
Wrapper Induction by XPath Alignment

Joachim Nielandt, Robin de Mol, Antoon Bronselaer and Guy de Tré
Department of Telecommunications and Information Processing, Ghent University,

St-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Keywords: Wrapper Induction, XPath, Alignment, Data Extraction, DOM.

Abstract: Dealing with a huge quantity of semi-structured documents and the extraction of information therefrom is an
important topic that is getting a lot of attention. Methods that allow to accurately define where the data can
be found are then pivotal in constructing a robust solution, allowing for imperfections and structural changes
in the source material. In this paper we investigate a wrapper induction method that revolves around aligning
XPath elements (steps), allowing a user to generalise upon training examples he gives to the data extraction
system. The alignment is based on a modification of the well known Levenshtein edit distance. When the
training example XPaths have been aligned with each other they are subsequently merged into the path that
generalises, as precise as possible, the examples, so it can be used to accurately fetch the required data from
the given source material.

1 INTRODUCTION

Wrapper induction has been studied since the late
nineties and has been an important topic ever since. It
concerns creating a translation step between the semi-
structured document and a data structure of choice,
using manually annotated examples. The case we are
focusing on is the extraction of information from web
pages so it can be approached in a relational format.

There have already been numerous proposals as
to how to approach this problem, ranging from semi-
autonomous algorithms to completely manual ap-
proaches. In this paper we elaborate on a way to cre-
ate an XPath-based, generalised wrapper based on ex-
amples given by the user, giving the user the advan-
tage of having a transparent process (the model is un-
derstandable and legible) and an intuitive workflow.

The generated XPaths, describing the locations of
the desired data, can not be too broad or too restric-
tive. On the one hand, we want to describe the exam-
ples given by the user with the resulting XPath. On
the other hand we want to exploit the commonalities
between the examples so we can retrieve a lot of data
with just a few examples given. This also implies that
we need to take imperfections in the document and
annotation process into account.

Our focus on a semi-supervised approach has a
number of reasons: it provides more control over
the extracted data, eventual problems in source doc-

uments can be highlighted to the user before extrac-
tion occurs and we still get the advantage of applying
a wrapper to a large amount of documents.

Practically, we investigate a solution to the gener-
ation of the wrapper, which revolves around aligning
the steps within the XPaths (see XPath syntax (xpa,
1999) and Section 3). Sample XPaths are aligned with
each other, where the algorithm bases itself on the
XPath specification as close as possible. Axis names,
node tests and basic predicates are taken into account.
Impurities in the source documents are properly dealt
with, e.g., typo’s in the structure tags, structural dif-
ferences ...

In this paper we limit our investigation to the child
axis (with some exceptions for the introduction of,
e.g., wildcards), basic node tests and one optional in-
teger predicate, but as our approach is built around
the actual XPath specification and not on the derived
string based form, it will be expanded to accomodate
more detailed and complex situations. After align-
ing the sample XPaths, they are merged with each
other, leaving the user with a single merged XPath
that encompasses the samples and generalises them
in a meaningful way. This methodology was already
put into practice in a solution which is currently used
to crawl a large amount of websites comprising thou-
sands of separate pageloads, resulting in a clean and
comprehensible database.

The remainder of the paper is structured as fol-

492 Nielandt J., de Mol R., Bronselaer A. and de Tré G..
Wrapper Induction by XPath Alignment.
DOI: 10.5220/0005124504920500
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2014), pages 492-500
ISBN: 978-989-758-048-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

lows. In Section 2, a brief overview is given of re-
lated work. Section 3 deals with some preliminary
concepts that are utilised in the following sections.
Our proposed technique is detailed in Section 4 and
some results are given in Section 5, with future work
listed in Section 6. Finishing the paper, conclusions
are given in Section 7.

2 RELATED WORK

Wrapper generation can be categorised in two big
trains of thought: the supervised algorithms (wrapper
induction) that take user input to build the wrappers,
and the unsupervised algorithms that do (mostly) ev-
erything on their own (automated approaches). Both
have their merit, depending on the context, types
of concerned documents and goals that need to be
achieved.

