
New Evolutionary Selection Operators for Snake Optimizer

Ruba Abu Khurma1, Moutaz Alazab2, J. J. Merelo3 and Pedro A. Castillo3

1Department of Computer Science, Al-Ahliyya Amman University, Amman, Jordan
2Department of Artificial Intelligence, Al-Balqa University, Al-Salt, Jordan

3Department of Computer Architecture and Computer Technology, ETSIIT and CITIC,
University of Granada, Granada, Spain

Keywords: Snake Optimizer, Evolutionary Operators, Selection Schemes.

Abstract: Evolutionary algorithms (EA) adopt a Darwinian theory which is known as ”survival of the fittest”. Snake
Optimizer (SO) is a recently developed swarm algorithm that inherits the selection principle in its structure.
This is applied by selecting the fittest solutions and using them in deriving new solutions for the next iterations
of the algorithm. However, this makes the algorithm biased towards the highly fitted solutions in the search
space, which affects the diversity of the SO algorithm. This paper proposes new selection operators to be
integrated with the SO algorithm and replaces the global best operator. Four SO variations are investigated by
individually integrating four different selection operators: SO-roulettewheel, SO-tournament, SO-linearrank,
and SO-exponentialrank. The performance of the proposed SO variations is evaluated. The experiments show
that the selection operators have a great influence on the performance of the SO algorithm. Finally, a parameter
analysis of the SO variations is investigated.

1 INTRODUCTION

Natural systems live in groups characterized by
decentralization and self-organization among their
members (Khurma et al., 2020). These swarm sys-
tems have their special relationships between swarm
members and their environment that control their
search for food and sustenance. Swarm Intelligence
researchers investigate the collective behavior of an-
imals and turn their social relationships into mathe-
matical methodologies (Abu Khurma et al., 2022).

The SO algorithm is a recently developed swarm
algorithm by Fatma (Hashim and Hussien, 2022). The
main inspiration for the SO algorithm comes from the
behavior of snakes in nature. Many environmental
factors influence the behavior of snakes. For exam-
ple, snake mating occurs when the temperature is cold
and there is food. Otherwise, snakes are looking for
food. The SO methodology translates this inspiration
into two phases of exploration and exploitation. Ex-
ploration is the situation where no food is found and
the temperature is cold so that the snakes (solutions)
search globally in the search space. The stage of ex-
ploitation includes several cases. If the food is avail-
able and the temperature is hot, the snakes eat the food
that is present. If food is available and the temperature

is cool, snakes enter the mating process. The mating
process has two modes, either fighting mode or mat-
ing mode. The fighting mode makes the snakes fight
until the male gets the best female and the female gets
the best male. Mating mode between a pair of snakes
occurs depending on the amount of food. Mating may
result in the birth of new snakes.

The SO algorithm evaluates solutions at each it-
eration to get the best solutions in the male group
and female group which are called Snakemalebest and
Snake f emalebest respectively. The SO update proce-
dure for other solutions is guided by the positions of
the best solutions. During the iterations of the algo-
rithm, the re-position of solutions in the search space
depends on the distance from the best solutions. This
means that the search process is biased toward the
best solution. Changing the positions of solutions
concerning one point during the search affects the di-
versity of solutions and the exploration of the algo-
rithm. This may lead also to premature convergence
and stagnation in local minima.

In the literature, there have been vast studies that
investigate the effects of evolutionary selection op-
erators on the performance of swarm intelligent al-
gorithms in different applications. A previous study
(Khurma et al., 2021), integrated different selection

82
Khurma, R., Alazab, M., Merelo, J. and Castillo, P.
New Evolutionary Selection Operators for Snake Optimizer.
DOI: 10.5220/0011524300003332
In Proceedings of the 14th International Joint Conference on Computational Intelligence (IJCCI 2022), pages 82-90
ISBN: 978-989-758-611-8; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



operators with the Moth Flame Optimizer (MFO) and
use them with Levy flight operator to enhance the fea-
ture selection process. The results showed improved
performance in the diagnosis of disease. The au-
thors in (Al-Betar et al., 2018a), improved the original
greedy selection operator of the Grey Wolf Optimizer
(GWO) by using other less-biased selection operators
extracted from evolutionary algorithms. Six GWO
variations are produced and studied on 23 mathe-
matical benchmark functions. The results show that
TGWO achieved the best results. In (Al-Betar et al.,
2012), the authors used new selection operators with
the Harmony Search (HS) algorithm in memory con-
sideration to replace the original random selection
The results on benchmark functions showed that the
selection operators affected the performance of the
HS algorithm. The authors in (Al-Betar et al., 2018b),
studied the effect of the selection operators on the Bat
algorithm. They replaced the global-best selection
with other evolutionary operators. Their evaluation on
25 IEEE-CEC2005 functions showed competitive re-
sults. In (Awadallah et al., 2019), The authors studied
the effect of different selection operators on the Ar-
tificial Bee Colony (ABC) algorithm. The evaluation
results on benchmark functions showed the effects of
the selection operators on ABC algorithm. In (Shehab
et al., 2016), the authors studied the effect of replac-
ing the global best selection mechanism of the Parti-
cle Swarm Optimization (PSO) algorithm with other
selection operators. The results showed a direct effect
of the selection operators on the performance of the
PSO. Bottom-line, the literature has many research
papers that investigates the effect of different selec-
tion schemes on the performance of several swarm in-
telligent algorithms. According to the No-Free-Lunch
theorem, (Adam et al., 2019), no swarm algorithm
has the same performance in tackling all optimization
problems. Therefore, there is always a chance for re-
searchers to suggest new algorithms and experiment
them with different optimization problems.

