[1]
|
Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia
Nanomaterials,
2024
DOI:10.3390/nano14121059
|
|
|
[2]
|
On the Feasibility of a High-Sensitivity Imaging System for Biomedical Applications Based on Low-Frequency Magnetic Field
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
2023
DOI:10.1109/JERM.2023.3308377
|
|
|
[3]
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis
Molecular Imaging,
2023
DOI:10.1155/2023/4131117
|
|
|
[4]
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis
Molecular Imaging,
2023
DOI:10.1155/2023/4131117
|
|
|
[5]
|
Extraction method of nanoparticles concentration distribution from magnetic particle image and its application in thermal damage of magnetic hyperthermia
Chinese Physics B,
2023
DOI:10.1088/1674-1056/acde50
|
|
|
[6]
|
Simulating magnetization dynamics of large ensembles of single domain nanoparticles: Numerical study of Brown/Néel dynamics and parameter identification problems in magnetic particle imaging
Journal of Magnetism and Magnetic Materials,
2022
DOI:10.1016/j.jmmm.2021.168508
|
|
|
[7]
|
Development of Magnetic Particle Imaging (MPI) Scanner for Phantom Imaging of Tracer Agents
IEEE Transactions on Magnetics,
2022
DOI:10.1109/TMAG.2022.3149547
|
|
|
[8]
|
Simulating magnetization dynamics of large ensembles of single domain nanoparticles: Numerical study of Brown/Néel dynamics and parameter identification problems in magnetic particle imaging
Journal of Magnetism and Magnetic Materials,
2022
DOI:10.1016/j.jmmm.2021.168508
|
|
|
[9]
|
Magnetic Materials and Technologies for Medical Applications
2022
DOI:10.1016/B978-0-12-822532-5.00015-7
|
|
|
[10]
|
Development of Magnetic Particle Imaging (MPI) Scanner for Phantom Imaging of Tracer Agents
IEEE Transactions on Magnetics,
2022
DOI:10.1109/TMAG.2022.3149547
|
|
|
[11]
|
An anatomically correct
3D
‐printed mouse phantom for magnetic particle imaging studies
Bioengineering & Translational Medicine,
2022
DOI:10.1002/btm2.10299
|
|
|
[12]
|
Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation
Medical Physics,
2022
DOI:10.1002/mp.15509
|
|
|
[13]
|
Tunability and Ordering in 2D Arrays of Magnetic Nanoparticles Assembled via Extreme Field Gradients
Advanced Materials Interfaces,
2022
DOI:10.1002/admi.202201056
|
|
|
[14]
|
Modern Ferrites
2022
DOI:10.1002/9781394156146.ch10
|
|
|
[15]
|
Deep learning for improving the spatial resolution of magnetic particle imaging
Physics in Medicine & Biology,
2022
DOI:10.1088/1361-6560/ac6e24
|
|
|
[16]
|
Simulating magnetization dynamics of large ensembles of single domain nanoparticles: Numerical study of Brown/Néel dynamics and parameter identification problems in magnetic particle imaging
Journal of Magnetism and Magnetic Materials,
2022
DOI:10.1016/j.jmmm.2021.168508
|
|
|
[17]
|
Modern Ferrites
2022
DOI:10.1002/9781394156146.ch10
|
|
|
[18]
|
Optical – Magnetic probe for evaluating cancer therapy
Coordination Chemistry Reviews,
2021
DOI:10.1016/j.ccr.2021.213978
|
|
|
[19]
|
A Novel Theranostic Platform: Integration of Magnetomotive and Thermal Ultrasound Imaging With Magnetic Hyperthermia
IEEE Transactions on Biomedical Engineering,
2021
DOI:10.1109/TBME.2020.2990873
|
|
|
[20]
|
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer
Chemical Society Reviews,
2021
DOI:10.1039/D1CS00427A
|
|
|
[21]
|
Optical – Magnetic probe for evaluating cancer therapy
Coordination Chemistry Reviews,
2021
DOI:10.1016/j.ccr.2021.213978
|
|
|
[22]
|
Whither Magnetic Hyperthermia? A Tentative Roadmap
Materials,
2021
DOI:10.3390/ma14040706
|
|
|
[23]
|
Whither Magnetic Hyperthermia? A Tentative Roadmap
Materials,
2021
DOI:10.3390/ma14040706
|
|
|
[24]
|
Engineering of magnetic nanoparticles as magnetic particle imaging tracers