(Semi-)automated approaches try to figure out the
location of the data themselves, which makes them li-
able to make mistakes in the process. There are paths
of research that focus on the analysis of visual fea-
tures (Hao et al., 2011; Cai et al., 2004), try to identify
repetitive patterns (Chang and Lui, 2001; Liu et al.,
2003; Zhai and Liu, 2005) or take a set of pages out
of which a template is distilled (Crescenzi et al., 2001;
Arasu and Garcia-Molina, 2003). Some focus on spe-
cific features such as the HTML tag table (Wang and
Hu, 2002) and table- and form-related tags (Liu et al.,
2003). A further overview of automated extraction
can be found in (Zhai and Liu, 2005) and others, as
this is outside the scope of this paper.

The wrapper induction approach (Wong and Lam,
2010; Hsu and Dung, 1998; Kushmerick et al., 1997;
Han et al., 2001; Sahuguet and Azavant, 1999; Myl-
lymaki and Jackson, 2002; Anton, 2005; Cohen
et al., 2002; Kushmerick, 2000; Muslea et al., 1999;
Wang and Hu, 2002) is as well extensively stud-
ied, with methods ranging from conditional random
fields (Pinto et al., 2003) to tree-edit models (Hao
et al., 2011).

Wrapper induction work that focuses especially
on the use of item alignment techniques in the context
of XPaths has been very sparse though, to our knowl-
edge. A short reference to aligning XPaths by string
alignment is given by (Sugibuchi and Tanaka, 2005),
where it is used in a basic setting and does not take
full advantage of what the XPath syntax has to of-
fer. This reference was as well used by (Varun, 2011)
in the system Siloseer, again without any refinement
added.

3 PRELIMINARIES

A couple of concepts need to be clear to be able to
proceed to the core of the problem and our proposed
solution. First of all, we briefly explain the string edit
distance algorithm we base our alignment on, and sec-
ondly, we touch on the aspects of the XPath specifica-
tion (xpa, 1999) that are used.

3.1 String Edit Distance & Alignment

Our method was originally inspired by the Leven-
shtein edit distance algorithm (Levenshtein, 1966)
that allows calculating the minimal amount of oper-
ations (delete, insert, modification) that are needed
to morph string s1 into string s2. Other algorithms
that closely following the reasoning of Levenshtein
exist, but for the sake of clarity and historical rea-
sons we base our approach on Levenshtein. Briefly
explained, the algorithm builds an edit distance ma-
trix d in which, at cell d(i; j), the cost of transforming
substring s1[1; i] into substring s2[1; j] is given.

For the base algorithm we refer to (Levenshtein,
1966). The cost of an insertion, deletion and substitu-
tion of a character are all set to 1. Jumps in the matrix
can be seen as an edit operation: a vertical jump is
inserting a character from s2, a horizontal jump is an
insertion of the corresponding character of s1 and a
diagonal jump is the substitution of a character of s2
into a character of s1. Each cell is calculated as the
maximum of the cells above and aside of it, with the
added cost of the corresponding edit operation.

A traceback can be calculated, based on d, indi-
cating the path that leads to the calculated minimal
edit distance. Multiple options are possible, it is up to
the user to choose which he prefers.

Example 1 is given to illustrate the use of the edit
distance matrix, as well as how a traceback might be
constructed.

Example 1. To illustrate the Levenshtein edit dis-
tance calculation we use the following strings for s1
and s2:

� s1 := wrapor
� s2 := raptor

An example edit distance matrix d is given below, with
a basic cost 1 for each operation. In this case, the
edit distance between s1 and s2 is two, as seen in the
bottom-right cell (6;6) of the matrix. The example
traceback (in bold font) indicates the insertion of the
“w” of s1 in the beginning and the removal of “t” of
s2, as is evident in the highlighted traceback.

Wrapper�Induction�by�XPath�Alignment

493

w r a p o r
0 1 2 3 4 5 6

r 1 1 1 2 3 4 5
a 2 2 2 1 2 3 4
p 3 3 3 2 1 2 3
t 4 4 4 3 2 2 3
o 5 5 5 4 3 2 3
r 6 6 5 5 4 3 2

The alignment of s1 and s2 is shown below, using “*”
as an alignment character.

s1 w r a p * o r
s2 * r a p t o r

3.2 XPath

XPath is a query language, defined as a standard
by W3C, that allows to define expressions that look
up data (text, atomic value, list of nodes ...) in an
XML document. XPath 2:0 (xpa, 2010) is a su-
perset of XPath 1:0 (xpa, 1999) (with some excep-
tions) and both give the user a powerful set of tools,
some of which are necessary within the context of the
paper and will be highlighted briefly in the follow-
ing. XPath is widely spread and provides a solid tool
for structured document investigation. We limit our-
selves to examples to illustrate the language, for an
in-depth explanation we refer to the W3C recommen-
dation (xpa, 1999).