In this paper, new evolutionary selection opera-
tors are borrowed from the Genetic Algorithm (GA)
and integrated with the SO algorithm. These opera-
tors are Roulette wheel, tournament, linear rank, and
exponential rank. Each operator is integrated individ-
ually with the SO algorithm and substitutes the global
best standard operator. Four SO variations are pro-
duced using these operators: SO-roulettewheel, SO-
tournament, SO-linearrank, and SO-exponentialrank.
The performance of each SO variation is investigated
and evaluated using the standard benchmark mathe-
matical functions.

The remaining parts of this paper are organized as
follows: Section 2 presents the SO algorithm. Sec-

tion 3 discusses the proposed selection operators inte-
grated with SO. Section 4 analyzes and discusses the
experimental results. Finally, Section 5 summarizes
the paper and determines some future works.

2 SNAKE OPTIMIZER (SO)

This section presents the mathematical model of a re-
cently published SO algorithm (Hashim and Hussien,
2022). The following points explains in detail SO
steps:

• Initializing solutions: SO starts by initiating a
set of random solutions in the search space using
Eq.(1). These solutions compose the snakes pop-
ulation to be optimized in the next steps.

Snakei = Snakemin + random× (Snakemax−
Snakemin) (1)

where Snakei is the location in the search space of
the ith solution in the swarm. random is a random
number ∈ [0,1]. Snakemax and Snakemin are the
minimum and the maximum values respectively
for the studied problem.

• Division of solutions: the population is divided
into two parts (50% male and 50% female) using
Eq. (2) and Eq. (3)

Nummale ≈ Num/2 (2)

Num f emale ≈ Num−Nummale (3)
where Num is the size of the population (all
snakes). Nummale is the number of the male so-
lutions. Num f emale is the number of female solu-
tions.

• Evaluate solutions: get the best solution from
the male group (Snakebestmale), female group
(Snakebest f emale) and find the location of the food
L f ood . Two other concepts are defined which are
the temperature (Temperature) and the quantity
of food (Qantity) as in Eq.(4) and Eq.(5) respec-
tively.

Temperature = Exp(
−Curiter
Totiter

) (4)

where Curiter is the current iteration and Totiter
is the number of all iterations.

Qantity =Const1×Exp(
Curiter−Totiter

Totiter
) (5)

where Const1 is a constant value equal 0.5.

New Evolutionary Selection Operators for Snake Optimizer

83



• Exploring the search space (food is not found):
this depends on using a specified threshold value.
If Quantity < 0.25, the solutions search globally
by updating their locations with respect to a spec-
ified random location in the search space. This
modeled by Eq.(6)-Eq.(9)

Snakemalei(iter+1) = Snakemalerand(iter)±
Const2×ABmale× ((Snakemax−Snakemin)

× rand +Snakemin) (6)

where Snakemalei is ith male solution,
Snakemalerand is the location of random male
solution, rand is a random number ∈ [0,1] and
ABmale is the ability of the male solution to find
the food and can be computed using Eq.(7):

ABmale = Exp(−Fitnessmalerand

Fitnessmalei
) (7)

where Fitnessmalerand is the fitness of
Snakemalerand and Fitnessmalei is the fit-
ness of ith solution the in male group and Const2
is a constant equals 0.05.

Snake f emalei(iter+1) =
Snake f emalerand(iter)±Const2

×AB f emale× ((Snakemax−Snakemin)× rand+
Snakemin) (8)

where Snake f emalei is ith female solution,
Snake f emalerand is the location of random female
solution, rand is a random number ∈ [0,1] and
AB f emale is the ability of the female solution to
find the food and can be computed using Eq.(9):

AB f emale = Exp(−Fitness f emalerand

Fitness f emalei
) (9)

where Fitness f emalerand is the fitness of
Snake f emalerand and Fitness f emalei is the
fitness of ith solution the in male group and
Const2 is a constant equals 0.05.

• Exploiting the search space (Food is found) If
the quantity of food is greater than a specified
threshold Quantity > 0.25 then the temperature is
checked. If Temperature > 0.6 (hot), The solu-
tions will move to the food only.

Snake(i, j)(iter+1) = L f ood±
Const3×Temperature× rand×

(L f ood−Snake(i, j)(iter)) (10)

where Snake(i, j) is the location of a solution (male
or female), L f ood is the location of the best solu-
tions, and Const3 is constant value and equals 2.
If Temperature > 0.6 (cold), The snake will be in
the fight mode or mating mode Fight Mode.

