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Abstract: This work proposes a method for studying and monitoring in real-time a single cell on a 2D electrode 
matrix, of great interest in cell motility assays and in the characterization of cancer cell metastasis. A CMOS 
system proposal for cell location based on occupation maps data generated from Electrical Cell-substrate 
Impedance Spectroscopy (ECIS) has been developed. From this cell model, obtained from experimental 
assays data, an algorithm based on analysis of the 8 nearest neighbors has been implemented, allowing the 
evaluation of the cell center of mass. The path followed by a cell, proposing a Brownian route, has been 
simulated with the proposed algorithm. The presented results show the success of the approach, with 
accuracy over 95% in the determination of any coordinate (x, y) from the expected center of mass.    

1 INTRODUCTION 

Cell motility plays an important role in many 
biological processes, such as embryogenesis, wound 
cicatrisation, immune response, and cancer evolution 
(Ananthakrishnan, 2007). Tumour cell motility is 
directly related with the processes of cancer 
propagation, generating metastasis processes, which 
is one of the main raison of death related with this 
injury. The assays in-vitro of cell motility represents 
a useful tool on the research on mechanism 
regulation of the cancer cells migration, also to test 
the efficiency of alternative drugs to combat cancer 
at cellular level.  

The most common methods for studying cell 
motility are optics, based on microscopy, and with 
fluorescence techniques. However, since these 
methods are well established and referenced, they 
require fluorescence markers, which can interfere on 
correct function of some proteins, modifying the 
normal cell evolution (Zhu, 2015). In addition, light 
application at high intensity levels required for 
exciting fluorescence compounds, can deliver or 
generate some toxics elements at cells. 

ECIS (Giaever and Keese, 1986) technique 
allows cell culture research based on impedance 
measurements done based on cell attachment 

performance, to obtain cell properties, cell index, 
etc. (Grimnes, 2008, Yeh, 2015). ECIS techniques 
represent a non-invasive method for real time 
monitoring of cells and definition of cell properties: 
cell adhesion, motility, drug assays test, cell 
growing, etc. (Sinclair 2012, Mondal, 2013). 

Experimentally, ECIS technique requires of an 
excitation signal, current (or voltage), applied to 
obtain a voltage (or current) as response. The bio-
impedance information due to cell attachment to the 
electrode is extracted from the signal response (real 
and imaginary components, or magnitude and phase 
(Mansor, 2015). The main problems to be solved for 
extract this information are two. Firstly, bio-
impedance changes due to cell culture measurements 
must be performed with accuracy using adequate 
techniques and circuits with high performance 
(Grimnes, 2008) (frequency programmable 
voltage/current generators, amplifiers, demodulators, 
etc). Secondly, data obtained for bio-impedance of 
electrode-cell system should be decoded to rebuild 
and find the information sought, in general, number 
of cells in a culture.   

The proposed system shown in Figure 1 can be 
implemented in CMOS technology. It is composed 
of a 2D matrix of electrodes, which act as “small 
sensors” of bioimpedance (Yúfera, 2009), integrated 
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on the same or similar silicon substrate that 
employed by the CMOS circuits for measuring and 
acquisition (Huertas, 2015). The circuits allow 
row/file selection to drive the actual “pixel” under 
test, and optimal frequency selection to optimize 
sensor sensitivity and voltage applied to electrodes. 

 

Figure 1: 2D electrode matrix and circuits for excitation 
and acquisition electrical signals for biompedance test of a 
cell culture. 

The bio-impedance data obtained from cell 
cultures can be employed to model the 2D system 
proposed in Figure 1. In particular, it can be defined 
the fill-factor parameter (ff) as the proportional area 
filled by cell to the total area of one electrode. This 
parameter oscillated from ff=0, when the electrode is 
totally empty of cells (on top), to ff=1, if the 
electrode is totally covered of cells. This system 
gives us a dimensional matrix of numbers, one for 
each pixel, in the range of 0 to 1, representative of a 
cell culture status, as illustrated in Figure 2, for a 
MCF7 cell line image, with an 8x8 electrode array. 
In this way, black and white images can be created 
from bio impedance measurements. 

