derived from measurements from the samplers based 
on the CNEMC reference method. The time interval for collecting all 
PM2.5 data was one day. For the given cities, the amount of missing data 
for various reasons, such as instrument damage, was less than 5% of the 
total recording period. Therefore, missing data did not affect the pre-
diction performance of the model. In each city, the first 80% of the data 
were used for model training, and the last 20% were used to verify the 
performance of the development model, similar to previous research 
(Wang et al., 2021a). 

2.2. CEEMDAN decomposition technique 

As an evolution of empirical mode decomposition (EMD) (Huang 
et al., 1998), the complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN) proposed by Torres et al. (2011) is an 
adaptive data analysis method. Original data can be decomposed into a 
series of intrinsic mode functions (IMFs). By adding adaptive white noise 
in each of the decomposition stages, CEEMDAN solves the mode-mixing 
problem in EMD, providing better separation of modes and accurate 
reconstruction of the original signal with lower computing costs. In this 
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study, the standard deviations of Gaussian noise and the iterations were 
set to 0.2 and 200, respectively. The detailed implementation steps are 
presented in Text S2 of the Supporting Information. 

2.3. VMD decomposition technique 

Variational mode decomposition (VMD) is an adaptive, quasi- 
orthogonal, and completely nonrecursive signal decomposition 
method proposed by Dragomiretskiy and Zosso (2013). In essence, VMD 
adaptively transfers the signal decomposition process into the varia-
tional model and then realises the effective separation of components 
with different frequencies by iteratively searching for the optimal so-
lution of the variational model. The details are provided in Text S3 of 
the Supporting Information. 

2.4. Tree-based feature selection 

Random forest (RF) is an integrated machine learning method that 
can be used as a feature selection tool for high-dimensional data to 
analyse complex features and the importance of measurement variables 
(Liu et al., 2020b; Yang et al., 2020). Based on predictive performance 
degradation when the values of descriptive variables in the nodes of the 
tree are randomly arranged, RF can provide information about the 
importance of each input variable when calculating the values of the 
output variables (Wang et al., 2021a). Based on the variable importance 
measure, RF can be used to discard insignificant input variables (Fang 
et al., 2021; Rodriguez-Galiano et al., 2018). The detailed working 
mechanism of the RF is presented in Text S4 in the Supporting 
Information. 

2.5. LSTM deep learning technique 

LSTM was introduced as a deep neural network to excavate the dy-
namic characteristics of time series and make effective predictions 
(Hochreiter and Schmidhuber, 1997). The LSTM unit mainly includes a 
memory cell and three types of gates (input, output, and forget gates) 
that control the state change in the memory unit (Fig. S2). With the help 
of the gate units and memory cells, the LSTM unit can control long-time 
information and establish long-time delays between input and feedback 
(Ma et al., 2019). The working mechanism of LSTM is shown in Text S5 
in the Supporting Information. 

2.6. CEEMDAN-VMD-LSTM hybrid model 

To achieve effective PM2.5 prediction, we have proposed a novel 
hybrid model that integrates CEEMDAN-VMD secondary decomposition 
and LSTM neural networks. The detailed procedures of the CEEMDAN- 
VMD-LSTM hybrid model employed in this study are as follows: 
Step 1. CEEMDAN was employed for the original PM2.5 series into n 
IMFs with different frequencies and a residual component R. 
Step 2. VMD was utilised to further decompose high-frequency IMF1 
into m components (VMs) with clearer inherent characteristics. 
Step 3. To improve the training speed and convergence of the model 
and avoid the adverse effects caused by singular sample data, the input 
data were normalised to a specific range [0, 1] before the modelling 
process began using Eq. (1). 

xnormalized =
xi − xmin

xmax − xmin

(1)   

Step 4. For each subseries, RF was applied to select the most important 
lags as a suitable input for the LSTM. 
Step 5. An LSTM neural network model was established to predict 

each mode obtained by decomposition, including n IMF components, a 
residual component R, and m VM components. 
Step 6. The predictions of all the modes were denormalized and 
summarised to obtain the final forecasting results for PM2.5. 