Snakemalei(iter+1) = Snakemalei(iter)±
Const3×FAMtimesrand× (Snake f emalebest−

Snakemalei(iter)) (11)

where Snakemalei is the ith male location,
Snake f emalebest is the location of the best solu-
tion in female group, and FAM is the fighting abil-
ity of male solution.

Snake f emalei(itert +1) =
Snake f emalei(iter+1)

±Const3×FAF× rand× (Snakemalebest−
Snake f emalei(iter+1)) (12)

where Snake f emalei is the ith female location,
Snakemalebest is the location of the best solution
in the male group, and FAF is the fighting ability
of the female solution.
FAM and FAF can be computed from the follow-
ing equations:

FAM = Exp(−Fitness f emalebest

Fitnessi
) (13)

FAF = Exp(−Fitnessmalebest

Fitnessi
) (14)

where Fitness f emalebest is the fitness of the best
solution of the female group, Fitnessmalebest is
the fitness of the best solution of male group, and
Fitnessi is the solution fitness.
Mating mode.

Snakemalei(iter+1) = Snakemalei(iter)±
Const3×MAm× rand× (Quantity×

Snake f emalei(iter)−Snakemalei(iter)) (15)

Snake f emalei(iter+1) =
Snake f emalei(iter)±Const3×MA f m× rand×

(Quantity×Snakemalei(iter)
−Snake f emalei(iter)) (16)

where Snake f emalei is the location of the ith so-
lution in female group and Snakemalei is the lo-
cation of the ith solution in male group and MAm
and MAf are the ability of male and female for
mating respectively and they can be computed as
follow:

MAm = Exp(−Fitness f emalei

Fitnessmalei
) (17)

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

84



MA f = Exp(− Fitnessmalei

Fitness f emalei
) (18)

If Egg hatch, select worst male solution and worst
female solution and replace them

Snakemaleworst = Snakemin + rand×
(Snakemax−Snakemin) (19)

Snake f emaleworst = Snakemin + rand×
(Snakemax−Snakemin) (20)

where Snakemaleworst is the worst solution in the
male group, Snake f emaleworst is the worst solu-
tion in female group. The diversity factor opera-
tor ± gives chance to increase or decrease loca-
tions’ solution to give high probability to change
the the locations of solutions in the search space
in all possible directions.

Algorithm 1: Continuous SO Algorithm.
Input: Dim, UB, LB, Num, Totiter, and Curiter
Output:Best Snake
Initialize the Snakes randomly

while Curiter ≤ Totiter do
Evaluate each Snake in groups Nummale and
Num f emale
Find best male Snakemalebest
Find best female Snake f emalebest
Define Tempreture using Eq. (4).
Define food Quantity Quantity using Eq. (5).
if (Quantity < 0.25) then

Perform exploration using Eq. (6) and Eq. (8)
else if (Temperature > 0.6) then

Perform exploitation Eq. (10)
else if (rand > 0.6) then

Snakes in Fight Mode Eq. (11) and Eq. (12)
else

Snakes in Mating Mode Eq. (15) and Eq. (16)
Change the worst male Snake and female
Snake Eq. (19) and Eq. (20)

end if
end while
Return best Snake

3 THE PROPOSED SELECTION
OPERATORS

3.1 Roulette Wheel Selection

This method selects solutions based on their fitness
value in proportion to the fitness of other solutions in

the population. Thus, the probability to select a so-
lution depends on the absolute value of its fitness in
relation to the fitness of other solutions in the popula-
tion. The selection probability Probi for the solution
i is computed by Eq 21. In Algorithm 2, Random
is a random value from a uniform random distribu-
tion U(0,1); Total prob is the accumulative selec-
tion probabilities of solution S j which is defined by
Total prob = ∑

j
i=1 Probi.

Probi =
f (Si)

∑
popsize
j=1 f (S j)

(21)

Algorithm 2: Pseudocode for the Roulette wheel selection.

Set Random∼U(0,1)
Set F = False
Set Total prob = 0
Set L = 0

while i≤ popsize and not (F) do
Total prob = Total prob+Probi
if Total prob > Random then

L = i
F = True

end if
i = i+1

end while

3.2 Tournament Selection

Algorithm 3 shows the tournament selection method,
which begins by selecting a set of random solutions
from the population. The number of selected solu-
tions is called the tournament size. The procedure
proceeds by selecting the best solution in tournament
T . This process is repeated n times.

Algorithm 3: Pseudocode for the Tournament selection.
Select L random solutions from the population.
Select the first-best solution from tournament with
probability Prob.
Select the second-best solution with probability
Prob× (1−Prob).
Select the third-best solution with probability Prob×
((1−Prob)2.
And so on...