 

Figure 2: Fill-Factor map associated to each electrode, for 
a MCF7 cell line image example. 

The study proposed in this work focused on 
spatial-temporal location of a single cell inside an 
electrode matrix, using for that the information 
obtained from sensors (pixels), in the form of ff map. 
For that, it has been developed a Location Algorithm 
implemented in Matlab. The proposed algorithm has 
been applied to solve the problem to define the track 
followed by a single cell in a culture, determining 

the time evolution of its mass centre in a defined 
period. 

This document is organized as follows. Section 2 
describes the proposed system structure and the 
modelling of the cell under study. In section 3 it is 
detailed how works the algorithm for locating a cell, 
while section 4 describes its program 
implementation, the simulations performed and the 
validation process. Applications for a single cell 
location and cell tracking will be shown. Finally, 
section 5 will show the results obtained, and some 
conclusions of the work, demonstrating the 
correctness of the proposed algorithm to be applied 
to study the metastasis problem. 

2 SYSTEM MODELING 

In this section, the proposed system structure to 
develop the location algorithm is described. The first 
step is addressed to model the cell which will be 
used in the case study. There exists a wide variety of 
cells with very different shapes and structures. For 
the sake of simplicity, a circular cell is chosen in 
such a way that it is defined by both the location of 
the center of the circle (x, y) as well as the radio (r). 
It should be taken into account that the circular cell 
modelling is an ideal model and that elliptic 
morphologies with variable radio could best 
conform to the reality. 

Once the shape and the size of the cell have been 
specified, the second step is to define the 
bidimensional array of electrodes. An array M of 
NxN dimension, where each element M(i,j) includes 
an electrode of fixed area, being i the position of the 
row and j the position of the column. The array M 
stores in each element its corresponding ff, generated 
by the electrodes. These electrodes of the array are 
considered squared and the side l. 

To make easier the search algorithm and to 
avoid, in advance, complex cases to be analysed, 
when the cell is being located, the size of every 
element of the array has taken equal or minor to the 
cell diameter. The dimension of every element or 
pixel (electrode) of the bidimensional array is equal 
to the cellular diameter. 

A series of concepts required during the 
development of the system are defined below: 

- Center of mass (cm): The center of mass of a 
discrete masses system is a weighted average, 
according to the individual mass, of the positions 
of all the particles that compose it. It can be 
calculated as: 
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Ԧݎ ൌ ∑ ݉ݎԦ∑ ݉ ൌ Ԧݎ݉ܯ1  (1) 

M, the total mass of the particle system 
m, the mass of the i-th particle ݎԦ, position vector of the i-th mass with respect to 
the assumed reference system.  
 

- Relative error (ߝ): Is the quotient obtained by 
dividing the absolute error and the exact value, 
being the absolute error the difference between 
the exact value and the measured value. ߝ ൌ ௫௧ݒ| െ ௫௧ݒ|௦௨ௗݒ (2) 100	ݔ

3 LOCATION ALGORITHM 

The goal of the proposed algorithm is to obtain the 
center of mass (cm) of the cell, for a given and fixed 
occupation map, based on the ff or occupancy levels 
of the different electrode array elements. With this 
objective, an iterative algorithm has been developed 
which assigns weights to each element of array 
according to whether the 8 adjacent elements contain 
occupancy values. In the algorithm, several elements 
are defined: 

 The occupation array M above defined, 
which includes the fill factor values. It 
represents the data entry and is obtained 
previously as a result of measurements made 
on the system.  

 An empty subdivision array Ms of 2Nx2N 
dimensions, is also defined. It represents the 
subdivision of the occupation array, where 
each element M (i, j) is split into four. This 
subdivision allows a more precise calculation 
of which areas of each element are occupied 
by the cell. In each iteration of the algorithm, 
the Ms array is subdivided into 4 sub-
elements and so on until an optimal result is 
reached. The greater the number of divisions, 
the more accurate the calculated center of 
mass, but also the longer the required 
runtime. This array stores the weights that 
indicate which elements of it are parts of the 
area of the cell under study (see Figure 3). 