Chemical Society Reviews,
2021
DOI:10.1039/D0CS00260G
|
|
|
[25]
|
Three-dimensional image reconstruction in projection-based magnetic particle imaging
Japanese Journal of Applied Physics,
2021
DOI:10.35848/1347-4065/ac15ad
|
|
|
[26]
|
Magnetic systems for cancer immunotherapy
Acta Pharmaceutica Sinica B,
2021
DOI:10.1016/j.apsb.2021.03.023
|
|
|
[27]
|
Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization
ACS Omega,
2020
DOI:10.1021/acsomega.0c01130
|
|
|
[28]
|
Simultaneous correction of sensitivity and spatial resolution in projection‐based magnetic particle imaging
Medical Physics,
2020
DOI:10.1002/mp.14056
|
|
|
[29]
|
Machine Learning for Medical Image Reconstruction
Lecture Notes in Computer Science,
2020
DOI:10.1007/978-3-030-61598-7_11
|
|
|
[30]
|
The Applications of Magnetic Particle Imaging: From Cell to Body
Diagnostics,
2020
DOI:10.3390/diagnostics10100800
|
|
|
[31]
|
The Applications of Magnetic Particle Imaging: From Cell to Body
Diagnostics,
2020
DOI:10.3390/diagnostics10100800
|
|
|
[32]
|
Simultaneous correction of sensitivity and spatial resolution in projection‐based magnetic particle imaging
Medical Physics,
2020
DOI:10.1002/mp.14056
|
|
|
[33]
|
Irregularly Shaped Iron Nitride Nanoparticles as a Potential Candidate for Biomedical Applications: From Synthesis to Characterization
ACS Omega,
2020
DOI:10.1021/acsomega.0c01130
|
|
|
[34]
|
Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment
International Journal of Hyperthermia,
2020
DOI:10.1080/02656736.2020.1853252
|
|
|
[35]
|
Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration
IEEE Transactions on Medical Imaging,
2020
DOI:10.1109/TMI.2020.3014197
|
|
|
[36]
|
Characterization of noise and background signals in a magnetic particle imaging system
Physics in Medicine & Biology,
2020
DOI:10.1088/1361-6560/abc364
|
|
|
[37]
|
Long-term stable measurement phantoms for magnetic particle imaging
Journal of Magnetism and Magnetic Materials,
2019
DOI:10.1016/j.jmmm.2018.09.012
|
|
|
[38]
|
Solving inverse problems using data-driven models
Acta Numerica,
2019
DOI:10.1017/S0962492919000059
|
|
|
[39]
|
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging
American Journal of Neuroradiology,
2019
DOI:10.3174/ajnr.A5896
|
|
|
[40]
|
Magnetic particle spectroscopy-based bioassays: methods, applications, advances, and future opportunities
Journal of Physics D: Applied Physics,
2019
DOI:10.1088/1361-6463/ab03c0
|
|
|
[41]
|
Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation
Physics in Medicine & Biology,
2019
DOI:10.1088/1361-6560/ab1a4f
|
|
|
[42]
|
Design and Control of Field-Free Region Using Two Permanent Magnets for Selective Magnetic Hyperthermia
IEEE Access,
2019
DOI:10.1109/ACCESS.2019.2926793
|
|
|
[43]
|
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy
ACS Nano,
2018
DOI:10.1021/acsnano.8b00893
|
|
|
[44]
|
Mathematical models for magnetic particle imaging
Inverse Problems,
2018
DOI:10.1088/1361-6420/aac535
|
|
|
[45]
|
A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation
The British Journal of Radiology,
2018
DOI:10.1259/bjr.20180326
|
|
|
[46]
|
On the degree of ill-posedness of multi-dimensional magnetic particle imaging
Inverse Problems,
2018
DOI:10.1088/1361-6420/aad015
|
|
|
[47]
|
Viscosity quantification using multi-contrast magnetic particle imaging
New Journal of Physics,
2018
DOI:10.1088/1367-2630/aad44b
|
|
|
[48]
|
Magnetization Dynamics and Energy Dissipation of Interacting Magnetic Nanoparticles in Alternating Magnetic Fields with and without a Static Bias Field
The Journal of Physical Chemistry C,
2018
DOI:10.1021/acs.jpcc.8b04071
|
|
|
[49]
|
Benchtop magnetic particle relaxometer for detection, characterization and analysis of magnetic nanoparticles