3.3 Linear Rank Selection

This selection method overcomes the shortcomings of
the Roulette wheel method by adopting the rank of
solutions instead of their fitness values. Eq 22 shows
that the probability of selection for a solution depends
on its rank. The highest rank n is given to the best
solution while the lowest rank 1 is given for the worst

New Evolutionary Selection Operators for Snake Optimizer

85



solution. Once all solutions in the swarm are ranked,
Algorithm 4 is applied.

Probi =
ranki

n× (n−1)
(22)

Algorithm 4: Pseudocode for the Linear rank selection.
Set X0 = 0

for i = 1 to popsize do
Xi = Xi−1 +Probi

end for
for i = 1 to popsize do

Generate a Random ∈ [0, popsize]
for 1≤ j ≤ popsize do

if Prob j ≤ Random then
Select the jth solution

end if
end for

end for

3.4 Exponential Rank Selection

This method sorts the ranked solutions depending on
their probabilities by using exponentially weighted as
in Eq 23. the value of X is between 0 and 1. If X = 1,
the difference in the selection probability between the
best and the worst solutions is ignored. If X = 0,
this continuously increases the difference in the se-
lection probability in such a way it produces an expo-
nential curve along the ranked solution. Algorithm 5
shows the steps of exponential ranking, it differs from
the linear ranking in the computation of the selection
probabilities.

Probi =
Mranki

∑
popsize
j=1 Mrank j

(23)

Algorithm 5: Pseudocode for the Exponential rank selec-
tion.
Set X0 = 0

for i = 1 to popsize do
Xi = Xi−1 +Probi

end for
for i = 1 to popsize do

Generate a Random ∈M
for 1≤ j ≤ popsize do

if Prob j < r then
Select the jth solution

end if
end for

end for

4 ANALYSIS AND DISCUSSIONS
OF THE EXPERIMENTAL
RESULTS

This section perform the experiments on the four gen-
erated SO variations listed below to evaluate the effect
of different selection operators on the performance of
the SO algorithm. Each variation adopts a specific
selection operator that is integrated with the SO algo-
rithm:

1. SO-Global-best: it uses the SO algorithm with
Global-best selection operator.

2. SO-Roulettewheel: it uses the SO algorithm with
the Roulette wheel selection operator.

3. SO-Tournament: It uses the SO algorithm with the
tournament selection operator.

4. SO-Linearrank: it uses the SO algorithm with the
linear rank selection operator.

5. SO-Exponentialrank: it uses the SO algorithm
with the exponential rank selection operator.

All the experiments are conducted using a com-
puter with processor 11th Gen Intel(R) Core(TM)
16-1135G7@2.40GHz with 16 GB of RAM and 64-
bit for Microsoft Windows 10 Pro. The MATLAB
(R2010a) is used to implement the source code.

Different parameter settings are used to evaluate
the SO with different selection operators. The inves-
tigated parameters are the number of dimensions and
population size for each SO version as follows: num-
ber of dimensions Dim = (10, 20, and 30) (Trelea,
2003), population size = (30, 50, and 80) (Richards
and Ventura, 2003). Each run is iterated 100,000
times.

The optimal parameter setting for each version
is shown in Table 1. The experiments are then per-
formed using five scenarios with different parameter
settings, as shown in Table 1. Each scenario studies
the capability of the two parameters, and each of these
parameters includes a set of values. For example the
first scenario shows the SO-Global-best with its opti-
mal value of each parameter, as shown Dim=30, and
population size= 50, These values are identified as an
optimal value for the experiments, and so on for all
scenarios.

More function evaluations are needed when the
the number of dimensions increases. At the same
time, increasing the computations increases the al-
gorithm’s reliability. The most important issue of
this work is to balance between reliability and cost.
Therefore, the optimal value for the number of dimen-
sions should be between 10 and 30 and should not be

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

86



Table 1: Parameters scenarios.

Scenario Number Selection operator Dim Population size

Scenario1 Global-best 30 50

Scenario2 SO-Roulettewheel 30 50

Scenario3 SO-Tournament 30 30

Scenario4 SO-Linearrank 30 30

Scenario5 SO-Exponentialrank 30 50

more than 30 when the problem becomes more com-
plex. The results achieved in this work are consistent
with (Jin et al., 2013).

For the population size parameter, assigning a
value of 50 is recommended when dealing with high
dimensional problems. However, selecting a popula-
tion size of [30, 50] is recommended for lower dimen-
sional problems. The values of population size are
consistent with previous studies (Li-Ping et al., 2005).

This study uses 14 global benchmark functions
that include both unimodal and multimodal functions.
These are used commonly to solve minimization op-
timization problems (Civicioglu and Besdok, 2013).
The purpose of adopting these functions is to evaluate
the performance of the SO algorithm.

Table 2 and Table 3 show the optimal solutions ob-
tained by the SO variations using the 14 benchmark
functions. The target form using benchmark func-
tions is to get the minimum solution and this depend
on each benchmark. For most of a benchmark the
best value is near Zero. However, the best value for
other benchmark is near (- 450) like shifted bench-
mark functions. All selection operators try to be near
to the best solution, but SO-Tournament obtained the
first rank. The SO-Exponentialrank got the worst so-
lution, SO-Roulettewheel, SO-Global-best and SO-
Linearrank are respectively among them.