Model. An XPath expression consists of a num-
ber of steps, separated by a “/” character. Each
expression can be evaluated within a given con-
text (element of the document). If the expression
starts with a “/” it indicates that it needs to be ex-
ecuted in the context of the root node of the XML
document. A step consist of the axis it operates
on, a node test and a number of predicates (e.g.,
axisname::nodetest[predicate1][predicate2]).

With regards to the axis, for our purposes, it suf-
fices to know that it can be, amongst others, “child”,
“self” and “descendant-or-self”.

The node test indicates what is selected accord-
ing to the indicated axis. In our context this can be
limited to node() (meaning: everything, because ev-
erything is a node) or the name of an HTML tag. In
practice, we added additional predicates whenever a
nodetest equalled to node(), to filter out text and other
unwanted nodes, as we want to focus on the retrieval
of elements.

Examples. It is easier to explain XPath expressions
at a glance according to examples. The following
should be sufficient to highlight some features of

XPath that are useful to us and to make the rest of
the paper clear as to what XPath is concerned.

� / selects the root node.

� /child::div selects all direct div children of the
root node.

� /child::node() selects all children of the root
node (node() acts as a nodetest wildcard), in-
cluding comments, text nodes and processing-
instructions.

� /child::node()[1] selects the first child of the root
node.

� /descendant-or-self::div selects all div elements
that are descendants of the root.

� /descendant-or-self::tr/td[2] selects every sec-
ond td of every tr descendant of the root.

It is also possible to write abbreviations of the above
syntax, which is what most people are familiar with.
Again, we give some examples to show what is possi-
ble with abbreviations:

� /* is equivalent to /child::node() (with regards to
our purposes anyway, the latter also selects com-
ment and other nodes, but we remove those with
additional predicates).

� /descendant-or-self::node()/div is equivalent to
//div.

� . indicates the current node, equivalent to
self::node().

As a final example for abbreviations we give both
forms for the same XPath:

� /html/body//div/table//tr/td[2]
� /child::html/child::body/descendant-or-

self::node()/child::div/child::table/descendant-
or-self::node()/child::tr/child::td[2]

In this example the second td is selected that has a tr
as a parent which has, as an ancestor, a table. That
table is contained within a div that has, as an ancestor,
a body which is contained in an html tag. That tag is
contained within the root of the document (the XPath
starts with /). Any td that is corresponding to these
restrictions will be present in the resultset when the
xpath is executed within a document.

4 PROPOSAL

We propose a method that takes a number of XPath
examples that are manually annotated on a web page
as input. These XPaths are then aligned, according to
their steps, and merged with each other, resulting in a

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

494

single, generalised XPath. The main advantage of the
step alignment approach is that we can handle errors
and various structural differences in a flexible way,
while staying within the syntax of the XPath standard.

For now we focus our attention on merging abso-
lute paths and relative paths containing steps on the
child axis, making it most useful for identifying re-
curring items on a web page (or, as said before, any
other structured document fulfilling our requirements,
but our recurring example use case remains a web
page). This is typically useful for record detection
(see, e.g., (Zhai and Liu, 2005; Zhu et al., 2005; Zhu
et al., 2006)) and extraction of data from list pages in
general: it can serve to extract the identifier for each
record on a web page, but also to annotate recurring
items within a record (subrecord).

4.1 Use Case

In Example 2 a list of people is shown on a web
page. A typical use case would then be to high-
light John and Frank, to serve as record identifiers.
The XPaths of these elements (/div[1]/div[1]/div[1]
and /div[1]/div[2]/div[1]) are subsequently aligned
and merged (in this case, a trivial operation):
/div/div/div[1]. Executing this XPath would retrieve
John and Frank, but also the names of other persons
defined in the div persons.

Example 2. In this example a snippet HTML struc-
ture is given for illustration purposes. It is a con-
tainer with id persons, which encompasses a div for
each person (record) that, in their turn, contain div
elements (attributes of the record) with textual infor-
mation.

