[1]
|
Optical Nonlinearities in Nanostructured Systems
Springer Tracts in Modern Physics,
2022
DOI:10.1007/978-3-031-10824-2_4
|
|
|
[2]
|
Hollow ZnO microspheres self-assembled from rod-like nanostructures: morphology-dependent linear and Kerr-type nonlinear optical properties
Journal of Materials Science: Materials in Electronics,
2021
DOI:10.1007/s10854-021-06827-0
|
|
|
[3]
|
Hollow ZnO microspheres self-assembled from rod-like nanostructures: morphology-dependent linear and Kerr-type nonlinear optical properties
Journal of Materials Science: Materials in Electronics,
2021
DOI:10.1007/s10854-021-06827-0
|
|
|
[4]
|
3D phase diagrams and the thermal stability of two-component Janus nanoparticles: effects of size, average composition and temperature
Physical Chemistry Chemical Physics,
2021
DOI:10.1039/D0CP06695H
|
|
|
[5]
|
Investigation of Third-Order Optical Susceptibility in ZnO/SnO2/Ag Ternary Composite Nanoparticles
Journal of Inorganic and Organometallic Polymers and Materials,
2021
DOI:10.1007/s10904-021-01993-4
|
|
|
[6]
|
Synthesis, characterization and investigation of linear and infra-red nonlinear optical properties of TiO2/ZnO core/shell nanospheres
Applied Physics B,
2020
DOI:10.1007/s00340-020-07529-x
|
|
|
[7]
|
Facile synthesis of ZnS–Ag2S core–shell nanospheres with enhanced nonlinear refraction
Journal of Materials Science: Materials in Electronics,
2020
DOI:10.1007/s10854-019-02640-y
|
|
|
[8]
|
One-dimensional Sn(iv) hydroxide nanofluid toward nonlinear optical switching
Materials Horizons,
2020
DOI:10.1039/C9MH01495K
|
|
|
[9]
|
Enhanced third-order optical susceptibility in Ag-doped CeO2 nanostructures under pulsed Nd-YVO4 laser
Optics & Laser Technology,
2020
DOI:10.1016/j.optlastec.2020.106114
|
|
|
[10]
|
Synthesis and Characterization of ZnS/Ag2S Nanocomposites with Enhanced Kerr-Type Optical Nonlinearity
Journal of Inorganic and Organometallic Polymers and Materials,
2020
DOI:10.1007/s10904-020-01681-9
|
|
|
[11]
|
Ag/CeO2 Schottky-type nanoheterostructures: Enhanced third-order nonlinear optical susceptibility under the near infrared irradiation
Optics & Laser Technology,
2020
DOI:10.1016/j.optlastec.2020.106426
|
|
|
[12]
|
Enhanced third-order optical susceptibility in heterogeneous wurtzite ZnO/anatase TiO2 core/shell nanostructures via controlled TiO2 shell thickness
Optical Materials,
2019
DOI:10.1016/j.optmat.2019.03.042
|
|
|
[13]
|
Thermally induced optical nonlinearity in colloidal alloy nanoparticles synthesized by laser ablation
Applied Physics B,
2019
DOI:10.1007/s00340-019-7271-3
|
|
|
[14]
|
Spinodal Decomposition in Nanoparticles - Experiments and Simulation
Defect and Diffusion Forum,
2018
DOI:10.4028/www.scientific.net/DDF.383.89
|
|
|
[15]
|
Crystal structure, spectroscopic and third-order nonlinear optical susceptibility of linear fused ring dichloro-substituent chalcone isomers
Optical Materials,
2018
DOI:10.1016/j.optmat.2018.09.032
|
|
|
[16]
|
Spinodal Decomposition in Nanoparticles - Experiments and Simulation
Defect and Diffusion Forum,
2018
DOI:10.4028/www.scientific.net/DDF.383.89
|
|
|
[17]
|
Research Methodologies for Beginners
2017
DOI:10.1201/9781315364568-5
|
|
|
[18]
|
Nonlinear optical properties of AgRh colloidal bimetallic nanoparticles fabricated via chemical reduction method
Materials Research Innovations,
2017
DOI:10.1080/14328917.2017.1312772
|
|
|
[19]
|
Experimental and theoretical simulation studies on picosecond closed-aperture Z-scan profiles of N,N′–Bis(2,5,-di- tert -butylphenyl)-3,4,9,10-perylenedicarboximide (DBPI)
Optical Materials,
2017
DOI:10.1016/j.optmat.2017.06.003
|
|
|
[20]
|
Size dependent spinodal decomposition in Cu-Ag nanoparticles
Acta Materialia,
2017
DOI:10.1016/j.actamat.2016.10.036
|
|
|
[21]
|
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation
Chemical Reviews,
2016
DOI:10.1021/acs.chemrev.6b00033
|
|
|
[22]
|
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation
Chemical Reviews,
2016
DOI:10.1021/acs.chemrev.6b00033
|
|
|
[23]
|
Self-assembled material of palladium nanoparticles and a thiacalix[4]arene Cd(ii) complex as an efficient catalyst for nitro-phenol reduction
New J. Chem.,
2015
DOI:10.1039/C5NJ01304F
|
|
|