Table 2 and Table 3 summarize the results of the
SO variations using the 14 benchmark functions in
each scenario, as shown in Table 1. The results in Ta-
bles 2 and 3 are arranged from scenario1 to scenario5
to save the best value for each parameter, which
means in scenario5 each of the selection schemes has
the best values of parameters. Each SO version im-
plemented 30 runs, and the values in the table re-
fer to the average and standard deviations (within
the parentheses). The optimal solutions appear in
bold font. The results show that SO-Tournament ob-
tains the optimal results for all the benchmark func-
tions. SO-Global-best and SO-Roulettewheel obtaine
the eight best results for the Sphere, Schwefel prob-
lem 2.22, Step, Rosenbrock, Rotated hyper-ellipsoid,
Rastrigin, Ackley, and Griewank benchmark func-
tions. SO-Linearrank obtains the best results for
most of the benchmark functions. By contrast, SO-
Exponentialrank obtains poor results when compared

with the other selection operators, especially for the
Rotated hyper-ellipsoid, Rastrigin, Shifted Sphere,
and Shifted Rosenbrock benchmark functions.

5 CONCLUSION AND FUTURE
WORK

This study investigates the effect of integrating dif-
ferent evolutionary selection operators in the struc-
ture of the SO optimizer. The work is done by
replacing the original global-best solution scheme
by four other selection operators. The inte-
gration of selection schemes with SO produces
four variations of the SO algorithm namely SO-
Roulettewheel, SO-Tournament, SO-Linearrank and
SO-Exponentialrank. The SO variations aim is to ap-
ply the survival of the fittest selection principle in the
search space. The experiments were performed on
the global mathematical benchmark functions. The
results proved that integrating the selection operators
in the search space of the SO algorithm is capable
to improve the balance between the global and local
search phases and to alleviate the premature conver-
gence due to entrapment in local minima. Further-
more, the SO-Tournament achieved the best results,
followed by SO-Roulettewheel and SO-Globalbest,
whose results were very close. SO-Linearrank and
SO-Exponentialrank come in the fourth and the last
place respectively. This study investigates the effect
of selection schemes for the first time on the SO algo-
rithm. For future, we intend to explore this study by
considering the search time. Also, we intend to apply
the SO with selection operators in specific domains to
solve some real-life problems.

ACKNOWLEDGMENTS

This work is supported by the Ministerio español de
Economı́a y Competitividad under project PID2020-
115570GB-C22 (DemocratAI::UGR).

New Evolutionary Selection Operators for Snake Optimizer

87



Table 2: The Average and Standard Deviation Results of Benchmark Functions.

Benchmark Function Selection Technique Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

Sphere

SO-Global-best 5.86E-07
(8.88E-07)

3.16E-07
(1.10E-08)

0.36E-07
(0.81E-07)

2.00E-07
(9.66E-09)

1.70E-08
(8.74E-09)

SO-Roulettewheel 8.40E-07
(3.06E-07)

7.12E-07
(1.34E-09)

5.47E-07
(3.14E-07)

3.76E-10
(0.872E-11)

1.40E-07
(3.06E-07)

SO-Tournament 0.00E+00
(0.00E+00)

5.82E-17
(1.10E-15)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 2.27E+05
(8.37E+04)

3.14E-05
(2.40E-02)

3.70E-04
(6.20E-04)

8.76E-08
(7.07E-08)

4.46E-08
(0.12E-09)

SO-Exponentialrank 2.14E-02
(0.08E-02)

2.13E-03
(1.00E-02)

0.45E-03
(0.77E-02)

1.32E-04
(0.01E-04)

0.36E-07
(0.81E-07)

Schwefel’s problem 2.22

SO-Global-best 0.0026
(0.0036)

0.0025
(0.0042)

6.88E-05
(5.54E-04)

6.77E-07
(1.32E-06)

7.32E-08
(0.01E-10)

SO-Roulettewheel 0.0001
(0.0001)

4.74E-07
(0.0001)

3.65E-05
(2.66E-05)

1.33E-08
(7.64E-07)

8.12E-10
(3.54E-09)

SO-Tournament 3.22E-26
(0.00E+00)

3.46E-394
(0.00E+00)

1.46E-394
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 0.0000
(0.0731)

6.24E-03
(5.73E-03)

8.65E-04
(4.80E-03)

0.01E-06
(7.72E-05)

4.12E-07
(2.76E-07)

SO-Exponentialrank 1.07E+03
(2.58 E+02 )

1.06E+03
(2.70E+02)

0.003E+03
(3.148E+03)

0.81E+02
(2.76E+03)

0.56E+03
(0.43E+03)

Step

SO-Global-best 6.17E-06
(5.40E-06)

8.40E-07
(0.10E-06)

5.10E-07
(2.46E-05)

7.83E-07
(1.44E-08)

0.64E-09
(1.43E-08)