2.7. Performance evaluation 

Appropriate model evaluation criteria are the premise for a reason-
able evaluation and prediction. The mean absolute error (MAE), root 
mean square error (RMSE), and coefficient of determination (R2) reflect 
the error and accuracy of the prediction model and they are commonly 
used evaluation indicators (Ding et al., 2020; Li et al., 2020). The 
standard deviation of the error (SDE) and Diebold Mariano (DM) tests 
were used to evaluate the prediction stability of the developed model. 
Detailed evaluation criteria are provided in Text S6 of the Supporting 
Information. 

To evaluate the effectiveness of the proposed model and the feasi-
bility of the data processing method, we applied 14 p.m.2.5 prediction 
models as comparison models, which were mainly composed of six 
classic models (the naive model, autoregressive integrated moving 
average (ARIMA), support vector regression (SVR), BP, extreme learning 
machine (ELM), and LSTM) and four typical decomposition algorithms 
(EMD, ensemble empirical mode decomposition (EEMD), VMD, CEEM-
DAN, and CEEMDAN-VMD). In this study, we continuously optimised 
the model by adjusting the parameters until we obtained the best-fit 
model using the training set; finally, we determined the optimal 
hyperparameters for each model. The parameter settings for the 
different algorithms are listed in Table S1. All simulation experiments 
were carried out on the MATLAB R2019b platform on a personal com-
puter with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz 
and 8.00 GB RAM. 

3. Results 

3.1. Characteristics of PM2.5 in different cities 

During the study period, the average annual values of PM2.5 in 
Urumqi, Guangzhou, Chengdu, Shanghai, and Shijiazhuang were 62.04 
± 1.32, 36.98 ± 0.47, 55.19 ± 0.83, 43.69 ± 0.63, and 84.05 ± 1.59 μg 
m−3, respectively (Table S2). These results clearly showed that PM2.5 
pollution was more severe in inland cities (i.e., Urumqi, Chengdu, and 
Shijiazhuang, 66.98 ± 0.76 μg m−3) than in coastal cities (i.e., 
Guangzhou and Shanghai, 40.46 ± 0.40 μg m-3). The daily PM2.5 data 
series from the five study cities are illustrated in Fig. 1. We noticed that 
the PM2.5 values in these five cities showed periodic fluctuations to 
varying degrees (Fig. 1). The average concentration in the five cities in 
winter (92.31 ± 1.39 μg m−3) was significantly higher than that in 
spring (49.17 ± 0.64 μg m−3), summer (34.14 ± 0.42 μg m−3), and 
autumn (49.76 ± 0.82 μg m−3). Analysis of variance (p < 0.010) showed 
that season had a significant effect on PM2.5 concentration in the at-
mospheric environment (Table S3). 

The seasonal variation and other multi-scale characteristics of PM2.5 
in the five typical regions were further analysed by continuous wavelet 
analysis. Fig. 2 shows the power spectrum of a wavelet transform of 
PM2.5 data in the five study cities. It was clear that the PM2.5 sequences 
in these study cities had significant wavelet power at a 1-year time scale 
in most cases, which revealed a strong annual signal. However, PM2.5 
had some regional differences in relatively minor periods. In addition to 
the above annual oscillations, PM2.5 in Urumqi, Chengdu, and Shi-
jiazhuang exhibited a semi-annual oscillation from day 400 to day 1900. 
For these longer time scales, the PM2.5 concentration was mainly 
affected by seasonal emission periods and long-term socioeconomic 
factors (Zhong et al., 2018). On the contrary, it could be seen that PM2.5 
in Shanghai and Shijiazhuang had a series of quasi-unit weekly oscilla-
tions of 4–8 days, which fall within the confidence interval based on the 
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wave power spectrum and global wavelet spectrum. These 
shorter-period characteristics are closely related to low-frequency os-
cillations in the atmosphere and human activities. Therefore, it is chal-
lenging to characterise the variability of PM2.5 in the five cities due to 
their diverse natural and anthropogenic impacts. To overcome the dif-
ficulty of coupling with complex information and to improve the feasi-
bility of forecasting, pre-processing of the original data was essential. 