<div id="persons">
<div class="person">
<div class="name">John</div>
<div class="telnr">0657/659812</div>
<div class="hobbies">
<div>Running</div>
<div>Walking</div>

</div>
</div>
<div class="person">
<div class="name">Frank</div>
<div class="telnr">3278/123278</div>
<div class="hobbies">
<div>Snooker</div>
<div>Climbing</div>

</div>
</div>
<div class="person">...</div>

</div>

As can be seen in Example 2, it is also possi-
ble for records to contain lists of items, or other

records in general. In this example, a list of hob-
bies is given for every person. When contained
within a record, the XPaths of the annotations are
created relative to the surrounding record’s identi-
fier, in this case, the person’s name. The user
could highlight two hobbies for John, resulting in the
following XPaths: /div[1]/div[1]/div[3]/div[1] and
/div[1]/div[1]/div[3]/div[2]. Merging them results in
/div[1]/div[1]/div[3]/div which can be viewed in the
context of the record’s identifier (name), creating a
relative path ../div[3]/div. That path can be executed
within the context of the identifier of Frank to re-
trieve his hobbies. We leave distilling the relative path
(however trivial in this example) for another discus-
sion, as this is heavily impacted by which elements of
the XPath specification are allowed in the path.

In this instance we focus on merging absolute
paths. If these paths should be made relative to an-
other path (such as is the case with subrecords), the
path is made relative after the merge.

4.2 Approach

Generalising XPaths can be used to describe the
same elements as the example XPaths on which they
are based, plus any element that exhibits the same
structural similarities shared by the example XPaths.
Dealing with the problem of generalising XPaths us-
ing alignment of steps allows for intuitive adjust-
ments, according to the target use case. First of all,
the XPaths are handled internally in non-abbreviated
form, making the method robust, flexible and future-
proof (other elements of the syntax can be considered
analogously). In the following paragraphs the entire
process is detailed, starting from the input XPaths to
the result of the merged XPath.

4.2.1 Input XPaths

The input of the process is a set of n XPaths. These
XPaths point to single examples (they resolve to one
node) that need to be generalised. They are formed
in an absolute way (they start at the root) and contain
only child axis nodes (an assumption, as mentioned in
Section 3.2, with exceptions to accomodate wildcards
and alignment elements (see Section 4.2.2)). Each
restriction as to which parts of the XPath syntax are
used is put in place with the intention of investigating
the process in a modular way, enabling us to focus on
the basis.

4.2.2 Align Two XPaths

At the basis of the algorithm is the alignment of two
XPaths (which is later generalised to n XPaths in

Wrapper�Induction�by�XPath�Alignment

495

Section 4.2.3). Analogous to the Levenshtein algo-
rithm (Levenshtein, 1966) (see Section 3), an edit dis-
tance matrix is built. A string character in the Leven-
shtein algorithm is being made equivalent to an XPath
step. Custom costs for every operation are assigned,
influencing the way the two XPaths are compared
with each other.

As mentioned in the introduction, we consider ba-
sic steps (the XPath specification supports more com-
plex elements) that contain axis name, node tests and
optional single integer predicates. We limit this work
to the child and descendant-or-self axis. The nodetest
is typically a node name (e.g., div, table ...), where we
also consider the nodetest node(), playing the role of
a wildcard.

Building edit distance matrix d for XPaths x1
(with s1 steps) and x2 (with s2 steps) is done, anal-
ogously to Levenshtein, by initialising the matrix by
setting the values in the first row and column to 0.

d(i;0) = 0;0� i� s1

d(0; j) = 0;0� j � s2

The rest of the indices is calculated using the follow-
ing rule, for 0 < i < s1 and 0 < j < s2:

d(i; j) = min

8>>>>><>>>>>:

d(i�1; j)
+tc(x1;i�1;x2; j)

d(i�1; j�1)
+tc(x1;i�1;x2; j�1)

d(i; j�1)
+tc(x1;i;x2; j�1)

(1)

where tc(y;z) is the transform cost of morphing step y
into step z, and xi; j is the jth step of the ith XPath. This
morph step is done according to the following set of
rules, keeping in mind the restrictions we have built
in ourselves, where the costs (shown as costx) can be
chosen according to the application:

� If both steps are equal (equal axis, nodetest and
predicate), use cost=.