SO-Roulettewheel 0.40E-07
(1.05E-07)

0.40E-07
(1.07E-07)

1.06E-07
(1.61E-07)

5.52E-08
(0.83E-09)

7.67E-11
(5.48E-10)

SO-Tournament 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 7.10E-04
(0.12E-03)

7.10E-04
(0.88E-03)

4.58E-04
(0.48E+00)

0.11E-05
(5.71E-03)

3.87E-07
(1.62E-07)

SO-Exponentialrank 2.27E+03
(8.36E+03)

2.08E+03
(1.00E+03)

0.35E+02
(5.00E+02)

0.02E+02
(1.52E+02)

1.28E+01
(1.20E+00)

Rosenbrock

SO-Global-best 0.02423
(0.8008)

0.11E-05
(0.27E-05)

1.44E-05
(6.58E-06)

5.53E-06
(3.22E-06)

0.54E-07
(1.26E-08)

SO-Roulettewheel 0.20E-07
(1.15E-07)

7.20E-06
(1.15E-06)

5.47E-06
(3.14E-07)

1.24E-08
(3.56E-07)

2.07E-08
(5.18E-07)

SO-Tournament 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 0.5586
(1.1032)

2.30E-02
(0.48E+01)

2.74E-04
(4.10E-04)

3.21E-05
(7.83E-06)

1.71E-08
(6.54E-07)

SO-Exponentialrank 0.35E+04
(5.60E+03)

2.17E+03
(5.00E+03)

0.41E+03
(1.00E+03)

1.06E+02
(0.38E+03)

0.05E+02
(1.00E+03)

Rotated hyper-ellipsoid

SO-Global-best 4.44E-06
(8.05E-06)

8.10E-06
(2.13E-06)

4.44E-06
(8.05E-06)

4.58E-06
(1.33E-06)

4.48E-07
(1.28E-07)

SO-Roulettewheel 6.50E-07
(0.12E-06)

6.50E-07
(0.12E-06)

2.540E-07
(6.21E-08)

5.73E-08
(6.45E-07)

4.58E-09
(2.38E-10)

SO-Tournament 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 0.05E-04
(0.0078)

1.28E-04
(0.08E+01)

0.05E-06
(2.30E-06)

0.45E-05
(4.10E-06)

2.74E-08
(4.30E-06)

SO-Exponentialrank 0.70E+06
(5.45E+05)

0.38E+03
(2.18E+06)

2.13E+03
(1.00E+02)

1.22E+02
(1.72E-02)

5.83E+00
(0.05E+02)

Schwefel’s problem 2.26

SO-Global-best -559.687870
(1.084706)

-23675.928
(1.136271)

-23560.799
(1.837641)

-23668.768
(1.023145)

-23661.314
(1.156238)

SO-Roulettewheel -955.3679
(01.8273)

-3628.645
(545.183740)

-23669.613
(8.422817)

-23671.654
(1.323535)

-23674.796
(0.840532)

SO-Tournament -941.927358
(146.046462)

-23678.54
(2.03102)

-23641.597
(0.000016)

-23641.512
(0.41E-04)

-23674.989
(0.07E-04)

SO-Linearrank -9865.935499
(288.744633)

-23672.53
(0.752077)

-23675.928
(1.136271)

-23664.454
(1.743721)

-23677.965
(0.087465)

SO-Exponentialrank -593.4963
(662.4268)

-9876.7576
(300.067265)

-9876.757
(300.067)

-9976.757
(130.421)

-22894.654
(112.384)

Rastrigin

SO-Global-best 8.58E-04
(0.61E-04)

5.83E-04
(8.80E-05)

5.10E-06
(2.46E-05)

2.25E-07
(5.23E-06)

0.48E-07
(2.83E-07)

SO-Roulettewheel 5.76E-07
(0.20E-07)

5.74E-08
(0.20E-07)

7.06E-08
(6.61E-08)

1.43E-08
(0.77E-08)

3.47E-09
(3.48E-08)

SO-Tournament 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 5.58E-03
(3.72E-03)

0.28E-03
(0.28E-03)

4.58E-04
(0.48E-03)

2.00E-04
(7.11E-03)

3.34E-05
(1.04E-04)

SO-Exponentialrank 0.77E+05
(1.54E+05)

0.83E+05
(3.08E+05)

7.35E+04
(5.00E+03)

1.083E+02
(2.32E+04)

6.58E+02
(1.04E+02)

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

88



Table 3: The Average and Standard Deviation Results of Benchmark Functions.

