Surface Wave Characteristics at the Interface of Welded Elastic Halfspaces
J. N. Sharma, K. K. Sharma, Ashwani Kumar
DOI: 10.4236/oja.2011.11001   PDF    HTML     5,265 Downloads   11,873 Views  

Abstract

The present article concentrates on the propagation of generalized surface acoustic waves in a composite struc- ture consisting of piezoelectric and non-piezoelectric semiconductor media. The mathematical model of the problem is depicted by a set of partial differential equations of motion, Gauss equation in piezoelectric and elec- tron diffusion equation in semiconductor along with boundary conditions to be satisfied at the interface. The secular equation that governs the propagation of surface waves has been derived in compact form after obtaining the formal solution. The analytic expressions for displacements, stresses, piezoelectric potential and electron concentration during the surface wave propagation at the interface have also been obtained. The numerical solu- tion of the secular equation is carried out for the cadmium selenide and silicon composite by employing fixed point functional iteration numerical method along with irreducible Cardano method. The computer simulated results with the help of MATLAB software in respect of dispersion curves, attenuation coefficient, displace- ments, stresses, carrier concentration and piezoelectric potential are presented graphically. This work may be useful in surface acoustic wave (SAW) devices and electronic industry.

Share and Cite:

Sharma, J. , Sharma, K. and Kumar, A. (2011) Surface Wave Characteristics at the Interface of Welded Elastic Halfspaces. Open Journal of Acoustics, 1, 1-8. doi: 10.4236/oja.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bleustein, J. L. (1968). A new surface wave in piezoelectric materials. Applied Physics Letters, 13, 412-414. doi:10.1063/1.1652495
[2] Collins, J. H., Lakin, K. M., Quate, C. F., & Shaw, H. J. (1968). Amplification of acoustic surface waves with adjacent semiconductor and piezoelectric crystals. Applied Physics Letters, 13, 314-316. doi:10.1063/1.1652628
[3] Curie, J., & Curie, P. (1880). Development par compression de l’etricite polaire das les cristaux hemledres a faces inclines. Bulletin No. 4 de la Societee Minearalogique de France 3.
[4] de Lorenzi, H. G., & Tierten, H. F. (1975). On the interaction of the electromagnetic field with heat conducting deformable semiconductors. Journal of Mathematical Physics, 16, 938-957. doi:10.1063/1.522600
[5] Dietz, D. R., Busse, L. J., & Fife M. J. (1988). Acoustoelectric detection of ultrasound power with composite piezoelectric and semiconductor devices. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 35, 146-151. doi:10.1109/58.4164
[6] Fischler, C. (1970). Acoustoelectric Amplification in composite Piezoelectric and Semiconducting structures. IEEE Transactions on Electron Devices, 17, 214-218. doi:10.1109/T-ED.1970.16956
[7] Gulyaev, Y. V. (1969). Electroacoustic surface waves in solids. Soviet Physics JEPT Letters, 9, 37-38.
[8] Hutson, A. R., & White, D. L. (1962). Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33, 40-47. doi:10.1063/1.1728525
[9] Ingebrigtsen, K. A. (1970). Linear and nonlinear attenuation of acoustic surface waves in a piezoelectric coated with a semiconductor film. Journal of Applied Physics, 41, 454-459. doi:10.1063/1.1658696
[10] Jin, J., Wang, Q., & Quek, S. T. (2002). Lamb wave propagation in a metallic semi-infinite medium covered with piezoelectric layer. International Journal of Solids Structures, 39, 2547-2556.
[11] Kagan, V. D. (1997). Propagation of a surface acoustic wave in a layered system containing a two dimensional conducting layer. Semiconductors, 31, 407-410. doi:10.1134/1.1187321
[12] Kleinert, P., García-Cristóbal, A., & Santos, P. V. (2005). Surface acoustic-waves-induced space-charge waves in electron-hole systems. Journal of Solid State Communications, 34, 535-539. doi:10.1016/j.ssc.2005.02.039
[13] Maruszewski, B. (1989). Thermodiffusive surface waves in semiconductors. Journal of Acoustic Society of America, 85, 1967-1977. doi:10.1121/1.397850
[14] Maugin, G. A., & Daher, N. (1986). Phenomenological theory of elastic semiconductors. International Journal of Engineering Sciences, 24, 703-731. doi:10.1016/0020-7225(86)90106-0
[15] Parmenter, R. H. (1953). The acousto-electric effect. Physical Reveiw, 89, 990-998. doi:10.1103/PhysRev.89.990
[16] Sharma, J. N., & Pal, M. (2004). Propagation of lamb waves in a transversely isotropic piezothermoelastic plate. Journal of Sound and Vibration, 270, 587-610. doi:10.1016/S0022-460X(03)00093-2
[17] Sharma, J. N., Pal, M., & Chand, D. (2005). Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. Journal of Sound and Vibration, 284, 227-248. doi:10.1016/j.jsv.2004.06.036
[18] Sharma, J. N., Sharma, I., & Chand, S. (2008). Elasto-thermodiffusive surface waves in a semiconductor half-space underlying a fluid with varying temperature. Journal of Thermal Stresses, 31, 956-975. doi:10.1080/01495730802250524
[19] Sharma, J. N., Sharma, K. K., & Kumar, A. (2010). Surface waves in a piezoelectric-semiconductor composite structure. International Journal of Solids and Structures, 47, 816-826. doi:10.1080/01495730802250524
[20] Sharma, J. N., & Thakur, N. (2006). Plane harmonic elasto-thermodiffusive waves in semiconductor materials. Journal of Mechanics of Materials and Structures, 1, 813-835. doi:10.2140/jomms.2006.1.813
[21] Sharma, J. N., Thakur, N., & Singh, S. (2007). Propagation charac- teristics of elasto-thermodiffusive surface waves in semiconductor material half space. Journal of Thermal Stresses, 30, 357-380. doi:10.1080/01495730601146311
[22] Sharma, J. N., Thakur, N., & Singh, S. (2009). Elasto-thermodiffusive (ETNP) surface waves in semiconductor materials. International Journal of Solids and Structures, 46, 2309-2319. doi:10.1016/j.ijsolstr.2009.01.019
[23] Sharma, J. N., & Walia, V. (2007). Further Investigations on Rayleigh waves in piezothermoelastic materials. Journal of Sound and Vibration, 301, 189-206. doi:10.1016/j.jsv.2006.09.018
[24] Tien, P. K. (1968). Nonlinear theory of ultrasonic wave amplification and current saturation in piezoelectric semiconductors. Physical Review, 171, 970-986. doi:10.1103/PhysRev.171.970
[25] Wang, Q. (2002). Wave propagation in a piezoelectric coupled solid medium. Journal of Applied Mechanics, 69, 819-824. doi:10.1115/1.1488662
[26] Weinreich, G., Sanders, Jr T. M., and White, H. G. (1959). Acousto- electric effect n-type Germanium. Physical Reveiw, 114, 33-44. doi:10.1103/PhysRev.114.33
[27] White, D. L. (1962). Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33, 2547-2554. doi:10.1063/1.1729015
[28] Yang, J. S., & Zhou, H. G. (2005). Propagation and amplification of gap waves between a piezoelectric halfspace and a semiconductor film. Acta Mechanica, 176, 83-93. doi:10.1063/1.1729015
[29] Yang, J. S., & Zhou, H. G. (2005). Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids Structures, 42, 3171-3183. doi:10.1016/j.ijsolstr.2004.10.011

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.

  翻译: