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Abstract: Many problems of design and decision making support can be stated as optimization problems. For real-world 
problems, sometimes it is necessary to obtain many alternative solutions to the problem. In this case 
multimodal approach can be used. The goal of multimodal optimization (MMO) is to find all optima (global 
and local) or a representative subset of all optima. In recent years many efficient nature-inspired techniques 
have been proposed for real-valued MMO problems. At the same time, real-world design and decision making 
support problems may contain variables of many different types, including integer, rank, binary and others. 
In this case, the weakest representation (namely binary representation) is used. Unfortunately, there is a lack 
of efficient approaches for problems with binary representation. In this study, a novel approach based on a 
selective hyper-heuristic in a form of ensemble for designing multi-strategy genetic algorithm is proposed. 
The approach controls the interactions of many search techniques (different genetic algorithms for MMO) 
and leads to the self-configuring solving of problems with a priori unknown structure. The results of numerical 
experiments for benchmark problems from the CEC competition on MMO and for some real-world problems 
are presented and discussed. 

1 INTRODUCTION 

Decision making involves the choice of one or more 
alternatives from a list of options. The list of options 
usually contains both good and bad (more or less 
acceptable) solutions. The aim of rational decision 
making is to maximize some criterion that describes 
quality of the choice (Sen and Yang, 2012). Design 
problems can be formulated in the same way (Ray and 
Liew, 2002), the only difference is that alternatives 
are not defined beforehand. It is obviously that such 
problems can be stated as optimization problems. In 
this case, alternatives are considered as candidate-
solutions, and quality criteria are considered as 
objectives. Additional requirements can be performed 
by constraints.  

Many real-world design and decision making 
support problems are complex and bad-formalized, 
thus the quality criterion is usually considered as the 
“black-box” model. Moreover, alternatives are 
represented by complex structures that contain 
variable parameters of many different types, 
including categorical, integer, rank, binary and 
others. Such optimization problems require implying 

more advanced optimization techniques like 
evolutionary algorithms (EA). 

The general EA scheme uses the conception of 
collective search based on the natural selection and 
nature-inspired (genetic and evolutionary) operations 
(Holland, 1975; Goldberg, 1989). All EAs in this 
study are assumed to be binary genetic algorithms 
(GAs).  

From many practical points of view, the only 
solution to the problem can be not enough, even it is 
the optimal solution. For example, we need fallback 
solutions if the optimal solution can’t be realized. 
Moreover, identification of many different (optimal 
and suboptimal) solutions is useful for better 
understanding of the problem. 

Optimization problems that have more than one 
optimal solution (or there exists only one global 
optimum and several local optima in the feasible 
solution space) are called multimodal. The goal of 
multimodal optimization (MMO) is to find all optima 
(global and local) or a representative subset of all 
optima. EAs and GAs are efficient in the multimodal 
environment as they use a stochastic population-
based search. At the same time, traditional EAs and 
GAs have a tendency to converge to the best-found 
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optimum losing population diversity. In recent years 
MMO have become more popular, and many efficient 
nature-inspired MMO techniques were proposed. 
Almost all search algorithms are based on 
maintaining the population diversity, but differ in 
how the search space is explored and how optima 
basins are located and identified over a landscape. 
The majority of algorithms and the best results are 
obtained for real-valued MMO problems (Das et al., 
2011). Unfortunately, there is a lack of efficient 
approaches for problems with binary representation. 
Existing techniques are usually based on general 
ideas of niching and fitness sharing. Heuristics from 
efficient real-valued MMO techniques cannot be 
directly applied to binary MMO algorithms because 
of dissimilar landscape features in the binary search 
space. 

In this study, a novel approach based on a 
selective hyper-heuristic in a form of ensemble of 
MMO GA is proposed. Its main idea is to use many 
MMO techniques with different search strategies and 
adaptively control their interactions. Such an 
approach would lead to the self-configuring solving 
of problems with a priori unknown structure. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
the proposed approach. In Section 4 the results of 
numerical experiments are discussed. In the 
Conclusion the results and further research are 
discussed. 

2 RELATED WORK 

The problem of GA-based design and decision 
making support is well-studied (Sen and Yang, 2012; 
Kaklaukas, 2015). At the same time, many complex 
real-world problems are still a challenge for GAs and 
other nature-inspired techniques. 