Benchmark Function Selection Technique Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

Ackley

SO-Global-best 4.54E-03
(3.15E-03)

1.35E-03
(4.23E-03)

0.01E-03
(5.43E-04)

6.55E-04
(1.27E-05)

5.34E-05
(8.21E-05)

SO-Roulettewheel 8.26E-04
(1.60E-03)

4.47E-05
(6.74E-05)

0.03E-05
(1.64E-05)

7.01E-05
(2.44E-06)

2.32E-07
(7.45E-08)

SO-Tournament 3.77E-04
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00

SO-Linearrank 6.1207
(4.1086)

3.4124
(6.56E-02)

2.3824
(1.15E-03)

0.5586
(0.00E-03)

0.1738
(5.55E-3)

SO-Exponentialrank 18.5480
(1.7650)

17.1142
(0.681)

17.1344
(6.18E-02)

16.3562
(2.21E-04)

12.8726
(0.16E-04)

Griewank

SO-Global-best 5.24E-05
(0.27E-06)

1.27E-05
(4.78E-05)

0.54E-06
(6.07E-06)

2.12E-08
(7.52E-07)

3.43E-08
(6.24E-07)

SO-Roulettewheel 1.27E-06
(4.78E-06)

4.70E-07
(6.33E-05)

4.70E-07
(6.33E-05)

5.74E-08
(7.20E-07)

6.15E-09
(4.57E-09)

SO-Tournament 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

SO-Linearrank 0.0452
(0.0721)

5.05E-03
(5.08E-04)

6.02E-05
(0.75E-04)

0.14E-06
(6.32E-05)

0.01E-07
(1.34E-05)

SO-Exponentialrank 0.23E+03
(0.65E+03)

3.85E+02
(5.54E+02)

2.76E+02
(1.86E+02)

2.03E+02
(1.86E+02)

1.00E+00
(0.01E+00)

Camel-Back

SO-Global-best -0.9386
(0.086)

-8.99E-01
(2.13E-01)

-9.18E-01
(3.73E-02)

-9.01E-01
(2.83E-02)

-8.78E-01
(2.15E-01)

SO-Roulettewheel -0.8784
(0.1064)

-8.99E-01
(4.010E-01)

-9.55E-01
(8.763E-01)

-9.85E-01
(8.76E-02)

-9.20E-01
(1.01E-02)

SO-Tournament -0.8467
(0.00E+00)

-6.45E-01
(2.01E-01)

-9.89E-01
(6.03E-04)

-9.89E-01
(6.03E-04)

-9.87E-01
(9.76E-04)

SO-Linearrank 0.6278
(1.1030)

0.42E+00
(2.52E+00)

0.01E+00
(0.02E+03)

0.01E+00
(0.03E+03)

-9.99E-01
(0.65E-03)

SO-Exponentialrank 6.11E+03
(7.17E+03)

8.23E+03
(0.04E+04)

4.75E+03
(8.63E+02)

4.75E+03
(8.63E+02)

2.76E+02
(8.63E-02)

Shifted Sphere

SO-Global-best 0.63E+04
(5.10E+03)

4701.5781
(1650.0532)

176.1707
(1074.8632)

-440.967
(1.5315)

-448.735
(0.2537)

SO-Roulettewheel 0.74E+04
(5.00E+03)

-445.9375
(0.0171)

-447.5478
(0.6462)

-442.8980
(0.3451)

-449.0970
(1.3456)

SO-Tournament 1.53E+04
(0.02E+04)

-449.9887
(0.0076)

-447.8877
(0.0008)

-448.6540
(0.3256)

-449.9690
(0.0652)

SO-Linearrank 2.16E+05
(7.83E+04)

4701.5681
(1650.0532)

2454.5217
(1065.5807)

642.4270
(6.22E+05)

631.6450
(1.28E+05)

SO-Exponentialrank 0.83E+06
(3.80E+06)

4.70E+05
(2.65E+06)

1.46E+05
(1.07E+06)

8.45E+04
(5.47E+05)

5.21E+04
(5.54E+04)

Shifted Schwefel’s problem 1.2

SO-Global-best 4.30E+04
(0.15E+04)

835487.6950
(208027.653)

-439.9446
(0.041105)

-440.9780
(0.8532)

-449.772
(0.06543)

SO-Roulettewheel 4.03E+04
(0.28E+04)

-48.8595
(255.0173)

-449.7793
(255.01733)

-441.799
(0.21E-02)

-449.9310
(1.58E-03)

SO-Tournament 6.87E+04
(2.24E+04)

-447.0061
(1.8581)

-449.8697
(5.3633)

-448.473
(0.27E-03)

-449.959
(6.08E-03)

SO-Linearrank 0.76E+06
(8.07E+05)

-449.9446
(0.04110)

-216.7574
(0.0411)

-421.4110
(7.30E-03)

-439.654
(5.54E-03)

SO-Exponentialrank 4.60E+04
(0.40E+04)

5487.5840
(8927.6540)

1532.7480
(6475.0145)

3074.0130
(2767.3530)

435.0010
(447.2040)

Shifted Rosenbrock

SO-Global-best 1.01E+12
(1.13E+11)

404.0800
(104.5541)

408.4310
(252.2410)

400.2102
(104.5421)

401.0367
(201.4681)

SO-Roulettewheel 1.03E+12
(1.50E+11)

386.0000
(105.7600)

487.6550
(115513)

468.004
(1.75E+03)

454.6333
(1.00E+03)

SO-Tournament 1.38E+12
(5.43E+11)