3.2. Data decomposition and input selection 

As there were many cities and methods studied in this study, the data 
processing process of daily PM2.5 data in Urumqi was introduced as an 
example (Fig. 3). Pre-processing results for PM2.5 data from other cities 
are shown in Fig. S3 to S6. 

The original PM2.5 sequence was first decomposed into a series of 
sub-signals after using the CEEMDAN decomposition technology. After 
the decomposition, the PM2.5 data were changed into components with 
more obvious characteristics listed in the order from the highest to the 
lowest frequencies (Fig. 3a). The high-frequency IMF reflected random 
noise and irregular influencing factors in the PM2.5. The lower frequency 
IMF and residual showed the periodic factors or long-term trends of the 
original series, respectively. 

VMD was applied to further decompose high-frequency IMF, in 
which the normal distance (ND) was the criterion of the pre-set number 
of decompositions K. It can be seen that ND remains relatively stable 
when K increases to a certain extent (Fig. S7), which indicates that the 
appropriate decomposition number determined by ND can effectively 
extract the hidden features in the original data and therefore avoid the 
cumulative estimation error caused by too many intrinsic patterns. 
Fig. 3b shows the decomposed sequences of the IMF1 data using the 
VMD method. 

RF was adopted to evaluate the importance of the lags of the original 
PM2.5 sequence and its subsequence. Fig. 3 shows the RF ranking order 
for each time series for Urumqi. Owing to redundancy and correlation, 
more input features may affect the prediction accuracy and increase 

operating costs. Thus, the most relevant historical data were selected as 
the input variables for sequences that showed significant importance at 
a certain time. For the other sequences, five important historical data of 
the time series based on RF sorting were selected as the input variables 
of the prediction models. 

3.3. Comparison with the classic individual models 

In this study, the prediction performances of some classic individual 
models of the naive model, ARIMA, SVR, BP, ELM, and LSTM, were 
compared with the proposed hybrid model on the same test set. The 
prediction performance of PM2.5 for the different models for the five 
cities, is shown in Fig. 4 and Table S4. 

Although a good prediction ability of the individual models was 
shown in Urumqi (total R2 

= 0.8079) and Chengdu (total R2 
= 0.6697), 

the relatively low prediction accuracy in Guangzhou (total R2 
=

0.4764), Shijiazhuang (total R2 
= 0.5774), and Shanghai (total R2 

=

0.2421) indicated that individual models had poor recognition and 
analysis ability for information and learning patterns and could not 
capture the dynamic characteristics of PM2.5 concentration series in 
different environments. 

Taking Urumqi as an example, the proposed CEEMDAN-VMD-LSTM 
model had the smallest error (MAE = 2.606 and RMSE = 3.697) and 
highest accuracy (R2 

= 0.9942). When compared with the individual 
models, the MAE and RMSE of CEEMDAN-VMD-LSTM decreased by 80% 
and 83%, respectively, and R2 increased by 23%. The developed model 
exhibited prominent advantages over traditional individual models. 
Moreover, in all of the urban environments, the prediction results of 
CEEMDAN-VMD-LSTM were satisfactory. Individual models can no 
longer meet the current requirements of high prediction accuracy and 
generalisation for air pollutants. 

Fig. 1. PM2.5 concentration of (a) Urumqi, (b) Guangzhou, (c) Chengdu, (d) Shanghai, and (e) Shijiazhuang (PM represents daily PM2.5 concentration in the unit of 
μg m3; Proportion represents the ratio of PM2.5 days to total days at each level). 
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3.4. Comparison between the hybrid models with different decomposition 
techniques 

In this section, we compare the performance differences between the 
proposed secondary decomposition and the commonly used single 
decomposition methods EMD, EEMD, CEEMDAN, and VMD. A com-
parison is presented in Fig. 5 and Table S5. 