One of the ways for finding many efficient 
alternatives is multi-objective problem statement (Li 
et al., 2015). In this case, a set of Pareto-optimal 
solutions is obtained instead of the only optimal. The 
multi-objective statement needs more advanced GA-
based techniques, and subsequent analysis of the 
obtained Pareto set approximation. The Pareto set can 
also contain very contrast solutions that are 
interesting from the mathematical point of view as 
they are still Pareto-optimal, but are not acceptable 
from the practical point of view.  

Another way is MMO statement. Over the past 
decade interest for this field has increased. The recent 
approaches are focused on the goal of exploring the 
search space and finding many optima to the problem. 

Many efficient algorithms have been proposed. Good 
survey of widespread MMO techniques can be found 
in (Deb and Saha, 2010; Das et al., 2011; Liu et al., 
2011). As we can see from many studies, there is no 
universal approach that is efficient for all MMO 
problems. Many researches design hybrid algorithms, 
which are generally based on a combination of search 
algorithms and some heuristic for a niching 
improvement. Another way is a combining many 
basic MMO algorithms to run them in parallel, 
migrate individuals and combine the results. In 
(Bessaou et al., 2000) an island model is applied, 
where islands are iteratively revised according to the 
genetic likeness of individuals. In (Yu and Suganthan, 
2010) four MMO niching algorithms run in parallel 
to produce offspring, which are collected in a pool to 
produce a replacement step. In (Qu et al., 2012) the 
same scheme is realized using the clearing procedure. 

The conception of designing MMO algorithms in 
the form of an ensemble seems to be promising. A 
selective hyper-heuristic (Burke et al., 2010) that 
includes many different MMO approaches (different 
search strategies) can deal with many different MMO 
problems. And such a hyper-heuristic can provide 
self-configuration due to the adaptive control of the 
interaction of single algorithms during the problem 
solving. This idea was implemented in (Sopov, 
2015a). The approach has demonstrated good results 
with respect to multi-objective and non-stationary 
optimization. In this study, we will apply this concept 
to the MMO problem.  

3 PROPOSED APPROACH 

Heuristic and meta-heuristic search algorithms for 
complex optimization problems are well-studied and 
widely discussed (Bianchi et al., 2009; Boussaida et 
al., 2013). One of the applications of the heuristic 
search algorithms is the design of EAs. In other 
words, a heuristic is used to design a heuristic, and it 
is called hyper-heuristic (Ross, 2005; Burke et al., 
2010; Maashi et al, 2015). There also exist examples 
of hyper-hyper-heuristics, which are the extension of 
the idea of hyper-heuristics to select or combine 
hyper-heuristics and generate new hyper-heuristics 
(Pillay, 2015). 

In this study, we will present a hyper-heuristic for 
the design and control of the GA ensemble. The most 
important step of the multi-EA search is the 
interaction of component EAs. The general approach 
is the island model with random migrations of 
individuals. The majority of the proposed techniques 
are based on the “winner-take-all” concept. There 
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also exist coevolutionary approaches that are usually 
based on a problem decomposition. In this study, we 
will combine many interaction methods. 

The ensemble method can be also used in the field 
of EA. The main idea is to include different search 
strategies in the ensemble and to design effective 
control of algorithm interaction. Our hypothesis is 
that different EAs are able to deal with different 
features of the optimization problem, and the 
probability of all algorithms failing with the same 
challenge in the optimization process is low. 
Moreover, the interaction of algorithms can provide 
the ensemble with new options for optimization, 
which are absent in stand-alone algorithms. 

The general structure of the self-configuring 
multi-strategy genetic algorithm proposed in (Sopov, 
2015a) is called Self*GA (the star sign corresponds 
to the certain optimization problem. 

The total population size (or the sum of 
populations of all component algorithms) is called the 
computational resource. The resource is distributed 
between algorithms, which run in parallel and 
independent over the predefined number of iterations 
(called the adaptation period). All algorithms have the 
same objective and use the same encoding (solution 
representation). All populations are initialized at 
random. After the distribution, each GA included in 
Self*GA has its own population which does not 
overlap with populations of other GAs. At the first 
iteration, all algorithms get an equal portion of the 
resource. 

After the adaptation period, the performance of 
individual algorithms is estimated with respect to the 
objective of the optimization problem. After that, 
algorithms are compared and ranked. Search 
strategies with better performance increase their 
computational resource (the size of their populations). 

We will discuss the design of a Self*GA for 
MMO problems that can be named SelfMMOGA. 

At the first step, we need to define the set of 
individual algorithms included in the SelfMMOGA. 
In this study we use six basic techniques, which are 
well-studied and discussed (Singh and Deb, 2006; 
Das et al., 2011), and they can be used with binary 
representation with no modification. We have 
included the following component algorithms in the 
SelfMMOGA: Clearing (Alg1), Sharing (Alg2), 
Clustering (Alg3), Restricted Tournament Selection 
or RTS (Alg4), Deterministic Crowding (Alg5) and 
Probabilistic Crowding (Alg6).  

The motivation of choosing certain algorithms is 
that if the SelfMMOGA performs well with basic 
techniques, we can develop the approach with more 
complex algorithms in further works. 

The adaptation period is a parameter of the 
SelfMMOGA. Moreover, the value depends on the 
limitation of the computational resource (total 
number of fitness evaluations). 

The key point of any coevolutionary scheme is the 
performance evaluation of a single algorithm. For 
MMO problems performance metrics should estimate 
how many optima were found and how the population 
is distributed over the search space. Unfortunately, 
good performance measures exist only for benchmark 
MMO problems, which contain knowledge of the 
optima. Performance measures for black-box MMO 
problems are still being discussed. Some good 
recommendations can be found in (Preuss and 
Wessing, 2013). In this study, the following criteria 
are used. 

The first measure is called Basin Ratio (BR). The 
BR calculates the number of covered basins, which 
have been discovered by the population. It does not 
require knowledge of optima, but an approximation 
of basins is used. The BR can be calculated as ()ܴܤ = ݈݇

  

݈ =݉݅݊൞1,  ,ݔ)ܾ )௫∈௫ஷ௭ݖ
ൢ

ୀଵ  (1)

,ݔ)ܾ (ݖ = ൜1, ݂݅ ݔ ∈ ,0(ݖ)݊݅ݏܾܽ ݁ݏ݅ݓݎℎ݁ݐ   

where pop is the population, k is the number of 
identified basins by the total population, l is the 
indicator of basin coverage by a single algorithm, b is 
a function that indicates if an individual is in basin z. 

To use the metric (1), we need to define how to 
identify basins in the search space and how to 
construct the function b(x,z). 

For continuous MMO problems, basins can be 
identified using different clustering procedures. In 
this study, for MMO problems with binary 
representation we use the following approach. We use 
the total population (the union of populations of all 
individual algorithms in the SelfMMOGA). For each 
solution, we consider a predefined number of its 
nearest neighbours (with respect to the Hamming 
distance). If the fitness of the solution is better than 
its neighbours fitness, it is denoted as a local optima 
and the centre of the basin. The number of neighbours 
is a tunable parameter. 

The function b(x,z) can be easily evaluated by 
defining if individual x is in a predefined radius of 
basin centre z. The radius is a tunable parameter. In 
this study, we define it as 
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ݏݑ݅݀ܽݎ = ݇݁ݖ݅ݏ	݊݅ݐ݈ܽݑ	݈ܽݐݐ  (2)

where k is the number of identified basins (݇ = |ܼ|). 
The second measure is called Sum of Distances to 

Nearest Neighbour (SDNN). The SDNN penalizes the 
clustering of solutions. This indicator does not require 
knowledge of optima and basins. The SDNN can be 
calculated as 

()ܰܰܦܵ =  ݀(ݔ, ( ௦௭
ୀଵ  

(3)݀(ݔ, ( = min௬∈\{௫}{݀݅ݔ)ݐݏ,   {(ݕ

where dnn is the distance to the nearest neighbour, dist 
is the Hamming distance. 

Finally, we combine the BR and the SDNN in an 
integrated criterion K: ܭ = ߙ ∙ ()ܴܤ + (1 − (ߙ ∙ (4) ()ܰܰܦܵ

where ܵܰܰܦ is a normalized value of ܵߙ ,ܰܰܦ 
defines weights of the BR and the SDNN in the sum 
ߙ) ∈ [0,1]). 

At the coopearative stage, in many coevolutionary 
schemes, all individual algorithms begin each new 
adaptation period with the same starting points (such 
a migration scheme is called “the best displaces the 
worst”). For MMO problems, the best solutions are 
defined by discovered basins in the search space. As 
we already have evaluated the approximation of 
basins (Z), the solutions from Z are introduced in all 
populations replacing the most similar individuals. 

4 EXPERIMENTAL RESULTS 

To estimate the approach performance, we have used 
the following list of benchmark and real-world 
problems: 

 Six binary MMO problems are from (Yu and 
Suganthan, 2010). These test functions are 
based on the unitation functions, and they are 
massively multimodal and deceptive. 

 Eight real-valued MMO problems are from 
CEC’2013 Special Session and Competition on 
Niching Methods for Multimodal Function 
Optimization (Li et al., 2013a). 

 Fuzzy rule base classification system design 
using MMO GA. 

 Designing loan portfolios for the Bank of 
Moscow. 

 

4.1 Benchmark Problems 

We have denoted the functions as in the source 
papers. Real-valued problems have been binarized 
using the standard binary encoding with 5 accuracy 
levels proposed in the CEC’13 competition rules. In 
all comparisons, all algorithms have equal maximum 
number of the objective evaluations, but may differ in 
population sizes. 

The following criteria for estimating the 
performance of the SelfMMOGA over the benchmark 
problems are used for continuous problems: 

 Peak Ratio (PR) measures the percentage of all 
optima found by the algorithm (5). 

 Success Rate (SR) measures the percentage of 
successful runs (a successful run is defined as a 
run where all optima were found) out of all runs. ܴܲ = ݍ}| ∈ ܳ | ݀(ݍ, ( ≤ ݇|{ߝ  (5)

where ܳ = ,ଵݍ} ,ଶݍ … ,  ߝ ,} is a set of known optimaݍ
is accuracy level. 

The maximum number of function evaluation and 
the accuracy level for the PR evaluation are the same 
as in CEC completion rules (Li et al., 2013a). The 
number of independent runs of the algorithm is 50. 

In the case of binary problems, we cannot define 
the accuracy level in the PR, thus the exact points in 
the search space have to be found. This is a great 
challenge for search algorithms, thus we have 
substituted the SR measure with Peak Distance (PD). 
The PD indicator (6) calculates the average distance 
of known optima to the nearest individuals in the 
population (Preuss and Wessing, 2013). 

ܦܲ = 1݇݀(ݍ, (
ୀଵ  (6)

The detailed results of estimating the performance 
of the SelfMMOGA with the pack of binary problems 
can be found in (Sopov, 2015b). We have compared 
the results with Ensemble of niching algorithms 
(ENA) proposed in (Yu and Suganthan, 2010). The 
experiments have shown that binary problems are not 
too complex for the SelfMMOGA and the ENA – 
there is no statistical significant difference in the 
results. 

The results of estimating the performance of the 
SelfMMOGA with the pack of continuous problems 
are presented in Tables 1. Table 1 shows a 
comparison of results averaged over all problems 
with other techniques. 
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Table 1: Average PR and SR for each algorithm. 

ε SelfMMOGA DE/nrand/1/bin cDE/rand/1/bin N-VMO dADE/nrand/1 PNA-NSGAII
PR SR PR SR PR SR PR SR PR SR PR SR 

1e-01 0.962 0.885 0.850 0.750 0.963 0.875 1.000 1.000 0.998 0.938 0.945 0.875 
1e-02 0.953 0.845 0.848 0.750 0.929 0.810 1.000 1.000 0.993 0.828 0.910 0.750 
1e-03 0.943 0.773 0.848 0.748 0.847 0.718 0.986 0.813 0.984 0.788 0.906 0.748 
1e-04 0.907 0.737 0.846 0.750 0.729 0.623 0.946 0.750 0.972 0.740 0.896 0.745 
1e-05 0.816 0.662 0.792 0.750 0.642 0.505 0.847 0.708 0.835 0.628 0.811 0.678 

Average 0.916 0.780 0.837 0.750 0.822 0.706 0.956 0.854 0.956 0.784 0.893 0.759 
 
We have compared the results of the 

SelfMMOGA runs with some efficient techniques 
from the competition. The techniques are 
DE/nrand/1/bin and Crowding DE/rand/1/bin (Li et 
al., 2013a), N-VMO (Molina et al., 2013), 
dADE/nrand/1 (Epitropakis et al., 2013), and PNA-
NSGAII (Bandaru and Deb, 2013). 

The settings for the SelfMMOGA are: 
 Maximum number of function evaluation is 

50000 (for cecF1-cecF5) and 200000 (for 
cecF6-cecF8); 

 Total population size is 200; 
 Adaptation period is 10 generations 25 times 

(for cecF1-cecF5) and 25 generations 40 times 
(cecF6-cecF8); 

 All specific parameters of individual algorithms 
are self-tunable. 