 

Figure 3: Array M of 3x3 dimension (blue), array Ms of 
6x6 dimension (green) and the subdivision of Ms 12x12 
(red). The occupation map will have non-null values in the 
two first elements of the two first rows. The subdivision 
allows to calculate both which elements are part of the cell 
and which are not and as a consequence obtaining its area 
more precisely. 

 Taking the modeling references, the cell can 
occupy a maximum of four elements of the 
array M, i.e. there will be at most four non-
zero fill factors in the array	ܯ. In this way, an 
index vector I is defined that contains the 
positions (i.j) of these four possible values of 
M. 

 Array ࡼ which stores the central points of 
the greater weight elements of Ms adjudicated 
by the algorithm described later. 

The algorithm can be divided into three 
execution steps: 

Step 1: Initialization: The occupation map 
elements of M have input values given by the filling 
factors resulting from the experiments. Firstly, an 
initialization process is performed, according to 
which the occupation map elements M are 
subdivided into 4 sub-elements and the weights are 
assigned, initializing the matrix Ms. These initial 
values are selected according to the algorithm 
proposed. 

Step 2: Iteration: Secondly, the iterative process is 
developed where the subdivision array, which 
contains the weights, is subdivided into 4 sub-
elements and so on, at each iteration. At each level 
of the iteration process, the current area resulting 
from the algorithm is calculated. The process ends 
when the areas obtained from the selected sub-
elements, for a determined level of iteration, are the 
closest to the occupancy values obtained by the 
sensors (ff). 
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Step 3: Calculation of the Mass Center: The 
center of mass is calculated according to the results 
obtained. From the resulting center of mass, the ffs 
corresponding to this point, called in the algorithm 
fffb, are calculated and compared with the real ffs of 
the given occupation map. With this step, the system 
is feedback in such a way that the mass center is 
recalculated according to the difference obtained 
between the calculated and actual ff, causing a 
translation of the center of mass. This recalculation 
process reduces the error in most of the cases. 

The actions involved in each of the algorithm 
steps are described below in a more detailed way:  

 

Step 1.- Initialization 

This step begins by traversing the M array, 
which initially contains the values of the filling 
factors resulting from biomedical experimentation. 
The goal is to assign values to the subdivision array 
Ms. 

Starting from each element M(i,j) with a non-
zero value and smaller than 0.75, weights are 
assigned to the four sub-elements of the array Ms 
which correspond to this element M(i,j). The 
assigned weights are determinate by the values of 
the 8 adjacent elements of M(i,j). In particular, the 
weights will depend on: 

 If the neighbor of the diagonal contains a 
non-zero value, then a constant A will be 
added to the element Ms	adjacent to the 
diagonal (see Figure 4). 

 

Figure 4: It despicts the diagonal adjacency of the central 
element. For each adjacent neighbor of the diagonal of M 
(blue), a weight A is assigned to the corresponding 
element of the array Ms (green). 

 If the remaining neighbors, which do not 
conform the diagonal, contain a non-zero 
value, then a constant A will be added to the 

two elements of Ms adjacent to the sides (see 
Figure 5). 

 

Figure 5: For each 4-adjacent neighbor of the array M 
(blue), a constant value A is assigned to the two 
corresponding elements of the array Ms (green). 

With this in mind, an element of Ms will have at 
most a weight of 3A. 

On the other hand, if the value is higher than 
0.75, the maximum weight, 3A,  is straightaway 
assigned to the 4 sub-elements (Ms(2i-1,2j-1), Ms(2i-
1,2j), Ms(2i,2j-1), Ms(2i,2j. 

The array M is again examined and the following 
conditions are established: 

 If 0 ൏ ,ሺ݅ܯ ݆)  0.25, only the two larger 
weight sub-elements of the four possible sub-
elements that would form M(i,j) are stored in 
the array Ms.  

 If 0.25 ൏ ,ሺ݅ܯ ݆)  0.50, the three larger 
weight sub-elements are stored in. 

 If ܯሺ݅, ݆)  0.50, the four sub-elements of 
Ms are stored. 