� Else, if only the nodetest differs, use costn.

� Else, if only the integer predicate differs, use
costp.

� Else use cost6=, the two steps are treated as un-
equal.

After building d, the traceback path through the ma-
trix shows which operations led to the optimal result.
Choices can be made in this step, whenever equivalent
moves are encountered, that result in different merged
XPaths. Currently, we make a naive assumption with
regards to this choice: a diagonal, left and upwards

moves in the matrix are preferred to each other respec-
tively. In any case, all elements of the XPaths stay
preserved: the traceback only serves to insert align-
ment elements to facilitate the alignment (the equiva-
lent of the alignment character “*” described in Sec-
tion 3). This ensures that both XPaths that served
as input can be described, at minimum, by the even-
tual merged path. Inserted elements are neutral steps
(self::node() or . in abbreviated form), making sure
the XPaths keep their semantic meaning after align-
ment.

4.2.3 Aligning n XPaths

In Section 3, the Levenshtein edit distance was briefly
explained. This method is used to calculate the edit
distance between two strings, whereas we need to be
able to combine more than two. Typically (Gusfield,
1997), this is done in an iterative fashion, because of
the exponential complexity of an n-dimensional im-
plementation of the edit distance matrix. We employ,
as well, an iterative approach.

For n XPaths as input, edit distances are calcu-
lated for each pair. The closest pair is aligned. Next,
the on-average closest XPath to the aligned pair is
taken and aligned in its turn. Alignment steps (in-
sertions, deletions, substitutions) are performed for
each of the XPaths simultaneously, resulting in three
XPaths that have the same length and are aligned to
each other. This process proceeds iteratively until all
XPaths are aligned (see Example 3). Note that the al-
gorithm manages to cope with a reasonable amount of
error.

Example 3. In this example, the following three
XPaths serve as input for the alignment algorithm:

//body/div[1]/table[1]/td[1]
//body/table[2]/tr[2]/td[1]/a
//body/div[1]/table[1]/tr[2]/t[1]/a

They were subsequently aligned with each other:

//body /div[1] /table[1] /. /td[1] /.
//body /. /table[2] /tr[2] /td[1] /a
//body /div[1] /table[1] /tr[2] /t[1] /a

Missing and incorrectly named tags have been ac-
counted for and steps for which only the predicates
differ have been aligned with each other. These
aligned XPaths are now ready to be merged into each
other. All XPaths are shown in abbreviated form due
to space constraints, although it should suffice for il-
lustration purposes.

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

496

4.2.4 Merging XPaths

Merging aligned XPaths (that are, by definition, of
equal length) in a coherent way can become a diffi-
cult process according to which items are allowed in
the XPaths. In our case, we limited ourselves to child
(regular elements), descendant-or-self (for wildcards
resulting from inserted steps) and self (inserted steps)
axis steps, allowing us to implement a naive approach.
As the aligned XPaths are of equal length n we can
say that, for step index i;0 � i � n, all ith steps can
be considered together and merged into one step, ac-
cording to the following rules:

� Axis Name
– If all axes are the same, keep the axis-name.
– Else, if at least one of the steps is // or if there is

a mixture of neutral (.) and non-neutral steps,
use descendant-or-self.

– Else use descendant-or-self (a fallback, which
is for the moment not being used, as each case
falls within the top two cases due to assump-
tions made, but is mentioned for completeness).

� Node Test
– If all node tests are equal, keep the same in the

merged step.
– Else, if at least one of the steps is // or if there is

a mixture of neutral (.) and non-neutral steps,
use node().

– Else use node test node() in the merged step.
This case handles unequal node tests and make
sure that future, less naive, implementations
have a fallback.

� Predicate
– If all predicates for all steps are equal to

each other, keep the original predicates in the
merged step. This entails the most basic case:
that each step has exactly one predicate and that
those predicates are all integers. If those inte-
gers are equal, they are kept.

– Else, if one of the steps has zero or more than
one predicate, set no predicates in the merged
step. Advanced predicate handling is kept for
future work and is no trivial task.

– Else, remove the predicates, which effectively
introduces a predicate wildcard.

In Example 4, a couple of XPaths are merged with
each other and the result is given as illustration. The
example was kept as short as possible without losing
accuracy and was chosen to illustrate the different er-
rors that can occur when dealing with HTML source
material.