When compared with models without signal decomposition, all of 
the models combined with decomposition technology performed better 
with relatively small prediction errors. For example, in the Urumqi 
dataset, CEEMDAN-LSTM surpassed LSTM in three indicators, MAE, 
RMSE, and R2, improving by 58%, 59%, and 18%, respectively. 
Furthermore, CEEMDAN and VMD showed better dissecting results 
because of the mode mixing in EMD and the inability of EEMD to 
eliminate the added white noise. However, no single decomposition 
technique always performed best in the dynamic feature extraction for 
PM2.5 in all of the cities. In general, individual models might be detri-
mental to extracting useful information from pollutants, and 

inappropriate decomposition techniques might lead to elusive or irrel-
evant components, which might increase the prediction challenges. 

Among all of the decomposition-based prediction models, the model 
combined with secondary decomposition performed significantly better 
in PM2.5 prediction for all of the cities, with the total MAE, RMSE, and R2 

values of 3.063, 5.178, and 0.9818, respectively. When compared with 
the single decomposition-based model, the average improvement rates 
of R2 of the secondary decomposition-based model in Urumqi, 
Guangzhou, Shanghai, Chengdu, and Shijiazhuang were 7%, 25%, 27%, 
8%, and 11%, respectively. This indicates that the composite structure of 
the secondary decomposition and deep learning was quite effective, 
despite the differences in the improvement results due to the different 
dynamics in PM2.5 in different environments. 

3.5. Comparison between the hybrid models with different predictors 

This study tested the effectiveness of a secondary decomposition 
combined with a classical data-driven predictor. ARIMA, SVR, BP, and 

Fig. 2. Wavelet power spectra (left column) and the global wavelet power spectrum (right column) of daily PM2.5 concentrations (μg m−3) for (a) Urumqi, (b) 
Guangzhou, (c) Chengdu, (d) Shanghai, and (e) Shijiazhuang. 
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ELM were introduced as predictors instead of LSTM in the integrated 
CEEMDAN-VMD-LSTM model, and their prediction performances are 
shown in Fig. 6 and Table S6. 

Based on secondary decomposition, the performance of the three 
types of predictors conformed to the following order: deep learning 
technology (LSTM) > machine learning models (SVR, BP, and ELM) >
empirical model (ARIMA). ARIMA predicted PM2.5 with a high R2 (total 
R2 

= 0.9357), indicating that some linear dynamic components of PM2.5 
obtained by secondary decomposition. The total R2 of the machine 
learning models reached 0.9642, which was significantly higher than 
that of the ARIMA model. This result was reasonable because there were 
nonlinear components in the dynamics of PM2.5, which were difficult for 
ARIMA to handle. Machine learning models have strong nonlinear and 
linear mapping capabilities. When compared with the traditional ma-
chine learning models, the R2 of LSTM increased by an average of 3%, 
whereas the MAE and RMSE decreased by 29% and 25%, respectively. It 
could be seen that the prediction performance of LSTM was significantly 
higher than that of traditional machine learning due to its unique 
structure and the ability to process time series. 

3.6. PM2.5 prediction performance in the different cities 

The CEEMDAN-VMD-LSTM model achieved the best performance 
when compared to the other 14 prediction models (Figs. 4–6). We drew 
predictions for the five urban areas to fully demonstrate the validation 
results (Fig. 7). It can be seen that the prediction performance of 
CEEMDAN-VMD-LSTM varies from region to region. R2 in Urumqi was 
the highest (0.9942), whereas R2 in Shanghai was the lowest of the five 
studied areas (0.9659), but it still performed very well. The average R2 

of the proposed model in the five regions was 0.9803 ± 0.01, while the 
average R2 of the benchmark models was 0.7537 ± 0.03, indicating that 
our model was suitable for PM2.5 prediction in China. In addition, the p- 
value of all DM tests based on the mean square error function was less 
than 0.01, which could indicate that the difference probability was 99%, 
indicating that CEEMDAN-VMD-LSTM was superior to the other 
methods (Table S7). 