 

Step 2.- Iterative process  

In this step the iterative process starts in order to 
increase the resolution to obtain the area that most 
closely matches the real area of the cell under study. 
In each iteration the ܯ௦ array increases its dimension 
as 2numIter+1N, being numIter, the iteration number in 
which the process is and N the dimension of the M 
array. 

As in step 1, the Ms array is examined and 
weights are assigned to the new subdivision array, 
Ms_iter, according to the values of the adjacent 
elements of Ms. Calculating the weights of the new 
array Ms_iter elements, those that contain the 
maximum weight with the same criteria established 
in step 1 are selected. With these elements the 
approached occupation area is calculated. As in each 
iteration the subdivision increases, the area that 
represents each element decreases and thus, the 
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percentage of occupation area of each element will 
be given by: 4ିଵି௨ூ௧ (3)

At this point, the proposed by the algorithm 
occupation area is evaluated, and compared to the 
initial area, to which it must converge. If the 
estimated by the algorithm area is equal to the 
corresponding ff or approaches to a set range within 
error margins, the iterative process is terminated. 
Otherwise, step 2 is repeated to a maximum of 8 
iterations. Once the iterative process is completed, 
the geometric centers of the higher-weight elements 
of the Ms_iter array are stored in the array P. And in 
turn, the mass center is calculated for each element 
of index I, this calculation is based on the points P 
contained within such elements. As discussed, there 
will be a maximum of four ff values and therefore 
four mass centers, calculated as follows: 

Ԧೖݎ ൌ ݂		ܯ1 ݂ܲሺ݅, ݆),, ൌ ݂ ݂ܲሺ݅, ݆),,  (4)

where k defines the k-th value of the I vector and M 
defines the total mass of the system, in our case, is 
the sum of the ff whose value is always unitary. 
 

Step 3.- Mass center of the cell calculation   

The iterative process results in the four mass 
centers related to each ff. With these points and 
following the above equation, it is calculated the 
mass center of the whole set corresponding to the 
mass center of the cell. ݎԦ ൌ݂ ݂ Ԧೖ (5)ݎ

To verify that the result is correct, our system is 
feedback. The percentage of area occupied by the 
obtained cell (fffb) is calculated, and it is compared 
with the original ffs. The fill factor and the mass 
center of the cell are recalculated: ݎԦ_್ ൌ ݂ ݂  ሺ݂ ݂ െ ݂ ݂ௗೖ) Ԧೖ (6)ݎ

4 SOFTWARE 
IMPLEMENTATION 

The algorithm has been implemented in the 
mathematical software tool Matlab. We divide this 
section in two sections where different simulation 
studies are carried out. First, in sub-section 4.1, an 

example of the cellular localization based on the 
localization algorithm is performed. Secondly, the 
study and simulation of the cell trajectory described 
in subsection 4.2 is implemented in Matlab. 

4.1 Cellular Localization 

In this section, an example of the operation and 
results obtained with an array of 6x6 electrodes and 
a 10μm diameter cell is shown. To properly simulate 
the operation of cell cultures, the generation of the 
position that the cell occupies on the surface of the 
array is done in a random way. Once the mass center 
is defined, the occupation map to be used by the 
algorithm is calculated. Figure 6 shows an example 
of the map obtained from a cell with center cmreal 

(13µm, 48µm). 

 

Figure 6: Occupation map of a cell with center in the 
coordinates (x,y) = (13µm,48µm). 

After five cycles of iteration, a set of points is 
obtained, from which the center of the cell will be 
calculated (Figure 7). Specifically two possible 
centers are obtained, corresponding to the execution 
of the algorithm without feedback (cmcell (12.63μm, 
47.99μm)) and with feedback (cmcell_fb (12.87μm, 
47.96μm)). The original cell is compared with the 
two generated results and the relative error is 
calculated with equation (7). ߝ ൌ |ܿ݉ െ ܿ݉|ܿ݉ (7) 100	ݔ

For the Y axis case both results are 
approximated with an error lower than 0.05%. 
However, for the X axis the error is reduced using 
feedback (from 2.8% to a 1.0%). In Figure 8 it is 
shown how calculated cells match real ones. 

