[1]
|
A. L. A. Fonseca, D. L. Nascimento, F. F. Monteiro and M. A. Amato, “A Variational Approach for Numerically Solving the Two-Component Radial Dirac Equation for One-Particle Systems,” Journal of Modern Physics, Vol. No. 4, 2012, pp. 350-354.
|
[2]
|
R. Franke, “Numerical Study of the iterated solution of one electron Dirac Equation based on ‘Dirac Perturbation theory’,” Chemical Physics Letters, Vol. 264, No. 5, 1997 pp. 495-501. doi:10.1016/S0009-2614(96)01361-9
|
[3]
|
S. McConnel, S. Fritzsch and A. Surzhykoy, “Dirac: A New Version of Computer Algebra Tools for Studying the Properties and Behaviour of Hydrogen-Like Ions,” Computer Physics Communication, Vol. 181, No. 3, 2010, pp. 711-713.
|
[4]
|
A. Surzhykoy, P. Koval and S. Fritzsch, “Algebraic Tools for Dealing with Atomc Shell Model. 1. Wavefunctions and Itegrals for Hydrogen-Like Ions,” Computer Physics Communication, Vol. 165, No. 2, 2005, pp. 139-156.
doi:10.1016/j.cpc.2004.09.004
|
[5]
|
A. Zee, “Quantum Field Theory in Nutshell,” Princeton University Press, Princeton, 2010.
|
[6]
|
P. W. Atkins, “Molecular Quantum Mechanics,” Oxford University Press, Oxford, 1983.
|
[7]
|
R. A. C. Dirac, “The Lagrangian in Quantum Mechanics,” Physikalisch Zeitchrift der Sowjetunion, Vol. 3, 1933, pp. 62-72.
|
[8]
|
R. Ballan and J. Zinn-Justin, “Methods in Field Theory,” North Holland Publishing, Amsterdam and World Scientific, Singapore City, 1981.
|
[9]
|
P. A. M Dirac, “Principle of Quantum Mechanics,” Oxford University Press, Oxford, 1935.
|
[10]
|
E. G. Milewski, “Vector Analysis Problem Solver,” Research and Education Association, New York, 1987.
|
[11]
|
L. H. Ryder, “Quantum Field Theory,” Cambridge University Press Cambridge, 1996.
|