Example 4. In this example, the aligned XPaths
shown in Example 3, repeated below for convenience;

//body /div[1] /table[1] /. /td[1] /.
//body /. /table[2] /tr[2] /td[1] /a
//body /div[1] /table[1] /tr[2] /t[1] /a

are merged with each other, using the rules set out in
Section 4.2.4, resulting in the following XPath:

//body//table//*//

Missing steps have been replaced by descendant
wilcard steps, tag typo’s have been corrected by intro-
ducing node test wildcards and changes in predicates
have also been adequately corrected.

4.2.5 Fine-tuning

There are a number of things that can be finetuned to
influence the execution of the algorithm and the way
the XPaths are aligned and merged. In this paper we
focus ourselves on what seems to be the most impor-
tant of choices: the weights (or costs) that are used
when building the edit distance matrix. We refer to
Section 5 for tests that investigate these parameters.

5 RESULTS

In this section we briefly talk about the method we
used to construct a rudimentary dataset to test our
framework, after which we explain the methodology
of the tests themselves. We conclude with some re-
sults pertaining to various properties of the algorithm.

5.1 Test Data

As our main use case revolves around extracting
HTML data we focus our attention on the underlying
data structure of HTML web pages: the DOM tree.
A method was devised that generates random DOM
documents. These DOM documents all have target
elements (annotated in the DOM with an attribute),
representing the ground truth that we wish to extract
from the document.

There are two possible wrappers for these ele-
ments: either they are wrapped in a single element,
or they are part of a list. We defined a couple of pos-
sibilities to list items: a div containing a number of
divs, a table containing rows and columns of data and
ul elements that represent unordered lists of li items.

Contents. The contents of the DOM tree are deter-
mined in a random fashion. The tree is created by

Wrapper�Induction�by�XPath�Alignment

497

generating a list e of items and lists, as described
above, where items have a higher chance of being
generated (80%). An item is simply a container to
contain the next element in e, whereas a list expands
into multiple containers, thus branching the DOM
tree, where each container contains the next element
in e. The result of these operations is a DOM tree
of varying depth, containing at least one list (this is
enforced, otherwise the tree is a simple and singular
path), with substeps represented by regular items. The
leaf elements will be the targets (annotated by the at-
tribute mentioned above), containing a text node.

Impurities. Impurities are introduced by chance.
So far, two types have been used. Firstly, there is a
certain chance (20% for each item, for the reported
results) that, whenever an item is added to the DOM
document, another element is wrapped around it. This
makes the depth of each tree variable with regards to
each separate leaf. Secondly, there is a certain chance
(5% per character, for the reported results) that char-
acters of each tag are morphed into another, charac-
terizing typo-like errors.

About the Test Data. The way this test data is ran-
domly generated represents a number of errors that
can occur in real-life test sets. Due to the fact that a
lot of possibilities are encountered it allows testing for
combinations that would occur only rarely in real life,
making the test a rather extensive one. The test data
generation will be expanded in the future, for now it
suffices for our purpose, which is highlighting the vi-
ability of our algorithm.

5.2 Methodology

For testing, we followed a couple of steps to inves-
tigate which settings had which effect. First of all, a
random DOM document doc was generated. This doc
contains target elements, whose XPaths were taken as
ground truth. Following this, a large number of com-
binations of those XPaths were taken (combinations
of 2, 3, 4 ... XPaths). Each of these combination was
aligned and merged into an XPath which was evalu-
ated against doc, resulting in a number of elements.
In a perfect world, these elements should correspond
exactly to the target elements, but as there are impu-
rities in the dataset this was usually not the case: the
more XPaths we merge into each other, the better the
result we would expect to be.

5.3 Properties

Input XPath Amount. For the edit distance matrix,

Table 1: Results for default settings (see Section 5.3), illus-
trating impact of amount of input XPaths

of input XPaths Precision Recall
2 100% 37%
3 100% 61%
4 100% 73%
5 100% 80%
6 100% 85%
7 100% 88%
8 100% 91%
9 100% 93%

10 100% 94%

the following default costs (see Section 4.2.2) were
used:

� cost= = 0

� cost6= = 2

� costp = 1

� costn = 1

Random DOM documents were generated and com-
binations of size n;2� n� 10 were allowed (2 is the
lower limit for obvious reasons, and 10 seemed to be a
reasonable upper limit out of experience with a prac-
tical application (mentioned in Section 1). Results for
default settings are shown in Table 1, which show a
rise in average recall when we increase the combina-
tion amount, which was to be expected as explained
above. Precision remains stable at �100%, indicat-
ing we do not introduce erroneous elements in our
parse. It is clear that the amount of input XPaths has
an appreciable impact on the quality of the resulting
merged XPath.