4.2 Cell Trajectory: Brownian Motion 

The ECIS technique opens the possibility of 
monitoring a cell culture in real time. In addition to 
the estimation of the cellular location from  a map  of 
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Figure 7: Resulting set of points for the elements with the 
higher weight, corresponding to the elements of the 
occupation map. In the selected part it is shown the real 
centre cmreal (13µm,48µm) (blue circle), the center 
obtained with the algorithm cmcell (12.63µm,47.99µm)  
(green line) and the center obtained with feedback cmcell_fb 

(12.87µm,47.96µm)  (red line). 

 

Figure 8: Comparison of the original cell (blue line) with 
the calculated cell without feedback (green line) and the 
calculated cell with feedback (red line).  

occupation obtained with this technique, it is 
interesting to have tools to analyze the temporal 
evolution of the cell. In this way, the trajectories 
described by them could be analyzed. 

The mathematical modeling of cell movement is 
of great relevance in the fields of biology and 
medicine. Movement models can take many different 
forms, but the most commonly used are based on the 
extensions of simple random motion processes. 
Assuming that motion is allowed in any direction, 
this process is essentially known as Brownian motion 
(Wu 2014, Qu, 2010). The physical phenomenon of 
Brownian motion is based on the random motion of 
particles suspended in a fluid as a result of their 
collision with rapidly moving atoms or molecules. 

To generate a two dimensional random motion, 
two independent random paths are used, one for each 
coordinate in time using different random seeds. 
Instead of using random steps from a Gaussian 
distribution, an approximation to Brownian motion 
can be constructed by taking random measurements 
of simple probability functions, such as a delta 
function or a constant probability density function 
(Codling 2018). 

A Brownian motion model is implemented in 
Matlab, indicating the starting point from which the 
cell will start and the number of time samples desired 
to obtain the points of the trajectory. Random angles 
are generated for each moment and each mass center 
is produced following a stochastic process: ܿ݉௫ሺݐ) ൌ ܿ݉௫ሺݐ െ 1)  cos (ݐ௬ሺ݉ܿ (ݐሺߪ ൌ ܿ݉௬ሺݐ െ 1)  sin (8) (ݐሺߪ

In addition, the generation of the trajectory is 
limited according to the size of the culture matrix. 

Figure 9 and 10 show a possible trajectory 
generated by the cell under study. After obtaining the 
occupation map for each time instant, it is simulated 
the trajectory followed using the localization 
algorithm, previously implemented. To be specific, it 
is considered a cell with an average velocity of 0.1 
μm/min. The example simulates the calculation of 
sixteen occupation maps for three hours. 

As we checked in the previous point, most of the 
points obtained with feedback are closer to the real 
points. Table 1 shows for each point the errors 
committed without feedback and with feedback, the 
number of iterations made and the time used by the 
system. The measurements have been obtained using 
an Intel® Core ™ i7-4501U processor at 2.60GHz 
and 11.9GB of RAM. 
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Figure 9: Real trajectory of a cell with radius 10µm (blue) 
and trajectory calculated with the localization algorithm 
(green).  

 

Figure 10: Real trajectory of a cell with radius 10µm 
(blue) and trajectory calculated with the localization 
algorithm with feedback (red).  

With these results we can verify that in most 
cases the error decreases applying the feedback 
process, being position 2 and 3 the only points where 
the error is not improved. Even in these cases, errors 
less than 3% are obtained. The majority of iterations 
required to obtain the position is two cycles, reducing 
the overall execution time of the trajectory. For 
iterations less than 8 cycles the time spent is less than 
60 seconds. 

To confirm that the system developed in this 
work is capable of robustly and accurately estimating 
the position of the cell from the occupation maps, an 
empirical study with more samples has been carried 
out. These tests consist of the random generation a 
cell track, with fifty points, each one with their 
corresponding maps of occupation. The position 
estimation of each of the cells generated applying the 

Table 1: Error percentage for the 16 positions. 