The forecasting accuracy of the developed PM2.5 prediction method 
was demonstrated; however, for pollution data with a high fluctuation, 
the prediction model also requires low uncertainty to maintain the high 
prediction accuracy (Yu et al., 2022). In this study, SDE was used to 
assess the forecasting stability of the developed method. Among the five 

Fig. 3. (a) CEEMDAN decomposition results, (b) VMD decomposition results, and the importance of each lag in corresponding decomposition sequences for Urumqi.  
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cities of Urumqi, Guangzhou, Chengdu, Shanghai, and Shijiazhuang, the 
SDE predicted by CEEMDAN-VMD-LSTM was the lowest in all models 
(3.695, 1.567, 3.325, 4.144, and 9.622, respectively). This indicates that 
the proposed model has a lower dispersion of the prediction error and 
higher stability (Zhang et al., 2020a). 

The prediction results of different cities showed that CEEMDAN- 
VMD-LSTM could adapt well to the PM2.5 characteristics of the 
different regions, resulting in superior prediction accuracy and predic-
tion stability compared to those obtained using the benchmark methods. 

Fig. 4. Comparison of the forecasting performance of the proposed model with classic individual models.  

Fig. 5. Comparison of the forecasting performance of the proposed model with hybrid models with different decomposition techniques.  
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4. Discussion 

4.1. Secondary decomposition-based deep learning guarantees the 
prediction accuracy 

Based on the successful combination of secondary decomposition 
and deep learning algorithms, the CEEMDAN-VMD-LSTM performed 
best among all PM2.5 prediction models used in this study. 

Natural and social environmental factors such as pollutant emissions, 
local policies, and climate contribute to the complex dynamics of PM2.5. 
For the highly complex and nonstationary PM2.5, its dynamic charac-
teristics are difficult to capture and learn by the model without pre-
processing, resulting in a lower prediction accuracy. A single 
decomposition transformed the original sequence into several sub-
sequences with distinct dynamic characteristics, which avoided the 
interference between the dynamic information at different time scales, 
made prediction easier, and improved the prediction accuracy of the 
model (Figs. 4 and 5). However, the high-frequency component ob-
tained by single decomposition contained the main random component 
of the data, which was highly irregular and limited the improvement in 
the model accuracy. The secondary decomposition can handle the non- 
stationarity and non-linearity of the high-frequency components and 
fully extract the deep feature relationships of the time series in the time- 
frequency domain to improve the prediction performance of the model 
(Fig. 5). 

LSTM exhibited a higher predictive power for the predictors used to 
develop decomposition-prediction models (Fig. 6). The subcomponents 
of PM2.5 obtained by secondary decomposition had more distinct tem-
poral characteristics. LSTM can preserve and retrieve input values and 
gradients as needed and automatically extract useful intrinsic features 
from historical time series. Therefore, LSTM was able to extract and 
store valuable historical information from the PM2.5 time-frequency 
decomposition sequence to achieve accurate predictions. Furthermore, 
the deep-learning model adaptively adjusts and readjusts the features 
represented in the computing layer based on the previous representa-
tion. This unique hierarchy allows LSTM to automatically extract 

advanced and complex features related to datasets without manual 
intervention, which is a challenge for other models. 