As we can see from Tables 1, the SelfMMOGA 
shows results comparable with popular and well-
studied techniques. It yields to dADE/nrand/1 and N-
VMO, but we should note that these algorithms are 
specially designed for continuous MMO problems, 
and have taken 2nd and 4th places (Li et al., 2013b), 
respectively, in the CEC competition. At the same 
time, the SelfMMOGA has very close average values 
to the best two algorithms, and outperforms PNA-
NSGAII, CrowdingDE and DE, which have taken 7th, 
8th and 9th places in the competition respectively. 

In this study, we have included only basic MMO 
search techniques in the SelfMMOGA. Nevertheless, 
it performs well due to the effect of collective 
decision making in the ensemble. The key feature of 
the approach is that it operates in an automated, self-
configuring way. Thus, the SelfMMOGA can be a 
good alternative for complex black-box MMO 
problems. 

4.2 Real-world Problems 

4.2.1 Designing Loan Portfolios for the 
Bank of Moscow 

The problem of bank loan portfolio design is an 
optimization problem of maximizing the profit of the 

bank with some constraints on the amount of free 
liabilities, the amount of credit requested, periods of 
credits, credit interests and so on. Input data to the 
problem is a set of credit requests from loan 
borrowers. The bank portfolio is a subset of requests 
that are approved by the bank. 

In this paper, the loan portfolio based on data 
presented by Krasnoyarsk department of the Bank of 
Moscow is discussed. The following profit model 
(optimization objective) is used (7): 

Profit(X)= ∑ ݇ ∙ (1 + ݀ ∙ (ݐ ∙ ݔ → ேୀଵݔܽ݉   
Risk(X) = ଵ∑ ௫ೕೕಿసభ ∙ ∑ ܲ ∙ ݔ ≤ ேୀଵߩ    ݇ ∙ ݔ ≤ ேܨ

ୀଵ  
(7)

ܺ = ,ଵݔ) ,ଶݔ … , ,(ேݔ ݔ ∈ {0,1}  

where F – the amount of free liabilities held by the 
Bank at a given time; N – the number of borrowers; kj 
– the amount of credit requested by the j-th borrower 
j=1,N; tj – the period for which the j-th borrower takes 
a loan; xj – Boolean variable taking the value 1, if the 
kj loan is issued, and 0 otherwise; dj – interest (%) on 
j-th credit; Pj – probability of non-payment of loan 
and interest on the loan; ρ – limitation on the total 
riskiness of the loan portfolio. 

As a candidate solution is binary vector, there is 
no need to encode it to chromosome. The fitness 
function is defined as the sum of the Profit and 
penalty functions for given constraints. 

The initial information about credit requests and 
their characteristics are presented in Table 2. 

The length of the chromosome is 50. The search 
space contains 250 (≈1015) different portfolios. The 
maximum number of the fitness evaluation is set to 
106 that is 10-9 % of the cardinality of the search 
space. 

The results of the bank portfolio design (global 
and three local solutions) are presented in Table 3. 
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Table 2: Initial data for the loan portfolio design problem. 

Request 
No. Request amount Loan rate 

(%) Period Riskiness 

1 10 000 000 25 75 0.042 
2 5 300 000 28 80 0.039 
3 2400000 25 91 0.029 
4 50 000 000 23 84 0.033 
5 1 000 000 28 64 0.026 

......... 
48 9 000 000 27 86 0.024 
49 22 000 000 29 91 0.016 
50 350 000 27 69 0.026 

Total sum of requests = 256 695 000 
The amount of free liabilities = 188 500 000 

Table 3: Results for the loan portfolio problem. 

Solutions 
(the structure of the loan portfolio) 

Profit of  
portfolio 

Rest of free  
liabilities Total riskiness 

01111011111111110111101000111110111010000101010111 199734518.9 30000 0.0292 
11011100111110110110011101110101111010100101011110 199691164 15000 0.0286 
01011110101111100011101110111111011001111011001110 199668728.9 15000 0.028 
00110011010001010110111000110110101111110101101111 199593407.3 10000 0.0276 
 
As we can see from Table 3, solutions obtained 

with the SelfMMOGA have very close values of the 
profit, but have very different structures. Thus these 
portfolios can be used as alternative solutions or as 
additional information for the portfolio analysis. 

The problem has been also solved using the brute-
force search. The first best solution founded by the 
SelfMMOGA is the exact global solution to the 
problem. 

4.2.2 Fuzzy Rule Base Classification System 
Design using MMO GA  

Modern machine learning methods often use 
evolutionary computation techniques as a design tool, 
which is universal and can be applied for various 
structures. These evolutionary algorithms applied for 
machine learning problems are often called genetics-
based machine learning algorithms. The fuzzy rule-
based classification systems (FRBCSs) are effective 
approaches in machine learning, as they can provide 
easy-to-understand models for the end users 
(Ishibuchi, 2005). 