Physics in Medicine & Biology,
2018
DOI:10.1088/1361-6560/aad97d
|
|
|
[50]
|
Magnetization Dynamics and Energy Dissipation of Interacting Magnetic Nanoparticles in Alternating Magnetic Fields with and without a Static Bias Field
The Journal of Physical Chemistry C,
2018
DOI:10.1021/acs.jpcc.8b04071
|
|
|
[51]
|
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy
ACS Nano,
2018
DOI:10.1021/acsnano.8b00893
|
|
|
[52]
|
A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging
Energy-based Treatment of Tissue and Assessment IX,
2017
DOI:10.1117/12.2256350
|
|
|
[53]
|
Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform
Physics in Medicine and Biology,
2017
DOI:10.1088/1361-6560/aa5601
|
|
|
[54]
|
Relaxation-based viscosity mapping for magnetic particle imaging
Physics in Medicine and Biology,
2017
DOI:10.1088/1361-6560/62/9/3422
|
|
|
[55]
|
Magnetic particle imaging: from proof of principle to preclinical applications
Physics in Medicine & Biology,
2017
DOI:10.1088/1361-6560/aa6c99
|
|
|
[56]
|
The relaxation wall: experimental limits to improving MPI spatial resolution by increasing nanoparticle core size
Biomedical Physics & Engineering Express,
2017
DOI:10.1088/2057-1976/aa6ab6
|
|
|
[57]
|
Effect of Signal Filtering on Image Quality of Projection-Based Magnetic Particle Imaging
Open Journal of Medical Imaging,
2017
DOI:10.4236/ojmi.2017.72005
|
|
|
[58]
|
Magnetic particle imaging for aerosol-based magnetic targeting
Japanese Journal of Applied Physics,
2017
DOI:10.7567/JJAP.56.088001
|
|
|
[59]
|
Magnetic Particle Imaging for Quantitative Evaluation of Tumor Response to Magnetic Hyperthermia Treatment Combined with Chemotherapy Using Cisplatin
Thermal Medicine,
2017
DOI:10.3191/thermalmed.33.39
|
|
|
[60]
|
Comparative Study of Extracellular and Intracellular Magnetic Hyperthermia Treatments Using Magnetic Particle Imaging
Open Journal of Applied Sciences,
2017
DOI:10.4236/ojapps.2017.712047
|
|
|
[61]
|
Magnetic Particle Imaging for Magnetic Hyperthermia Treatment: Visualization and Quantification of the Intratumoral Distribution and Temporal Change of Magnetic Nanoparticles in Vivo
Open Journal of Medical Imaging,
2016
DOI:10.4236/ojmi.2016.61001
|
|
|
[62]
|
Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients
Journal of Magnetism and Magnetic Materials,
2016
DOI:10.1016/j.jmmm.2016.06.038
|
|
|
[63]
|
High-performance iron oxide nanoparticles for magnetic particle imaging – guided hyperthermia (hMPI)
Nanoscale,
2016
DOI:10.1039/C6NR01877G
|
|
|
[64]
|
Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model
Materials Science and Engineering: C,
2016
DOI:10.1016/j.msec.2016.05.086
|
|
|
[65]
|
Usefulness of Magnetic Particle Imaging for Monitoring the Effect of Magnetic Targeting
Open Journal of Medical Imaging,
2016
DOI:10.4236/ojmi.2016.62004
|
|
|
[66]
|
A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization
Scientific Reports,
2016
DOI:10.1038/srep34180
|
|
|
[67]
|
Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles
Progress in Natural Science: Materials International,
2016
DOI:10.1016/j.pnsc.2016.09.004
|
|
|
[68]
|
A Simulation Study on the Specific Loss Power in Magnetic Hyperthermia in the Presence of a Static Magnetic Field
Open Journal of Applied Sciences,
2016
DOI:10.4236/ojapps.2016.612073
|
|
|
[69]
|
Methods for Estimating Specific Loss Power in Magnetic Hyperthermia Revisited
Open Journal of Applied Sciences,
2016
DOI:10.4236/ojapps.2016.712071
|
|
|
[70]
|
Methods for Estimating Specific Loss Power in Magnetic Hyperthermia Revisited
Open Journal of Applied Sciences,
2016
DOI:10.4236/ojapps.2016.612071
|
|
|
[71]
|
A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization
Scientific Reports,
2016
DOI:10.1038/srep34180
|
|
|