4.2. Differences in PM2.5 between the cities affect the prediction results 

We found that the model had different applicability in each city. In 
addition to differences in the algorithm stability of the predictors, the 
secondary decomposition algorithm plays a key role. Owing to the 
different fluctuation characteristics of PM2.5 data in each city, the 
decomposition results were also different. From the results of the 
continuous wavelet analysis, it can be seen that PM2.5 in Urumqi, 
Guangzhou, and Chengdu had stable annual changes. However, PM2.5 in 
Shijiazhuang and Shanghai had significant high-frequency components 
(noise), such as quasi-unit weekly oscillations, in addition to annual 
scale cycles. By comparing the characteristics of cities in the secondary 
decomposition results, it can be seen that the decomposition sequence 
curves of Urumqi, Guangzhou, and Chengdu cities had a smaller 
amplitude and a higher smoothness, which indicated that the data 
decomposition results were better. Obvious noise characteristics 
remained in the high-frequency decomposition sequences in Shanghai 
and Shijiazhuang, resulting in large change amplitudes and poor curve 
smoothness. This difference might be due to the fact that Shijiazhuang 
was located in an industrial-intensive area and Shanghai had a dense 
population and frequent industrial activities, meaning that the impact of 
human activities on PM2.5 in these two cities was reflected in the high- 
frequency time series component, which hindered secondary decom-
position and resulted in a decrease in the prediction accuracy of the 
model. The above analysis shows that the intrinsic dynamic character-
istics and secondary decomposition results can explain the prediction 
results of the model. When the internal dynamic characteristics of the 
PM2.5 sequence fluctuated regularly, the second decomposition could 
completely extract the time information of pollutants, and the prediction 
performance of the model was often better. However, if the PM2.5 
sequence changed irregularly, the noise characteristics of the sub-
sequences obtained by the secondary decomposition were more obvious, 
and the prediction results would be affected, resulting in a lower 

Fig. 6. Comparison of the forecasting performance of the proposed model with hybrid models with different predictor.  
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accuracy of the model prediction. 
However, when compared with the single model (R2 

=

0.2420–0.8070), the single decomposition model (R2 
= 0.7750–0.9290), 

and secondary decomposition-prediction models based on other pre-
dictors (R2 

= 0.9207–0.9769), the CEEMDAN-VMD-LSTM model still 
had consistent estimation performance (R2 

= 0.9659–0.9942) regardless 
of which city was applied. One explanation is that prediction based on 
secondary decomposition could effectively reduce the difficulty of 
pollutant time-series prediction, while LSTM could effectively utilise the 
extracted time characteristics. Thus, the proposed model achieved better 
prediction results at all of the sites, thereby reducing the prediction error 
differences between cities. 

4.3. Limitations and future work 

Although this study has many important advantages, it has some 
limitations as well. The neural network is the black box in a sense, which 
means that the structure of the neural network cannot explain the 
interaction between pollutant concentration and determinants, nor can 
it explain the physical and chemical reactions that occur during the 
formation of PM2.5 (Gu et al., 2022). Future research can consider 
integrating environmental factors and attention mechanisms to expand 
the developed prediction system to provide a cost-effective and trans-
parent representation for estimating the contributions of specific sources 
and improving the interpretability of neural networks (Gu et al., 2022; 
Pyo et al., 2021). In addition, when compared with simple prediction 

Fig. 7. Time series plots of predicted and actual values of CEEMDAN-VMD-LSTM model in (a) Urumqi, (b) Guangzhou, (c) Chengdu, (d) Shanghai, and (e) 
Shijiazhuang. 
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models, the CEEMDAN-VMD-LSTM model needs to process more sub-
sequences and has higher computation time and hardware costs. Future 
studies will recombine similar subpatterns to improve accurate infor-
mation extraction and computing efficiency by ensuring the accuracy 
and stability of predictions. 

5. Conclusions 

When considering the complex dynamics of pollutants in the envi-
ronment, this study has presented a hybrid PM2.5 prediction approach. 
Secondary decomposition combining complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) and variational 
mode decomposition (VMD) was introduced to process complex PM2.5. 
A deep learning approach of long short-term memory (LSTM) processed 
the subsequences from the secondary decomposition and then obtained 
the PM2.5 prediction results. The results showed that secondary 
decomposition technology could effectively extract the inherent dy-
namic characteristics of PM2.5, thereby improving the accuracy and 
predictive stability of the learning model. The LSTM can effectively 
capture these dynamic characteristics and therefore make accurate 
predictions. By combining the advantages of secondary decomposition 
and deep learning, the proposed model could accurately predict PM2.5 
concentration under different environmental conditions. 
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