Optimizing the recall remains a question of which
settings give the best result for which type of doc-
ument, which is investigated in the following para-
graph.

Edit Distance Matrix Parameters. For the four
costs (costn, costp, cost=, cost 6=) defined for the edit
distance matrix (see Section 4.2.2) a new test was
devised. With a high amount of repetition, random
DOM documents were generated, as was the case in
the previous paragraph. cost= was kept at 0 (for obvi-
ous semantic reasons and to reduce test complexity)
and the other three parameters were varied between 0
and 4. For these settings, the latter three accounted
for 54% of all variation in the recall value, when con-
sidering test cases of three example XPaths.

Best results were achieved with the following hier-
archy between the three varied costs (and cost= = 0):

costp > cost6= > costn

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

498

2 4 6 8

5

10

15

Combination amount

X
Pa

th
le

ng
th

�10�2

2

4

6

8
�10�2

A
ve

ra
ge

m
er

ge
tim

e
in

m
s

Figure 1: Merge times for a given amount of example
XPaths and merged path lengths (in steps).

2 4 6 8

5

10

15

Combination amount

X
Pa

th
le

ng
th

1

2

3

A
ve

ra
ge

al
ig

n
tim

e
in

m
s

Figure 2: Align times for a given amount of example XPaths
and merged path lengths (in steps).

The spread between the best and the worst result in
these tests was between 63% and 85%, for a fixed
amount of example XPaths of 3, highlighting the im-
portance of the edit distance matrix settings.

5.4 Performance

For this paper, there was no heavy focus on the per-
formance of the algorithm. However, in this section,
a couple of metrics can be found that illustrate the
speed of the algorithm with regards to the different
steps that need to be taken.

Figure 1 shows the average merge time taken, for
different amounts of XPaths merged, and different
lengths of resulting merged XPaths. In Figure 2 the
average align time is shown. The merge operation
takes appreciably less time than the align operation,
which is to be expected. Each operation still com-
pletes under 3ms, a maximum only attained when
dealing with 8 examples and a large XPath. Note that
these tests were performed by a Java implementation
on laptop hardware.

6 FUTURE WORK

A large amount of questions still arise when dealing
with the use of XPath step alignment for wrapper in-
duction. For one, the edit distance matrix can offer
a lot more flexibility when considering other types of
XPath syntax elements. Costs can be tweaked and
expanded upon. The generated dataset that was used
needs to be improved to more accurately reflect real-
life situations, also with the goal in mind to make it
freely available and to use this method to objectively
compare with others. Other elements of the XPath
syntax need to be incorporated, allowing for more
complex align and merge operations, beyond what
was introduced here.

7 CONCLUSIONS

In this paper we investigated how an in-depth appli-
cation of XPath step alignment techniques could be
used in the context of wrapper induction. A frame-
work was constructed to facilitate testing (which was
also used in production systems with satisfactory re-
sults). A couple of preliminary tests were run, show-
ing dependencies of the correctness of the results on
some of the parameters that are possible, as well as the
amount of training examples (which was excpected).
We have shown that aligning XPaths on a semanti-
cal level with the goal of generalising examples is
feasible and worthwhile, and we have introduced a
rudimentary system that generates DOM documents
to serve in algorithm testing environments, which is
bound to be useful as a comparison tool in the nearby
future.

REFERENCES

(1999). Xpath 1.0. http://www.w3.org/TR/xpath/. W3C
Recommendation: 16 November 1999.

(2010). Xpath 2.0. http://www.w3.org/TR/xpath20/. W3C
Recommendation: 14 December 2010.

Anton, T. (2005). Xpath-wrapper induction by generalizing
tree traversal patterns. Number 3, pages 126–133. GI-
Fachgruppen ABIS, AKKD, FGML.

Arasu, A. and Garcia-Molina, H. (2003). Extracting struc-
tured data from web pages. pages 337–348, New
York, New York, USA. ACM Press.

