TITLE:
Three- and Four-Dimensional Generalized Pythagorean Numbers
AUTHORS:
Alfred Wünsche
KEYWORDS:
Number Theory, Pythagorean Triples, Tesseract, 4-Square Identity, Diophantine Equation
JOURNAL NAME:
Advances in Pure Mathematics,
Vol.14 No.1,
January
4,
2024
ABSTRACT: The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a2+b2=c2 with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a2+b2+c2=d2 with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d2 is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a2+b2+c2+d2=e2 and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d2, respectively, e2.