Traditional GAs applied to the FRBCSs design 
have a tendency to converge to the best-found 
optimum losing population diversity. Such single 
best-found solution usually has very good accuracy, 
but may have a structure that is not convenient for 
human understanding and analysis. Thus there is a 
good idea to find many (or all) global and acceptable 
local optima which represent different solutions to the 

problem. In a case of the FRBCS, such optima, while 
saving comparable accuracy, may contain different 
rules in the rule base and/or different fuzzy term 
structures. 

The number of rules in computational 
experiments was fixed and equal to 12. The FRBCS 
method, which have been implemented, is based on a 
simple rule base encoding into the GA chromosome. 
The chromosome contains fuzzy sets assigned to 
input variables in the premise part and class labels 
assigned to output variables in the conclusion part of 
each rule in the rule base. The number of fuzzy sets 
for granulation was fixed and equal to 5+1. 
Additional fuzzy term is the “Don’t care” condition 
(corresponding input variable is ignored). 

The fitness function includes two values: error on 
the training set and the complexity of the rule base. 
The complexity of the rule base was calculated as the 
ratio of number of non-empty fuzzy sets to the total 
number of possible fuzzy sets in the rule base. 
Including complexity of the rule base into the fitness 
function allows creating of simpler rule bases. The 
distance between two rule bases for the MMO GA 
was calculated as the number of different fuzzy sets 
for these rule bases. More detailed information can be 
found in (Sopov et al., 2015). 

The computational experiments for the fuzzy 
classification were performed on 7 datasets from UCI 
and KEEL repositories (KEEL, 2015; ics.uci.edu, 
2015). 
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Table 4: Classification Results for Test Sample. 

Dataset Standard GA SelfMMOGA 
Solution 1 

SelfMMOGA 
Solution 2 

SelfMMOGA 
Solution 3 

Australian 0.839 0.862 0.867 0.816 
Banknote 0.947 0.892 0.867 0.862 

Column 2c 0.773 0.789 0.768 0.751 
Column 3c 0.668 0.741 0.674 0.619 
Ionosphere 0.747 0.680 0.656 0.665 

Liver 0.567 0.586 0.597 0.598 
Seeds 0.874 0.793 0.691 0.621 

 
The Table 4 contains the classification results for 

the test sample obtained with the standard GA and 
three best solutions obtained with the SelfMMOGA. 

As we can see, for three datasets the standard GA 
allows finding most accurate solutions. However, the 
SelfMMOGA outperforms the standard GA on 4 
datasets out of 7. Moreover, the best solution is not 
always the first one – for example, for datasets 
Australian and Liver, the best solution was second or 
even third. More detailed results and obtained rule 
bases description can be found in (Sopov et al., 2015). 

Thus, using this method, several local optima 
have been found, and the researcher is able to select 
one of them. We suggest that the results can help the 
human experts in a field of the solving problem to 
obtain better (or may be very new) information about 
the problem features. 

5 CONCLUSIONS 

In this study, a selective hyper-heuristic for control of 
MMO GA ensemble (called SelfMMOGA) is 
proposed. It involves many different search strategies 
in the process of MMO problem solving and 
adaptively control their interactions. 

The SelfMMOGA allows complex MMO 
problems to be dealt with, which are the black-box 
optimization problems (a priori information about the 
objective and its features are absents or cannot be 
introduces in the search process). We have included 6 
basic MMO techniques in the SelfMMOGA 
realization to demonstrate that it performs well even 
with simple core algorithms. We have estimated the 
SelfMMOGA performance with a set of binary 
benchmark MMO problems and continuous 
benchmark MMO problems from CEC’2013 Special 
Session and Competition on Niching Methods for 
Multimodal Function Optimization. The proposed 
approach has demonstrated a performance 
comparable with other well-studied techniques. 
Experimental results show that the SelfMMOGA 
outperforms the average performance of its stand-

alone algorithms. It means that it performs better on 
average than a randomly chosen technique. This 
feature is very important for complex black-box 
optimization, where the researcher has no possibility 
of defining a suitable search algorithm and of tuning 
its parameters. 

We have also applied the SelfMMOGA for 
solving some real-world problems to demonstrate the 
effect of identifying many optima to the problem of 
design and decision making support. 

In further works, we will investigate the 
SelfMMOGA using more advanced component 
techniques. 
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