Cai, D., Yu, S., Wen, J.-R., and Ma, W.-Y. (2004). Block-
based web search. In Proceedings of the 27th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’04, pages 456–463, New York, New York, USA.
ACM.

Wrapper�Induction�by�XPath�Alignment

499

Chang, C.-H. and Lui, S.-C. (2001). Iepad: Information
extraction based on pattern discovery. In Proceed-
ings of the 10th International Conference on World
Wide Web, WWW ’01, pages 681–688, New York,
NY, USA. ACM.

Cohen, W. W., Hurst, M., and Jensen, L. S. (2002). A flex-
ible learning system for wrapping tables and lists in
html documents. In WWW, WWW ’02, pages 232–
241, New York, NY, USA. ACM.

Crescenzi, V., Mecca, G., and Merialdo, P. (2001). Road-
runner: Towards automatic data extraction from large
web sites. In Proceedings of the 27th International
Conference on Very Large Data Bases, VLDB ’01,
pages 109–118, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Gusfield, D. (1997). Algorithms on strings, trees, and se-
quences: computer science and computational biol-
ogy. Cambridge University Press, New York, NY,
USA.

Han, W., Buttler, D., and Pu, C. (2001). Wrapping web data
into xml. SIGMOD Rec., 30(3):33–38.

Hao, Q., Cai, R., Pang, Y., and Zhang, L. (2011). From one
tree to a forest: A unified solution for structured web
data extraction. In Proceedings of the 34th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’11, pages
775–784, New York, NY, USA. ACM.

Hsu, C.-N. and Dung, M.-T. (1998). Generating finite-state
transducers for semi-structured data extraction from
the web. Information Systems, 23(8):521–538.

Kushmerick, N. (2000). Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118(1-2):15–
68.

Kushmerick, N., Weld, D. S., and Doorenbos, R. B. (1997).
Wrapper induction for information extraction. In Pro-
ceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI ’97), pages 729 – 737.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions and reversals. Soviet Physics
Doklady, 10(8):707–710.

Liu, B., Grossman, R., and Zhai, Y. (2003). Mining data
records in web pages. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’03, pages
601–606, New York, NY, USA. ACM.

Muslea, I., Minton, S., and Knoblock, C. (1999). A hier-
archical approach to wrapper induction. In Proceed-
ings of the Third Annual Conference on Autonomous
Agents, AGENTS ’99, pages 190–197, New York, NY,
USA. ACM.

Myllymaki, J. and Jackson, J. (2002). Robust web data ex-
traction with xml path expressions. Technical Report
May.

Pinto, D., McCallum, A., Wei, X., and Croft, W. B. (2003).
Table extraction using conditional random fields. In
Proceedings of the 26th Annual International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’03, pages 235–242, New
York, New York, USA. ACM Press.

Sahuguet, A. and Azavant, F. (1999). Building light-weight
wrappers for legacy web data-sources using w4f. In
Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 738–741,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Sugibuchi, T. and Tanaka, Y. (2005). Interactive web-
wrapper construction for extracting relational infor-
mation from web documents. In Special Interest
Tracks and Posters of the 14th International Confer-
ence on World Wide Web, WWW ’05, pages 968–969,
New York, New York, USA. ACM Press.

Varun, S. (2011). Siloseer : A visual content extraction
system.

Wang, Y. and Hu, J. (2002). A machine learning based ap-
proach for table detection on the web. Proceedings of
the eleventh international conference on World Wide
Web, 9.

Wong, T.-L. and Lam, W. (2010). Learning to adapt web in-
formation extraction knowledge and discovering new
attributes via a bayesian approach. IEEE Transactions
on Knowledge and Data Engineering, 22(4):523–536.

Zhai, Y. and Liu, B. (2005). Web data extraction based on
partial tree alignment. In Proceedings of the 14th In-
ternational Conference on World Wide Web, WWW
’05, pages 76–85, New York, NY, USA. ACM.

Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y.
(2005). 2d conditional random fields for web infor-
mation extraction. ICML ’05, pages 1044–1051, New
York, New York, USA. ACM Press.

Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y.
(2006). Simultaneous record detection and attribute
labeling in web data extraction. In Proceedings of
the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06,
pages 494–503, New York, New York, USA. ACM
Press.

KDIR�2014�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

500