Pos 
Relative error (ߝ)  

N_ite 
 

CPU(s)  Axis x Axis y 

1 
Alg 2.85% 0.02%  

5 
 

56.70 Alg + fb 1.00% 0.08% 

2 
Alg 0.67% 0.14%  

5 
 
55.02 Alg + fb 1.12% 0.39% 

3 
Alg 0.12% 0,57%  

8 
 
70.50 Alg + fb 0.53% 0.33% 

4 
Alg 5.21% 0.06%  

4 
 
54.6 Alg + fb 0.64% 0.01% 

5 
Alg 0.74% 0.28%  

2 
 
54.01 Alg + fb 0.74% 0.01% 

6 
Alg 0.81% 0.46%  

2 
 
47.69 Alg + fb 0.49% 0.32% 

7 
Alg 0.67% 0.22%  

2 
 
47.90 Alg + fb 0.67% 0.06% 

 
8 

Alg 6.15% 0.51%  
5 

 
49.03 Alg + fb 2.95% 0.11% 

 
9 

Alg 1.34% 0.49%  
2 

 
48.21 Alg + fb 1.30% 0.24% 

 
10 

Alg 2.51% 0.14%  
5 

 
57.25 Alg + fb 0.70% 0.02% 

 
11 

Alg 2.76% 0.79%  
2 

 
48.14 Alg + fb 1.90% 0.41% 

 
12 

Alg 2.19% 0.16%  
2 

 
48.01 Alg + fb 1.07% 0.06% 

 
13 

Alg 2.68% 0.05%  
4 

 
51.4 Alg + fb 1.15% 0.05% 

 
14 

Alg 4.04%  0.15%  
2 

 
49.27 Alg + fb 1.18% 0.05% 

 
15 

Alg 1.72% 0.29%  
2 

 
47.90 Alg + fb 0.16% 0.07% 

 
16 

Alg 0.90% 0%  
2 

 
47.68 Alg + fb 0.24% 0% 

algorithm and finally, the definition of the position of 
each point generated applying the algorithm and its 
feedback. 

The highest errors obtained were located when 
the occupation map collects most of the area in a 
single element, but with connected elements with a 
very low value. In contrast, when the cell is more 
evenly divided into several elements, the error is very 
small. And in the event that the cell is entirely in one 
element or divided exactly in two or four elements, 
the error obtained is null. Table 2 shows the 
maximum and minimum error percentages obtained, 
and an estimation of the mean error value. 
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Table 2: Experimental error percentages. 

Relative error (ߝ) Max. Min. Mean 

Algorithm Eje x 8.35% 0% 2.19% 

Eje y 2.69% 0 % 0.49% 

Algorithm + 
Feedback 

Eje x 4.98% 0 % 0.95% 

Eje y 1.05% 0 % 0.19 % 

With this experimental study, it is concluded that the 
maximum error that the system can have is below 
5% for the X axis and below 1% for the Y axis.  

5 CONCLUSIONS AND FUTURE 
WORK 

A cellular localization system has been developed 
based on the occupation maps generated by electrical 
impedance spectroscopy. The localization system has 
been able to generate the approximated cell position 
in a culture, with a maximum relative error of 4.98%, 
and a typical error of 1%, when it is provided 
feedback to the algorithm. Although sometimes the 
feedback does not reduce the error, in most cases 
improves it, decreasing the error by half. The 
proposed tracking algorithm enables CMOS 
technologies for Lab-on-a-Chip systems for cell 
motility assays, particularly useful in cancer research. 

In order to expand the study, possible cellular 
trajectories have been randomly generated following 
the modeling of the Brownian system. Starting from 
the trajectory it will be possible to perform studies on 
the cellular behavior in different situations of interest, 
as can be the effects of drugs in the cellular activity. 

From the results obtained in this study, new lines 
of research are opened that can be of great scientific 
interest. Firstly, the cellular morphology is very 
uneven and irregular, so the modeling of the cell in a 
circular form does not resemble the reality, and 
supposes an excessively simple model. A possible 
improvement of the system would be to use modeling 
of cells with more common form, for example, as an 
ellipse. Tests with real cases can also be carried out, 
using electrode arrays and a cell line of interest, to 
characterize its trajectory and study its behavior. 
Furthermore, variable side electrodes that do not 
occupy the entire pixel could be used, and study, this 
way, how to solve dead zones where no information 
is collected and can be occupied by the cells. 
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