TITLE:
Using Neural Networks for Simulating and Predicting Core-End Temperatures in Electrical Generators: Power Uprate Application
AUTHORS:
Carlos J. Gavilán Moreno
KEYWORDS:
Neural Network, Error, Temperature, Core-End, Generator, Power Uprate
JOURNAL NAME:
World Journal of Engineering and Technology,
Vol.3 No.1,
February
3,
2015
ABSTRACT: Power uprates pose a threat to electrical generators due to possible parasite effects that can develop potential failure sources with catastrophic consequences in most cases. In that sense, it is important to pay close attention to overheating, which results from excessive system losses and cooling system inefficiency. The end region of a stator is the most sensitive part to overheating. The calculation of magnetic fields, the evaluation of eddy-current losses and the determination of loss-derived temperature increases, are challenging problems requiring the use of simulation methods. The most usual methodology is the finite element method, or linear regression. In order to address this methodology, a calculation method was developed to determine temperature increases in the last stator package. The mathematical model developed was based on an artificial intelligence technique, more specifically neural networks. The model was successfully applied to estimate temperatures associated to 108% power and used to extrapolate temperature values for a power uprate to 113.48%. This last scenario was also useful to test extrapolation accuracy. The method is applied to determine core-end temperature when power is uprated to 117.78%. At that point, the temperature value will be compared to with the values obtained using finite elements method and multivariate regression.