475.7140
(110.4870)

490.4560
(122.8890)

420.1020
(321.5670)

378.5490
(202.321)

SO-Linearrank 1.16E+13
(5.31E+12)

478.3000
(308.8300)

595.4780
(108.3210)

570.1234
(281.7543)

543.4710
(218.5000)

SO-Exponentialrank 1.12E+12
(1.50E+11)

1405.7900
(1.76E+8)

1100.5431
(1.45E+7)

980.6789
(1.61E+05)

870.3210
(1.60E+05)

Shifted Rastrigin

SO-Global-best 1322.0560
(25.7743)

-329.9980
(0.2045)

-329.1239
(0.9590)

-302.9870
(0.2169)

-319.8900
(0.4321)

SO-Roulettewheel 133.0134
(20.6035)

-329.9620
(0.184239)

-429.8760
(0.1742)

-320.8876
(1.4310)

-323.7890
(0.2310)

SO-Tournament 132.5543
(16.8017)

-220.0990
(12.0074)

-328.7689
(1.7653)

-329.7890
(3.50E-03)

-429.8890
(2.61E-03)

SO-Linearrank 7.68E+03
(170.0245)

-329.967
(0.0731)

-389.0990
(1.6091)

-289.8860
(0.2361)

-320.9780
(0.6538)

SO-Exponentialrank 922.6654
(46.2210)

1025.7654
(1765.2100)

1743.3210
(1542.9900)

-201.6541
(38.5210)

-281.5678
(3.7651)

New Evolutionary Selection Operators for Snake Optimizer

89



REFERENCES

Abu Khurma, R., Aljarah, I., Sharieh, A., Abd Elaziz, M.,
Damaševičius, R., and Krilavičius, T. (2022). A re-
view of the modification strategies of the nature in-
spired algorithms for feature selection problem. Math-
ematics, 10(3):464.

Adam, S. P., Alexandropoulos, S.-A. N., Pardalos, P. M.,
and Vrahatis, M. N. (2019). No free lunch theorem:
A review. Approximation and optimization, pages 57–
82.

Al-Betar, M. A., Awadallah, M. A., Faris, H., Aljarah, I.,
and Hammouri, A. I. (2018a). Natural selection meth-
ods for grey wolf optimizer. Expert Systems with Ap-
plications, 113:481–498.

Al-Betar, M. A., Awadallah, M. A., Faris, H., Yang, X.-
S., Khader, A. T., and Alomari, O. A. (2018b).
Bat-inspired algorithms with natural selection mech-
anisms for global optimization. Neurocomputing,
273:448–465.

Al-Betar, M. A., Doush, I. A., Khader, A. T., and Awadal-
lah, M. A. (2012). Novel selection schemes for har-
mony search. Applied Mathematics and Computation,
218(10):6095–6117.

Awadallah, M. A., Al-Betar, M. A., Bolaji, A. L., Alsukhni,
E. M., and Al-Zoubi, H. (2019). Natural selection
methods for artificial bee colony with new versions of
onlooker bee. Soft Computing, 23(15):6455–6494.

Civicioglu, P. and Besdok, E. (2013). A conceptual compar-
ison of the cuckoo-search, particle swarm optimiza-
tion, differential evolution and artificial bee colony
algorithms. Artificial intelligence review, 39(4):315–
346.

Hashim, F. A. and Hussien, A. G. (2022). Snake opti-
mizer: A novel meta-heuristic optimization algorithm.
Knowledge-Based Systems, 242:108320.

Jin, X., Liang, Y., Tian, D., and Zhuang, F. (2013). Par-
ticle swarm optimization using dimension selection
methods. Applied Mathematics and Computation,
219(10):5185–5197.

Khurma, R. A., Aljarah, I., and Sharieh, A. (2021). A si-
multaneous moth flame optimizer feature selection ap-
proach based on levy flight and selection operators for
medical diagnosis. Arabian Journal for Science and
Engineering, 46(9):8415–8440.

Khurma, R. A., Aljarah, I., Sharieh, A., and Mirjalili, S.
(2020). Evolopy-fs: An open-source nature-inspired
optimization framework in python for feature selec-
tion. In Evolutionary machine learning techniques,
pages 131–173. Springer.

Li-Ping, Z., Huan-Jun, Y., and Shang-Xu, H. (2005). Op-
timal choice of parameters for particle swarm opti-
mization. Journal of Zhejiang University-Science A,
6(6):528–534.

Richards, M. and Ventura, D. A. (2003). Dynamic sociom-
etry in particle swarm optimization.

Shehab, M., Khader, A. T., and Al-Betar, M. (2016). New
selection schemes for particle swarm optimization.
IEEJ Transactions on Electronics, Information and
Systems, 136(12):1706–1711.

Trelea, I. C. (2003). The particle swarm optimization algo-
rithm: convergence analysis and parameter selection.
Information processing letters, 85(6):317–325.

ECTA 2022 - 14th International Conference on Evolutionary Computation Theory and Applications

90


